
INFORMATICA, 2020, Vol. 31, No. 4, 723–749 723
© 2020 Vilnius University
DOI: https://doi.org/10.15388/20-INFOR431

Long Short-Term Memory Networks for Traffic
Flow Forecasting: Exploring Input Variables, Time
Frames and Multi-Step Approaches

Bruno FERNANDES1,∗, Fabio SILVA1,2, Hector ALAIZ-MORETON3,
Paulo NOVAIS1, Jose NEVES1, Cesar ANALIDE1

1 Department of Informatics, ALGORITMI Centre, University of Minho, Braga, Portugal
2 CIICESI, ESTG, Polytechnic Institute of Porto, Felgueiras, Portugal
3 Department of Electrical and Systems Engineering, Universidad de Leon, Leon, Spain
e-mail: bruno.fmf.8@gmail.com, fabiosilva@di.uminho.pt, hector.moreton@unileon.es,
pjon@di.uminho.pt, jneves@di.uminho.pt, analide@di.uminho.pt

Received: June 2019; accepted: September 2020

Abstract. Traffic flow forecasting is an acknowledged time series problem whose solutions have
been essentially grounded on statistical-based models. Recent times came, however, with promising
results regarding the use of Recurrent Neural Networks (RNNs), such as Long Short-Term Memory
networks (LSTMs), to accurately address time series problems. Literature is, however, evasive in
regard to several aspects of the conceived models and often exhibits misconceptions that may lead to
important pitfalls. This study aims to conceive and find the best possible LSTM model for traffic flow
forecasting while addressing several important aspects of such models such as the multitude of input
features, the time frames used by the model and the employed approach for multi-step forecasting.
To overcome the spatial problem of open source datasets, this study presents and describes a new
dataset collected by the authors of this work. After several weeks of model fitting, Recursive Multi-
Step Multi-Variate models were the ones showing better performance, strengthening the perception
that LSTMs can be used to accurately forecast the traffic flow for several future timesteps.

1. Introduction

Recent years have been undoubtedly beneficial to the machine learning community. Deep
learning, in particular, has assumed a prominent position in many distinct fields such as
computer vision (Karpathy et al., 2014; Zhang et al., 2016), speech recognition (Graves
et al., 2013; Trianto et al., 2018), or natural language processing (Zhang et al., 2017;
Huang et al., 2018), just to name a few. This is the result of the increased robustness and
ability to generalize that deep learning models have achieved as well as the appearance of
new application-specific integrated circuits, such as Tensor Processing Units (TPUs) or
Graphics Processing Units (GPUs), with superior capacities.

∗Corresponding author.

https://doi.org/10.15388/20-INFOR431

724 B. Fernandes et al.

Time series problems are among those who have benefited from the progress of deep
learning. In its essence, a time series problem consists in forecasting future values based on
a set of previous observations, ordered in time. Indeed, there are an endless number of time
series problems, with the major constraint being the availability of past observations. Until
recently, the main focus was on using statistical-based models such as the AutoRegressive
Integrated Moving Average (ARIMA) or ARIMA with Explanatory Variable (ARIMAX)
to forecast future points (Babu and Reddy, 2012; Cortez et al., 2004). However, the results
produced by such models have now been superseded by those produced by deep learning
ones, in particular by Recurrent Neural Networks (RNNs) (Fernandes et al., 2019; Fu et
al., 2016; Zhao et al., 2017). The promise of RNNs is that the temporal dependence and
contextual information in the input data can be learned and generalized to produce reliable
forecasts. Long Short-Term Memory networks (LSTMs), a specific type of RNNs, are
among those that have been showed to produce valid results on time series data (Zhao et
al., 2017; Ma et al., 2015).

An important time series problem is related to traffic flow forecasting. Indeed, in our
days, road safety has become a major concern of our society. This fact is easily explained
with the substantial number of deaths happening on the roads every day. Hence, the possi-
bility of knowing beforehand how the traffic flow will change in the next minutes or hours
would enable a driver to opt for a different road, a cyclist to opt for another hour to go
cycling or a pedestrian to choose a less polluted zone. Due to the difficulty of having real
contemporary data, the great majority of traffic flow forecasting studies uses open datasets
such as PeMS, a dataset describing the occupancy rate of different car lanes of the San
Francisco bay area. However, the use of such datasets raises some constraints. The first one
is related to the different characteristics of traffic in distinct countries, cities and roads, i.e.
a model that has been conceived over California roads is likely to behave poorly in other
countries and cities. Secondly, the lack of real time data prevents the models from being,
indeed, deployed and used to forecast the traffic flow in a real life scenario. Differently,
we developed a software artefact, entitled as The Collector, that, among others, has been
collecting real traffic data, uninterruptedly, since the 2018 in demarcated regions. This al-
lows us to tackle both issues. The challenges, however, remain the same. On the one hand,
traffic flow manifests a stochastic non-linear nature. On the other, some conception pitfalls
are recurrent. Indeed, there seems to be a misconception about the importance of an ade-
quate forecasting architecture and the tuning of LSTM or ARIMA models in regard to the
used time frames. Moreover, existing models do not clearly describe the method that was
used for multi-step forecasting, which may be indicative of prediction errors. Therefore,
this work makes use of the dataset produced by The Collector to conceive ARIMA and
state-of-the-art LSTM models to answer the following research questions:

1. Do LSTM networks have better accuracy than statistical-based models for traffic flow
forecasting?

2. Are LSTM networks capable of accurately forecasting the traffic flow of a road for
multiple future timesteps (multi-step)?

3. Do recursive multi-step LSTM networks have better accuracy than multi-step vector
output ones?

Long Short-Term Memory Networks for Traffic Flow Forecasting 725

4. Do multi-variate LSTM networks have better accuracy than uni-variate ones?

The remainder of this paper is structured as follows, i.e. the next section describes
the current state of the art, the ARIMA and LSTMs models as well as the importance of
spatial-temporal dependencies in time series; the subsequent section includes a descrip-
tion of the used materials, the implemented methods and the software developed for data
collection; later, the performed experiments are explained, with results being gathered and
analysed; finally, conclusions are drawn.

2. State of the Art

Traffic flow forecasting has been in the mind of researchers for the last decades, with the
initial approach being focused on statistical-based models. However, recent times have
come with very promising results in regard to the use of RNNs to accurately address time
series problems.

2.1. ARIMA Models and LSTM Networks

ARIMA is a forecasting algorithm originally developed by Box and Jenkins (1976). It be-
longs to a class of uni-variate auto-regressive algorithms used in forecasting applications
based on time series data. ARIMA models are generally defined by the tuple (q, d , p),
where q is the order of the auto-regressive components; d is the number of differencing
operators; and p is the highest order of the moving average term. These parameters con-
trol the complexity of the model and, consequently, the auto-regression, integration and
moving average components of the algorithm (Van Der Voort et al., 1996), i.e.:

ŷt = �1γt−1 + �2γt−2 + · · · + �pγt−p + at − �1at−1 − · · · − �pat−q, (1)

where:

• y denotes a general time series;
• ŷt is the forecast of the time series y for time t ;
• γt−1, . . . , γt−p are the previous p values of the time series y (and form the auto-

regression terms);
• �1, . . . , �p are coefficients to be determined by fitting the model;
• at , . . . , at−q is a zero mean white noise process (and forms the moving average terms);
• �t , . . . , �t−q are coefficients to be determined by fitting the model.

The Auto-Regressive Integrated Moving Average with Explanatory Variable
(ARIMAX) model is considered an ARIMA extension to a multiple variable (multi-
variate) problem. It is a multiple regression model with autoregressive (AR) and mov-
ing average (MA) terms. Taking in consideration a different representation of the
ARIMA(p, d, q) model, i.e.:

φ(L)(1 − L)dYt = θ(L)εt . (2)

726 B. Fernandes et al.

The expression φ(L) represents the auto-regressive polynomial 1+φ1L+· · ·+φqLq ,
θ(L) the moving average polynomial 1−θ1L−θ2L

2 −· · ·−θpLp and L, the lag operator.
The ARIMAX(p, d, q) extends the ARIMA(p, d, q) equation, resulting in the following
formulation:

�(L)(1 − L)dYt = θ(L)Xt + θ(L)εt , (3)

Xt is the exogenous variable at timestep t . This model is adequate to forecast a stationary
phenomenon with additional multivariate data with context, such as trends or cyclically.
ARIMAX was later used, with its results being compared with LSTM networks, which can
handle both uni-variate and multi-variate problems. On the other hand, ARIMA has been
implemented on many domains such as temperature and pollution prediction (Babu and
Reddy, 2012) as well as short-term traffic flow prediction (Li et al., 2017). On the same
note, ARIMAX has been applied in scenarios where there is the need to use a multi-variate
forecasting model. Regarding traffic flow forecasting, a comparison between ARIMA and
ARIMAX is depicted in Williams (2001). The obtained results demonstrate the better
performance of ARIMAX and the use of additional contextual variables to achieve better
forecasting accuracy.

On the other hand, recent times come with very promising results in regard to the
use of RNNs (Ma et al., 2015; Fernandes et al., 2019). As opposed to classical Artificial
Neural Networks (ANNs), RNNs allow information to persist due to its recurrence and
chain-like nature, i.e. previous information can be connected to the present. The promise
of RNNs, and LSTMs in particular, is that the temporal dependence and contextual infor-
mation in the input data can be learned. LSTMs were introduced in 1997, by Hochreiter
and Schmidhuber (1997), but many more contributed to the current state-of-the-art (Gers
et al., 2000; Bayer et al., 2009). LSTMs are a type of RNNs capable of learning long and
short-term temporal dependencies. LSTM computational units are called memory cells
(or neurons). The key factor of these cells is the fact that they are stateful, i.e. they con-
tain cell state. In addition, unlike typical RNNs, each memory cell of an LSTM contains
four neural network layers interacting with each other. These network layers, also known
as gates, give the LSTM the ability to further govern the information flow, i.e. to forget
or include information into the cell state. Gates are composed of a sigmoid neural net-
work layer, which specifies how much information the cell wants to forget (ft), input (it)
or output (ot) at a timestep t , and a pointwise multiplication operation over the cell state
(Hochreiter and Schmidhuber, 1997). In total, LSTMs are composed of three gates:

• The forget gate, ft , is the first gate inside the memory cell and decides what information
the cell should discard from its internal state;

• The input gate, it , is the second gate and is composed of a sigmoid layer, to decide
which values to add to the internal state, and a tanh layer, to create a vector of candidate
values;

• The output gate, ot , decides what to output based on the input and the internal state,
which is passed through a tanh function to set the values to be between −1 and 1.

Long Short-Term Memory Networks for Traffic Flow Forecasting 727

From this base some variants have emerged (Greff et al., 2017). The main differences
refer, in essence, to the presence/absence of different gates or to the input of each one.
Due to its characteristics, LSTMs have achieved remarkable results in sequence problems
such as text classification (Breuel, 2017; Chenbin et al., 2018), music generation (Coca
et al., 2013; Choi et al., 2016), handwriting recognition (Pham et al., 2014; Messina and
Louradour, 2015) or speech recognition (Graves et al., 2013; Sak et al., 2014), just to
name a few. Traffic forecasting is yet another domain where LSTMs have been applied
successfully (Tian and Pan, 2015; Fu et al., 2016; Cui et al., 2018). Indeed, many studies
have already engaged on comparing the performance and accuracy of ARIMA and LSTM
models for traffic flow forecasting, with LSTMs outperforming ARIMA models (Ma et al.,
2015; Fu et al., 2016; Zhao et al., 2017), even in the presence of data-scarce environments
(Fernandes et al., 2019). In Fu et al. (2016), the authors conceived a LSTM model over the
PeMS dataset to predict short-term traffic flow, showing that LSTM had a slightly better
performance when compared to ARIMA. Another study focused on short-term traffic flow
is the one performed by Zhao et al. (2017) where these authors propose a model applied
over data collected by the Beijing Traffic Management Bureau, where LSTM proved to
behave better than ARIMA, specially for long forecast windows. On the other hand, Ma et
al. (2015) proposed an LSTM model to capture nonlinear traffic dynamics. Again, LSTM
outperformed both classical RNNs and Support Vector Machine (SVM) models.

2.2. The Importance of Spatial-Temporal Dependencies in Time Series

Intuition is enough to understand how space affects traffic flow forecasts, a stochastic non-
linear time series problem. No two countries are the same, no two cities are the same and
no two roads are the same. A model will lack the ability to generalize to roads that have
distinct traffic patterns. Hence, it becomes extremely difficult, not to say unfeasible, to
deploy a model to predict the traffic of several roads of a specific city when the model was
trained on data from California roads. To deploy accurate solutions that make real-time
predictions, the model needs to have information on the space it is operating. Therefore,
possible solutions would include the conception of road-specific models or the categoriza-
tion of roads that share similar patterns. Another possibility, even though computationally
heavier, would be to create a multi-variate multi-road model receiving, as input, multiple
observations from different roads at the same timestep. This work, as explained ahead,
presents road-specific models that are able to provide, at any time, traffic flow forecasts of
a road for each one of the subsequent twelve hours.

LSTMs are specially useful for time series problems (Gers et al., 2002). In typical
ANNs, when tuning the network, the goal is typically to find the best set of hyperparame-
ters that provide the best accuracy. It is usual to find models that have been tuned in regard
to their depth, the number of neurons, the learning rate used by the optimizer or the acti-
vation function. However, in time series problems, special attention should be given to all
parameters that are related to time. Tuning such parameters assumes, as demonstrated by
our experiments, an increased importance.

There are essentially two main parameters to consider. The first is the number of
timesteps that will compose an input sequence. This assumes critical importance when

728 B. Fernandes et al.

performing backpropagation through time (BPTT). BPTT is a gradient-based technique
that unfolds a RNN in time to find the gradient of the cost, allowing LSTMs to learn from
input sequences of timesteps (Werbos, 1990). Consider, for example, an hourly dataset:
if it is defined that each input sequence is composed of twelve timesteps, it means that each
input sequence will correspond to twelve hours. If we set this value to twenty-four, then it
will correspond to an entire day being used when applying BPTT. Longer input sequences
were problematic for classical RNNs mainly due to the vanishing and the exploding gra-
dient problems (Hochreiter, 1998). LSTMs, on the other hand, are able to handle longer
sequences with success (Hochreiter and Schmidhuber, 1997). Alternatively, it is possible
to use a truncated version of BPTT (TBPTT), which limits the number of used timesteps
when calculating the gradient (Elman, 1990). A second parameter that may influence a
model’s performance is related to the reset frequency of the internal states of a memory
cell. Indeed, as explained before, memory cells are stateful. However, different libraries
handle these states differently. For instance, by default, Keras assumes that all internal
states are reset after each batch. If one aims to maintain state between batches, one must
explicitly define such behaviour. Usually, such behaviour is useful when it is assumed that
information from past sequences may be useful to future sequences. Hence, some logic
should be applied so that the model may understand patterns between input sequences and
how they relate to each other. There is no obvious rule of thumb but some experimentation
may be performed to find a tuned value for the problem, and data, in hands.

Finally, it should be noted that the goal of any model is to provide accurate and reliable
forecasts. Hence, models could be conceived to be single-step, i.e. provide a single fore-
cast for the next immediate timestep, or multi-step, i.e. provide a set of forecasts for sev-
eral future timesteps. Using the hourly dataset example, a single-step model that receives
twelve input timesteps will give a prediction for the thirteenth timestep. A multi-step model
would give forecasts for the thirteenth, fourteenth and fifteenth timesteps, for example. If
single-step models are fairly easy to conceive and evaluate, multi-step models are, on the
other hand, harder. In essence, there are two main options to consider when conceiving
multi-step models. The first is to have as many neurons in the output layer of the model
as timesteps to forecast (Multi-Step Vector-Output). Hence, if one aims to forecast three
future timesteps the model would have three output neurons. The second option would
be to conceive a single-step model and recursively call it for as many future timesteps
as one aims to forecast (Recursive Multi-Step). Again, as an example, let us consider the
hourly dataset and an input sequence of twelve timesteps. First, we would conceive the
model as single-step, i.e. the model would receive twelve hours as input and would out-
put the thirteenth hour. Then, we would evaluate its performance, i.e. how accurate is the
model in forecasting the thirteenth timestep. We would then push the predicted value of
the thirteenth timestep to the input sequence, remove the oldest timestep (to ensure that the
input sequence consists of twelve timesteps) and give the updated input sequence to the
model to get the forecast of the fourteenth timestep. We would keep repeating this process
until the forecasting horizon is reached. This is what we call a blind prediction using a
Recursive Multi-Step approach. Obviously, this strategy suffers from the accumulation of
errors with higher forecasting horizons (Zheng et al., 2017). However, there is no other

Long Short-Term Memory Networks for Traffic Flow Forecasting 729

valid way to evaluate such a model since the only way to know multiple future values is by
using predictions of the future itself. Literature is evasive in regard to the used methodol-
ogy for forecasting. Nonetheless, as we show in the next sections, even though Multi-Step
Vector-Output models are easier to conceive and evaluate, Recursive Multi-Step models
are better, both in terms of accuracy as well as computational performance.

2.3. The Literature

Recent studies have emerged where LSTM networks are used for traffic flow forecast-
ing. However, it is possible to verify that many exhibit flaws and leave untreated several
important aspects of LSTMs.

In Fu et al. (2016), the authors conceived two distinct RNN models for short-term
traffic flow prediction over the PeMS dataset. Their experiments were based on an input
sequence of six timesteps of five minutes each (thirty minutes) to predict the traffic flow
for the next five minutes (single-step). No experimentation was performed in order to find
the optimized values for any of the time parameters. No reference is made about the update
pattern of the internal state of a memory cell.

In Tian and Pan (2015), the PeMS dataset was again used to develop a LSTM model
for short-term traffic flow prediction. The focus is again to develop a single-step model.
However, several figures depict predictions for a time window far superior (one day) with-
out any explanation on the method that was used to evaluate this multi-step model. On the
other hand, the authors clarify the features provided as input to the model. The authors
opted to tune the number of memory cells of each layer and the size of the input layer.
In regard to this last parameter, it is expected that the authors are indeed referring to the
input shape of the first LSTM layer. Hence, the authors are tuning the number of timesteps
that make an input sequence. All values from one to twelve were tried, meaning, in the
first case, a sequence with just one timestep (five minutes of data) and, in the last case, a
sequence with twelve timesteps (one hour of data). It would be interesting to know if blind
recursive multi-step forecast was performed.

In Cui et al. (2018), the authors propose a deep stacked bidirectional LSTM in order to
consider both forward and backward dependencies in time series data. Their goal is to pre-
dict traffic speed using two distinct datasets, even though later the authors claim that only
one was used to evaluate the model. To fully capture the spatial dimension of the problem,
and since the dataset contains observations of multiple roads, the authors opted to develop
a multi-variate multi-road model receiving, as input, multiple observations from different
roads at the same timestep, as discussed before. Each input sequence is composed of ten
timesteps of five minutes, with a prediction being provided for the subsequent timestep
(single-step). The number of timesteps in the input sequence was set as six, eight, ten, and
twelve timesteps. The obtained results were very similar, which can be explained by the
fact that all the attempted values are also very close. Indeed, it would be interesting to
know how would the model behave with higher input timesteps that could represent, for
example, an entire day instead of a few tens of minutes. No reference is made about the
update pattern of the internal state of a memory cell.

730 B. Fernandes et al.

Another work, performed by Zheng et al. (2017), leaves aside traffic and focuses on
electric load forecasting using a uni-variate dataset collected by the authors. Interestingly,
the authors of this work clearly describe the multi-step forecasting concept, having used
a forecasting horizon of ninety-six timesteps. Such a long forecasting horizon directly
affects the accuracy of the model. Nonetheless, the authors found that LSTM still out-
performed traditional forecasting methods, such as SARIMA. On the other hand, input
sequences were composed of ten days of timesteps. There are no details regarding how
was this value found and if any experimentation was performed.

Other studies focus on different deep learning models for time series forecasting.
Indeed, new trends are emerging regarding the use of Convolutional Neural Networks
(CNNs) (Cai et al., 2019; Rahimilarki et al., 2019; Yao et al., 2017) and attention mecha-
nisms (Serra et al., 2018; Vaswani et al., 2017). One study, performed by Cai et al. (2019),
focused on deep learning-based techniques, in particular RNNs and CNNs, for day-ahead
multi-step load forecasting in commercial buildings, comparing the obtained results with
ARIMAX. The gated 24-h CNN model was the one achieving the best results, improving
ARIMAX accuracy by 22.6%. A different study, performed by Yao et al. (2017), inte-
grated, in a platform called DeepSense, both CNNs and RNNs, where the input sensor
measurements were prepared as a time series. The CNN was responsible for learning intra-
interval interactions, with the intra-interval representations along time being inputted to
the RNN. Rahimilarki et al. (2019) proposed a deep learning fault detection approach
based on CNNs, with the goal being to diagnose anomalies in the output of wind turbine
systems. Time-series data was converted as 2D images and fed to the conceived CNNs,
with deeper CNNs outperforming shallow ones. On the other hand, attention mechanisms,
initially applied to machine translation (Bahdanau et al., 2015), have been growing in pop-
ularity for time series forecasting. Indeed, Vaswani et al. (2017) propose a Transformer
that is solely based on attention mechanisms, discarding recurrence and convolutions.
Such mechanisms allow the model to selectively focus on parts of the source data, which
may be important when handling longer input sequences. For instance, a study performed
by Serra et al. (2018) used convolutional attention mechanisms based on the temporal out-
put of CNNs, to conceive a network able to convert variable-length time to fixed-length
low-dimensional time series data representation.

3. Materials and Methods

The next lines describe the materials and methods used in this work, including the col-
lected dataset and all the applied treatments, the evaluation metrics, and the used technolo-
gies. The dataset used in this study is available, in its raw state, in an online repository
(github.com/brunofmf/Datasets4SocialGood), under a MIT license.

3.1. Data Collection

The dataset used in this work was created from scratch and contains real world data. A soft-
ware artefact, entitled as The Collector, was developed to collect data from a set of public

Long Short-Term Memory Networks for Traffic Flow Forecasting 731

Table 1
Available features in the traffic and weather datasets.

Features Description

Tr
affi

c
da

ta
se

t

1 city_name Name of the city the road belongs to
2 road_num Road identification number
3 road_name Road name
4 functional_road_class Road category description
5 current_speed Current speed observed at the road (km/h)
6 free_flow_speed Speed expected under ideal conditions (km/h)
7 speed_diff Speed difference (#6–#5)
8 current_travel_time Current travel time observed at the road (s)
9 free_flow_travel_time Travel time expected under ideal conditions (s)
10 time_diff Time difference (#9–#8)
11 creation_date Timestamp (YYYY-MM-DD HH24:MI:SS)

W
ea

th
er

da
ta

se
t

1 city_name Name of the city the road belongs to
2 weather_description Textual description of the weather
3 temperature In celsius
4 atmospheric_pressure Atmospheric pressure on the sea level (hPa)
5 humidity In percentage
6 wind_speed In meter/second
7 cloudiness In percentage
8 precipitation Precipitation volume for the last hour (mm)
9 current_luminosity Current luminosity (categorical)
10 sunrise Sunrise time (unix, UTC)
11 sunset Sunset time (unix, UTC)
12 creation_date Timestamp (YYYY-MM-DD HH24:MI:SS)

APIs. In particular, TOMTOM Traffic Flow API was the one used to create the traffic
dataset, which has, as features, the city name, the road name, the functional road class
describing the road type, the current speed in km/h at the observed road, the free flow
speed in km/h expected under ideal free flow conditions, the speed_diff that corresponds
to the difference between the speed that is expected under ideal conditions at the road
and the speed that is being currently observed at that same road, the current travel time in
seconds, the travel time in seconds which would be expected under ideal conditions, the
time_diff that corresponds to the difference between the travel time that is expected under
ideal conditions at the road and the travel time that is being currently observed at that same
road, and a timestamp. Several other APIs complement the dataset, including the Open
Weather Maps API which returns the weather description, temperature, atmospheric pres-
sure, wind speed and precipitation volumes, among others. Pollution data is also available
but was discarded for this study. Table 1 summarizes all the available features.

The software went live on 24th July 2018 and has been collecting data uninterruptedly.
It works by making an API call every twenty minutes using an HTTP Get request. It parses
the received JSON object and saves the records on the database. The software was made so
that any road of any city or country can be easily added to the fetch list. As of June 2019,
the database contains, approximately, ten million records for several roads of several cities.

732 B. Fernandes et al.

3.2. Data Preparation and Pre-Processing

Two distinct datasets were available, namely the traffic and the weather ones (Table 1).
Both datasets include observations from 24th July 2018 to 30th April 2019, in twenty
minutes intervals, of several Portuguese cities. Among all the available features, speed_diff
is the one that will be used to quantify traffic. Indeed, this feature corresponds to the
difference between the speed, in km/h, that is expected under ideal conditions in a road
and the speed, in km/h, that is being currently observed at that same road. Hence, high
speed_diff values mean that one is going much slower than what would be expected at
that road, while low values mean that one is going almost at the ideal speed. For example,
a speed_diff of zero means no traffic for that road while a value of 40 km/h means that
one is going 40 km/h slower than expected.

The first step to prepare both datasets was to focus on a specific road of the city of
Braga, in Portugal, and filter out the remaining cities and roads. Then, in regard to the traf-
fic dataset, features that were static, such as the road_name and the functional_road_class,
were removed. The time_diff, free_flow and current_speed features, which are highly cor-
related with the speed_diff, were also filtered out. Regarding the weather dataset, the only
considered features were, besides the city_name and creation_date, the temperature and
precipitation. Afterwards, for both datasets, six new temporal and contextual features were
created based on the creation_date of each observation. The year, month, day, week_day,
hour and minutes were the created features. The minutes feature was further normalized
to have one of three possible values: 0, 20 or 40. Hence, all observations with minutes
between [0, 20[were normalized to belong to the 0 split, all that were between [20, 40[
belong to the 20 split and all those between [40, 60[belong to the 40 split. Having now
consistent dates, a date-time index was created. It was now possible to join both datasets
by city_name and index. By the end of this step, we had a dataset, in ascending order
by index, with five features, i.e. the speed_diff, temperature, precipitation, week_day and
hour (Table 2).

No missing values were present. However, due to API limitations or to the fact that The
Collector was down, there are missing timesteps/observations. In a time series problem,
missing timesteps may lead to the creation of incorrect patterns in input sequences. Con-
sider, for example, the situation where a sequence contains observations for the fourth,
fifth and sixth hours of a day and then, due to the nonexistence of observations, it is fol-
lowed by the fourteenth and fifteenth hours of that same day. This sequence would not

Table 2
Features present in the final dataset.

Features Observation example

0 timestep index 2019-04-23 17:40
1 speed_diff 32
2 temperature 10
3 precipitation 0
4 week_day 1
5 hour 17

Long Short-Term Memory Networks for Traffic Flow Forecasting 733

describe the traffic pattern of the road. Hence, different approaches can be followed to
solve this situation. The approach followed in this work was to first include all missing
timesteps with NaN (Not a Number). Missing values, filled with NaN, were interpolated
when the amount of consecutive missing observations corresponded to less than six hours
for weather features and less than ten hours for traffic features. Weather features (tempera-
ture and precipitation) were linearly interpolated. On the other hand, speed_diff, the only
traffic feature, was computed based on the mean value of that same timestep at the three
previous weeks. The dataset was iterated, observation by observation, from the oldest to
the newest. In the case there was no information about the three previous weeks, the next
three weeks were the ones used. In the case of timestep gaps longer than ten hours, the
entire day would be removed. Algorithm 1 describes the function that was developed for
the computation of missing timesteps.

Considering that LSTMs work internally with the hyperbolic tangent function (tanh),
the decision was to normalize all features so that they would fit into the interval [−1, 1],
i.e.:

xi − min(x)

max(x) − min(x)
. (4)

Algorithm 1: Computation of missing timesteps.
dataset.resample(’20min’)
dataset[‘temperature’, ‘precipitation’].interpolate(method = ‘linear’,

limit_direction = ‘forward’, limit = ‘6h’)
initialize consequent_missing_obs
foreach i, row ∈ enumerate(dataset, 0) do

if row[’speed_diff’] is NaN and consequent_missing_obs <10h then
increment consequent_missing_obs
if i − (3 × one_week) >0 then

value_1week_before = dataset[i − one_week]
value_2weeks_before = dataset[i − one_week × 2]
value_3weeks_before = dataset[i − one_week × 3]
row[’speed_diff’] = mean(value_1week_before,
value_2weeks_before, value_3weeks_before)

else
value_1week_after = dataset[i + one_week]
value_2weeks_after = dataset[i + one_week × 2]
value_3weeks_after = dataset[i + one_week × 3]
row[’speed_diff’] = mean(value_1week_after, value_2weeks_after,
value_3weeks_after)

end
else if row[’speed_diff’] is not NaN then

reset consequent_missing_obs
end

734 B. Fernandes et al.

Finally, due to computational constraints, the dataset was grouped by hour. The final
multi-variate dataset contained 5050 observations, with a shape of (5050, 5).

3.3. From an Unsupervised to a Supervised Problem

The dataset was now a single sequence of 5050 ordered timesteps. However, it was still not
ready to be used by LSTM models. Indeed, in order to create such models one is required
to set the problem as a supervised one, with inputs and corresponding labels. Hence, data
was divided into smaller sequences, with its length depending on the number of input
timesteps to be used. The label of each new sequence was the next immediate timestep,
or a sequence of timesteps, depending if the model was to be Single-Step and Recursive
Multi-Step, or Multi-Step Vector-Output, respectively (Algorithm 2).

Algorithm 2: From an unsupervised to a supervised problem.
Input: dataset, timesteps, multi_steps
Output: input data, label data

X, y = list(), list()
while i ∈ range(len(dataset) − (timesteps + multi_steps)) do

input_index = i + timesteps
label_index = input_index + multi_steps
X.append(dataset[i:input_index, :])
y.append(dataset[input_index:label_index, speed_diff])

end
return X, y

Consider the scenario of a single-step model that receives the last twenty-four hours
of traffic and predicts how the traffic will change in the next hour. In this scenario, the
initial dataset with 5050 ordered timesteps will be divided into smaller sequences of 24
timesteps, i.e. the length of the input sequence. Being this a single-step model, or a re-
cursive multi-step one, the label will be composed of just one timestep and will have the
value of the timestep that follows the twenty-fourth one. A sliding window over the ini-
tial dataset is used to create batches of sequences and labels. At the end, the dataframe
(a Pandas’ object), will have a shape of (5025, 24, 5), where the first element dimension
corresponds to the number of samples, the second, to the number of input timesteps, and
the third, to the number of features.

3.4. Technologies and Libraries

Python, version 3.6, was the used programming language for data preparation and pre-
processing as well as for model development and evaluation. Pandas, NumPy, scikit-learn,
matplotlib and statsmodels were the used libraries. Tensorflow v1.12.0 was the machine

Long Short-Term Memory Networks for Traffic Flow Forecasting 735

learning library used to conceive the deep learning models. tf.keras, TensorFlow’s im-
plementation of the Keras API specification, was also used. For increased performance,
and to fit the models in reasonable times, Tesla T4 GPUs were used as well as an opti-
mized version of LSTMs using CuDNN (CudnnLSTM), NVIDIA’s deep neural network
library of primitives for deep neural networks. It is worth mentioning that this hardware
was made available by Google’s Colaboratory, a free python environment that requires
minimal setup and runs entirely in the cloud.

3.5. Evaluation Metrics

To evaluate the effectiveness of the candidate models, two error metrics were used. The
first one corresponds the Root Mean Squared Error (RMSE). This allows us to penalize
outliers and easily interpret the obtained results since they are in the same unit of the
feature that is being predicted by the model. Its formula is as follows:

RMSE =
√∑n

i=1(yi − ŷi)2

n
. (5)

The second error metric corresponds to the Mean Absolute Error (MAE). It was mainly
used to complement and strengthen the confidence on the obtained values. Its formulas is
as follows:

MAE = 1

n

n∑
i=1

|yi − ŷi |. (6)

All candidate models were evaluated in regard to the mentioned metrics. A time series
cross-validator was also used to provide train/test indices to split time series data samples.
In this case, the kth split returns the first k folds as train set and the (k+1)th fold as test set.
Unlike standard cross-validation methods, successive training sets are supersets of those
that come before. Each training set was further split into training and validation sets in a
ratio of 9:1. These two sets were used when fitting the model. On the other hand, the test
set was used to evaluate the model. A forecast function was created to forecast three days
of the test set (72 timesteps). The forecast value is compared with the real value in order to
compute both error metrics. In the case of Recursive Multi-Step models, blind forecasting
pushes values to the input sequence to forecast subsequent timesteps.

4. Experiments

The main goal of this study is to develop and tune a deep learning model, in particular
a LSTM neural network, to forecast the traffic flow. This is achieved by forecasting the
speed_diff feature. The higher the speed_diff value the heavier the traffic. All models
were conceived as multi-step, i.e. to forecast twelve consecutive hours.

736 B. Fernandes et al.

Due to the random initialization of LSTM weights, three repetitions of each combina-
tion of parameters were performed on incremental sets of data, taking the mean of RMSE
and MAE to verify the model’s quality. Several experiments were performed to find the
best set of parameters for the final model. More than finding the optimized set of hyper-
parameters, such experiments aim to study and evaluate the nature and architecture of
LSTMs in regard to the shape of its output, the multitude of used features, and the ability
to forecast multiple future timesteps. An experiment was also set where ARIMA models
are deployed, evaluated and later compared with LSTMs.

Algorithm 3 details the generic function that was written for the conception and com-
pilation of the candidate LSTM models. This function is used in all LSTM experiments,
with the inputs of the function defining the model’s structure and time frames.

Algorithm 3: Function for LSTM model’s conception and compilation.
Input: timesteps, multisteps, features, h_layers = 2, h_neurons = 64, activation
= ‘relu’, dropout_rate = 0.5, deep_dense = False
Output: Sequential LSTM Model

model = Sequential()
while i ∈ range(h_layers) do

if i == 0 then
if i + 1 == h_layers then

model.add(CuDNNLSTM(h_neurons, return_sequences = False,
input_shape = (timesteps, features)))

else
model.add(CuDNNLSTM(int(h_neurons/2), return_sequences =

True, input_shape = (timesteps, features)))
model.add(Dropout(dropout_rate))

end
else if i + 1 == h_layers then

model.add(CuDNNLSTM(h_neurons × 2, return_sequences = False))
else

model.add(CuDNNLSTM(h_neurons, return_sequences = True))
model.add(Dropout(dropout_rate))

end
end
model.add(Dense(h_neurons, activation = activation))
model.add(Dropout(dropout_rate))
if deep_dense then

model.add(Dense(int(h_neurons/2), activation = activation))
model.add(Dropout(dropout_rate))

model.add(Dense(multisteps))
model.compile(loss = rmse, optimizer = Adam(), metrics = [mae, rmse])
return model

Long Short-Term Memory Networks for Traffic Flow Forecasting 737

4.1. ARIMA and ARIMAX

When compared to LSTMs, ARIMA and ARIMAX are considered more traditional ap-
proaches to time series forecasting. In truth, they are older and based on classical math-
ematical regression operations. Nevertheless, there are several examples in the literature
of their usage, especially in the same area of study as the one presented in this paper.
Therefore, ARIMA and ARIMAX models shall be used as benchmarks for the conceived
LSTMs. Hence, using the collected data, models were trained in order to mimic the con-
ditions in which LSTM were trained, i.e. using ARIMA for uni-variate and ARIMAX for
multi-variate problems. Considering both of these models, data preparation is less strict,
as there is no need to turn the data into sequences. The algorithms automatically process
data from the ordered dataset. The remaining data pre-processing operations were already
explained.

The experiments made with the ARIMA model used a grid search approach to fine
tune the (p, d, q) parameters. For a better comparison between ARIMA and LSTM, the
p parameter was based on large windows ([12, 8]), with LSTM models achieving even
higher windows. The remaining parameters were computed from the range [0, 3]. An ob-
vious limitation of this approach is that it is unfeasible to train models with some specific
parameters due to internal errors of the ARIMA algorithm. These errors are essentially
related with stationary data, which, despite the conducted efforts to ensure such condition
on the dataset, on some occurrences it was not possible. The ARIMAX model followed
the same approach, however contextual data was added through the use of exogenous vari-
ables. The fine tune of the (p, d, q) parameters was the same as with ARIMA. The features
introduced as contextual data included the precipitation and weekday for each considered
timestep. They were added as exogenous variables to the ARIMAX models.

In order to tackle multi-step predictions, a forecast method was used, which allows
to directly forecast a number of instances from the last point in the trained dataset. This
is consistent with the blind multi-step forecasting approach. For a multi-step approach
incorporating real observations, the model needs to be retrained after each dataset change.
The time used to train an ARIMA or ARIMAX model is usually faster than LSTM, but
in the case of forecasting one step ahead with real observations, the need for retrain at
each timestep, and the number of experiments being performed, made the ARIMA and
ARIMAX slower than the worst performing LSTM. For simplicity, only blind multi-step
forecasting models were considered.

4.2. Recursive Multi-Step vs Multi-Step Vector Output LSTMs

The goal of this experiment was to compare the performance, both computationally and in
terms of accuracy, of two distinct multi-step approaches. It soon became obvious that the
Multi-Step Vector Output model would require a more complex architecture. That came,
however, with a significantly higher computational and training time cost. Therefore, for
this experiment, only uni-variate models were considered. Both models receive input se-
quences of one feature, i.e. speed_diff, and provide speed_diff forecasts for the next twelve

738 B. Fernandes et al.

Table 3
Recursive Multi-Step Uni-Variate parameters’ searching space.

Parameter Searched values Rationale

Epochs [200, 300, 500] –
Timesteps [12, 24, 48, 96] Input of 0.5 to 4 days
Batch size [24, 168, 252, 336, 672] 1 day to 4 weeks
LSTM layers [3, 4, 5] Number of LSTM layers
Dense layers 1 Number of dense layers
Dense activation [ReLU, tanh] Activation function
Neurons [32, 64, 128] For dense and LSTM layers
Dropout rate [0.0, 0.2, 0.5] For dense and LSTM layers
Learning rate Tuned via callback Keras callback
Multisteps 12 12 hours
Features speed_diff Uni-variate
CV Splits 3 Time series cross-validator

hours. Intuition and random search were used to reduce the parameter’s search space size
and to find the best set of parameters for each model.

A Recursive Multi-Step LSTM model was conceived and tuned in regard to a set of
parameters. As explained before, such a model forecasts the next immediate timestep, be-
ing then called recursively twelve times. RMSE and MAE values are gathered both for
blind and non-blind forecasts. Non-blind forecasts use real values when iterating recur-
sively. Obviously, non-blind forecasts produce a better result than blind ones since this last
approach suffers from the accumulation of errors with higher forecasting horizons. This
serves the purpose of showing that misconceptions may lead researchers to present models
that have been inappropriately evaluated. Nonetheless, blind forecasts are the ones to be
considered. Table 3 describes the parameter searching space considered for the candidate
models.

As soon as the first Multi-Step Vector Output candidate model started its training,
it became obvious that, computationally, it would be much expensive and it would take
a considerable amount of time to go through all searching space. Therefore, a smaller
parameter space was considered (Table 4). Intuition and random search helped reduce the
number of fits performed and the amount of time it took to gather results.

4.3. Uni-Variate vs Multi-Variate LSTMs

This experiment aimed to compare the performance, both computationally and in terms
of accuracy, of uni-variate and multi-variate LSTM models. The first type, uni-variate,
refers to models that use a single feature, while multi-variate ones use multiple features
with the expectation of accurately generalizing the problem in hands. Both uni-variate and
multi-variate models were conceived as Recursive Multi-Step. This decision was based on
the fact that Recursive Multi-Step forecasting was shown to be less expensive and more
accurate than Multi-Step Vector Output. Intuition and random search were, again, used to
reduce the parameter’s space size and to find the best set of parameters for each model.

The model conceived for the uni-variate experiment is the same as the Recursive Multi-
Step one presented in Section 4.2. Indeed, such model was already a uni-variate one,

Long Short-Term Memory Networks for Traffic Flow Forecasting 739

Table 4
Multi-Step Vector Output parameters’ searching space.

Parameter Searched values Rationale

Epochs [500, 700] –
Timesteps [48, 96] Input of 2 and 4 days
Batch size [168, 336, 672] 1, 2 and 4 weeks
LSTM layers [4, 5] Number of LSTM layers
Dense layers [1, 2] Number of dense layers
Dense activation [ReLU, tanh] Activation function
Neurons [64, 128, 256, 512] For dense and LSTM layers
Dropout rate [0.2, 0.5] For dense and LSTM layers
Learning rate Tuned via callback Keras callback
Multisteps 12 12 hours
Features speed_diff Uni-variate
CV Splits 3 Time series cross-validator

Table 5
Recursive Multi-Step Multi-Variate parameters’ searching space.

Parameter Searched values Rationale

Epochs [500, 700] –
Timesteps [12, 24, 48, 96] Input of 0.5 to 4 days
Batch size [84, 168, 252, 672] 0.5 to 4 weeks
LSTM layers [2, 3, 4, 5, 6] Number of LSTM layers
Dense layers [1, 2] Number of dense layers
Dense activation [ReLU, tanh] Activation function
Neurons [32, 64, 128] For dense and LSTM layers
Dropout rate [0.2, 0.5] For dense and LSTM layers
Learning rate Tuned via callback Keras callback
Multisteps 12 12 hours
Features speed_diff, precipitation, week_day and hour
CV Splits 3 Time series cross-validator

using only the speed_diff feature to recursively forecast future speed_diff values. Table 3
describes the parameter searching space considered for each candidate model.

For the multi-variate experiments, from the features considered in Table 2, temperature
was removed and experiments were initially made with the speed_diff, precipitation and
week_day features. Later, the hour was also added to the used features. Again, it soon
became obvious that the model was becoming more expensive to train and that it was
requiring a more complex architecture. However, making the model deeper came with a
considerable cost in terms of the time it took for models to train. Table 5 describes the
parameter searching space used for the conception of the Recursive Multi-Step Multi-
Variate LSTM candidate models.

5. Results and Discussion

The conceived models were evaluated in regard to the RMSE and MAE error metrics.
A time series cross-validator was used to provide train and test indices to split time series

740 B. Fernandes et al.

data samples. The test sets were used to evaluate the model. Each training set was further
split into training and validation sets in a ratio of 9:1. The results presented in the following
lines are the output of a forecast function that was developed to plot and predict three entire
days of the test set (72 timesteps). Mean RMSE and MAE values were computed for each
prediction of each split of the time series cross-validator.

5.1. ARIMA Models vs LSTM Networks

ARIMA based-models were used as a benchmark. During our analysis, it was possible
to observe that ARIMA and ARIMAX models tend to be unreliable when addressing a
dynamic problem such as traffic flow in an open data stream format. A different approach
to data modelling could be designed, nonetheless there is no assumption or guarantee that
the data will follow any specific distribution or will not be affected by outlier events.

There are issues with model training, being often impossible to train the model. Also,
if the dataset of past observations is constantly updated, then there is a need to re-train
models every time such events happen. So, taking into consideration the blind and real
observations forecast, the latter implies that for each prediction the model needs to be
re-trained. On the other hand, blind prediction needs to re-train the model each time the
starting point of the prediction changes, which decreases the number of times the model
needs to be re-trained even though it remains high.

In terms of accuracy, both ARIMA and ARIMAX can yield good results for few
timestep forecasts. These models behave especially badly when the series incurs, for some
time, in stagnant data, i.e. when there is no speed variation for several timesteps. Figure 1

Fig. 1. Two random blind multi-step forecasts for the best ARIMA and the best ARIMAX model.

Long Short-Term Memory Networks for Traffic Flow Forecasting 741

Table 6
Top-four ARIMA and ARIMAX candidate models.

Moving average (p) Dif. Operators (d) Auto-regressive (q) RMSE MAE

ARIMA

12 1 2 6.336 5.088
12 1 1 6.452 5.200
8 1 2 7.967 6.275
8 1 1 8.869 7.474

ARIMAX

12 1 2 6.110 4.918
12 1 1 6.171 4.972
8 1 2 8.301 6.822
8 1 1 8.325 6.736

depicts some of the best multi-step forecasts using ARIMA and ARIMAX models. In Ta-
ble 6, a short summary of the best model specification for both ARIMA and ARIMAX
is also depicted. The higher order we achieve with the arguments (p, d, q), the better the
performance. On the other hand, as we increase the parameter values, so does increase the
number of times the models cannot be computed and the time needed to train the model.

ARIMAX behaves similarly, however the presence of contextual data makes the model
slightly more accurate for each parameter configuration. On the other hand, ARIMAX
models are significantly more costly to train as the computational overhead of the contex-
tual data is directly translated to an increase in the training time. Contrary to what may be
expected, ARIMAX breaks less often than the standard uni-variate ARIMA, which means
that it is also more reliable for blind multi-step predictions.

When comparing ARIMA models to LSTM ones, there are some considerations to
take into account. Firstly, LSTMs can achieve better forecasting performance and produce
stable results despite data properties. On the other hand, ARIMA models need to enforce
data to be stationary, which might not be possible in continuous streams of data. Regarding
training times, ARIMA and ARIMAX have short training times but require re-training
when new observations are added to the dataset and the forecast should occur after the
latest observation. LSTMs do not share this problem as they can predict the next sequence
of data without the need to retrain the network regardless of the starting point. This detail
makes LSTMs better suited for real time applications, where trained models can deliver
high accuracy results without constant need for re-train.

Other aspects, such as the presence of contextual data, benefits both approaches. Re-
sults indicate that the presence of contextual data does increase the performance of fore-
casts. From an analytical point of view, the major advantages of LSTM over ARIMA and
ARIMAX models are its accuracy, performance, ability to train models under any data
constraints, and the need to train models only once.

5.2. Recursive Multi-Step vs Multi-Step Vector Output LSTMs

Both error metrics are clear when the mission is to find the best multi-step model. Re-
cursive Multi-Step LSTM models had significantly lower RMSE and MAE values when

742 B. Fernandes et al.

Table 7
Recursive Multi-Step vs Multi-Step Vector Output LSTMs top-five results.

Timesteps Batch Layers Neurons Dropout Act. RMSE MAE

Recursive Multi-Step Uni-Variate

209 96 672 5 64 0.2 relu 3.496 1.567
188 96 672 4 64 0.2 tanh 3.518 1.567
95 96 252 5 32 0.2 relu 3.555 1.592
195 96 672 4 128 0.5 tanh 3.583 1.598
12 48 252 3 64 0.5 relu 3.649 1.629

Multi-Step Vector Output Uni-Variate

24 96 672 4 128 0.5 relu 5.040 1.846
31 96 672 5 128 0.2 relu 5.134 1.839
29 96 672 5 128 0.2 tanh 5.272 1.852
20 48 168 5 512 0.5 relu 5.279 1.880
30 96 672 5 128 0.5 tanh 5.325 1.885

compared to Multi-Step Vector Output ones. As depicted in Table 7, the best Recursive
Multi-Step LSTM model had a RMSE of 3.496 and a MAE of 1.567 while the best Multi-
Step Vector Output LSTM model had a RMSE of 5.040 and a MAE of 1.846. Indeed,
after more than two hundred experiments, only one Recursive Multi-Step LSTM model
had worst accuracy than the best Multi-Step Vector Output one. This leaves no room
for doubt that recursive models produce significantly better models than vector output
ones.

It is worth highlighting that vector output models have as many neurons in the output
layer as timesteps to forecasts. Intuitively, this would lead the model to demand a more
complex architecture when compared to those that have a single neuron as output. This
can be indeed verified in the performed experiments. The first round of experiments with
vector output models limited the maximum number of neurons to 128 and the number
of fully-connected layers to 1. This maximum number was the one used by all the best
candidates. Then, the second round of experiments with vector output models considered
a higher number of neurons, layers and training epochs. However, very few experiments
were performed with combinations of 256 and 512 neurons, 4 and 5 hidden LSTM layers
and 2 fully-connected layers. This is related to the fact that each candidate model was
taking more than eight hours to train.

It is our conclusion that deeper and more complex architectures could improve the
performance of Multi-Step Vector Output models. This comes, however, with a significant
increase of training times. On the other hand, the Recursive Multi-Step LSTM models
were between eight and sixteen times faster to train, required a shallower architecture
and produced results that are more than 40% better. It is also interesting to note that the
best models were the ones using a bigger batch size combined with input sequences of
four entire days (96 timesteps). There was no clear distinction between using the rectified
linear units or the hyperbolic tangent. The same argument is applied for dropout values.

Table 7 describes the top-five results achieved with each multi-step approach. The
best Recursive Multi-Step LSTM model had a RMSE of 3.496, which means that such

Long Short-Term Memory Networks for Traffic Flow Forecasting 743

Fig. 2. Six random multi-step vector output forecasts of the best Multi-Step Vector Output Uni-Variate LSTM
model (#24). Comparison of real values vs predicted ones using vector output forecasting.

model is able to predict, by a margin of around 3 km/h, the expected speed difference at
a road for each one of the next twelve hours. These results prove the feasibility of using
LSTM networks for accurate multi-step prediction. Figure 2 presents six random multi-
step predictions for the best Multi-Step Vector Output LSTM model. On the other hand,
Fig. 3 presents six random multi-step predictions of the best Recursive Multi-Step LSTM
candidate.

Fig. 3. Six random multi-step forecasts of the best Recursive Multi-Step Uni-Variate LSTM model (#209). Com-
parison of real values vs predicted ones using blind forecasting vs predicted ones using known observations.

744 B. Fernandes et al.

Table 8
Uni-Variate vs Multi-Variate LSTMs top-five results.

Timesteps Batch Layers Neurons Dropout Act. RMSE MAE

Uni-Variate Recursive Multi-Step

209 96 672 5 64 0.2 relu 3.496 1.567
188 96 672 4 64 0.2 tanh 3.518 1.567
95 96 252 5 32 0.2 relu 3.555 1.592
195 96 672 4 128 0.5 tanh 3.583 1.598
12 48 252 3 64 0.5 relu 3.649 1.629

Multi-Variate Recursive Multi-Step

53* 24 168 4 64 0.5 tanh 2.907 1.346
24* 24 96 4 32 0.5 tanh 3.006 1.412
16* 24 48 4 32 0.5 tanh 3.031 1.419
17* 24 168 5 64 0.5 tanh 3.037 1.402
37* 48 84 2 64 0.5 tanh 3.038 1.425

* Used features: speed_diff, week_day and hour.

5.3. Uni-Variate vs Multi-Variate LSTMs

An increase of the multitude of input features led to a decrease of the RMSE and MAE
values. As depicted in Table 8, the best Uni-variate LSTM model had a RMSE of 3.496
and a MAE of 1.567 while the best Multi-variate LSTM model had a RMSE of 2.907 and
a MAE of 1.346, which corresponds to a decrease of more than 20% on the RMSE metric.

It is worth noting that including the hour of the day as input feature allowed the model
to make more accurate forecasts. On the other hand, the presence of the precipitation
feature led to worst results. Moreover, it is interesting to note that the presence of more
input features led to a decrease in the number of input timesteps. Indeed, the best uni-
variate candidates required 96 input timesteps, while the best multi-variate ones require
just 24 input timesteps. In simple terms, while the uni-variate models require four days
of input to forecast the next twelve hours, the multi-variate ones require just a single day
as input to forecast the same amount of hours. The batch size required by multi-variate
models is also substantially lower when compared to uni-variate ones. Regarding the ac-
tivation function, while there is no clear distinction between relu and tanh in uni-variate
candidates, it is clear that tanh performs better in multi-variate ones with a dropout of
50%.

Even though multi-variate models took longer to train than uni-variate ones, such vari-
ation is negligible (a few tens of minutes). Moreover, the addition of more features to the
model allowed it to perform better than an uni-variate one. Indeed, the addition of the
hour of the day was the factor that allowed the candidate models to achieve lower error
values. Table 8 describes the top-five results achieved with each approach. The best Re-
cursive Multi-Step Multi-Variate LSTM is able to predict, by a margin inferior to 3 km/h,
the expected speed difference at a road for each one of the next twelve hours. Figure 4
presents six random multi-step forecasts of the best Recursive Multi-Step Multi-Variate
LSTM candidate.

Long Short-Term Memory Networks for Traffic Flow Forecasting 745

Fig. 4. Six random multi-step forecasts of the best Recursive Multi-Step Multi-Variate LSTM model (#53).
Comparison of real values vs predicted ones using blind forecasting vs predicted ones using known observations.

6. Conclusions

Traffic flow forecasting has been assuming a prominent position with the rise of deep
learning. This is essentially happening due to the fact that state-of-the-art RNN models
have now overcome previous statistical-based models, both in terms of performance as
well as accuracy. From all the candidate models, and after several weeks of combined
training times, the model that was able to forecast more accurately the traffic flow of a
road for multiple future timesteps was the fifty-third Recursive Multi-Step Multi-Variate
candidate model, with a RMSE and MAE of 2.907 and 1.346, respectively. The Uni-
Variate models also presented interesting results, with its best model being 20% worst than
the best Multi-Variate one. On the other hand, the best Vector Output model had a RMSE
that was more than 73% worst than the best Multi-Variate model and 40% worst than the
best Uni-Variate. In addition, Vector Output models took significantly more time to train
when compared to the other models. The training time difference between the Uni-Variate
and the Multi-Variate models can be considered negligible. On the other hand, ARIMA
and ARIMAX presented results that are two times worse than the best LSTM model.
In addition, the fit frequency of ARIMA models is significantly higher when compared
to LSTM ones, which may be problematic in open data stream scenarios. All this is in
agreement to what the literature has been presenting, confirming that these statistical-
based models have now been superseded by deep learning ones. Table 9 summarizes the
achieved results by each approach.

It should be noted that, as expected, time frames impact the model’s accuracy. The
obtained results show that the number of input timesteps, as well as the batch size, may
affect accuracy significantly. It was interesting to note that the presence of more input
features led to a decrease in the number of input timesteps required by the model. While
the best uni-variate models required four days of input, the multi-variate ones require just

746 B. Fernandes et al.

Table 9
Summary results for the best model of each approach.

Model RMSE MAE

Recursive Multi-Step Multi-Variate 2.907 1.346
Recursive Multi-Step Uni-Variate 3.496 1.567
Multi-Step Vector Output Uni-Variate 5.040 1.846
ARIMAX (Multi-Variate) 6.110 4.918
ARIMA (Uni-Variate) 6.336 5.088

a single day. The batch size required by multi-variate models is also substantially lower
when compared to uni-variate ones.

As direct answers to the elicited research questions, it can be said that (RQ1) LSTM
networks have significantly better forecasting accuracy than ARIMA models; (RQ2)
LSTM networks are able to accurately forecast several future timesteps; (RQ3) it has
been demonstrated that recursive multi-step LSTM networks have better accuracy than
multi-step vector output ones, with these last ones requiring a more complex and deeper
architecture, which, in turn, increases training times; and (RQ4) the addition of more in-
put features, namely the day of the week and the hour of the day, allowed LSTM models
to behave 20% better when compared to the uni-variate ones.

It should be noted that contextual data, such as holiday periods, events or heavy pre-
cipitation, may impact traffic flow patterns. Such data may be seasonal, cyclic or episodic.
In the performed experiments, such contextual data was not directly inputted to the candi-
date models. Nonetheless, all candidate models were conceived under the same conditions.
It is also worth highlighting that, in practice, deep learning models are not deployed as
standalone products. Instead, models are usually deployed within, for example, rule based
systems which have, per se, the ability to penalize, or compensate, the output of the net-
work upon the presence of events such as football games and concerts, school holidays
and heavy precipitation, just to name a few. This allows a system to be able to, in real
time, adjust, for example, to accidents or sudden intense precipitation.

Funding

This work has been supported by FCT – Fundacao para a Ciencia e Tecnologia within
the R&D Units Project Scope: UIDB/00319/2020. It was also partially supported by a
Portuguese doctoral grant, SFRH/BD/130125/2017, issued by FCT in Portugal.

References

Babu, C., Reddy, B. (2012). Predictive data mining on Average Global Temperature using variants of
ARIMA models. In: IEEE International Conference On Advances In Engineering, Science And Manage-
ment (ICAESM 2012), pp. 256–260. 978-81-909042-2-3.

Bahdanau, D., Cho, K., Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate.
In: 6th International Conference on Learning Representations (ICLR).

Long Short-Term Memory Networks for Traffic Flow Forecasting 747

Bayer, J., Wierstra, D., Togelius, J., Schmidhuber, J. (2009). Evolving memory cell structures for sequence learn-
ing. In: International Conference on Artificial Neural Networks, pp. 755–764. https://doi.org/10.1007/978-3-
642-04277-5_76.

Box, G., Jenkins, G. (1976). Time Series Analysis: Forecasting and Control. Holden-Day, Minnesota.
9780816211043.

Breuel, T. (2017). High Performance text recognition using a hybrid convolutional LSTM implementation. In:
14th IAPR International Conference on Document Analysis and Recognition (ICDAR), pp. 11–16. https://
doi.org/10.1109/ICDAR.2017.12.

Cai, M., Pipattanasomporn, M., Rahman, S. (2019). Day-ahead building-level load forecasts using deep
learning vs. traditional time-series techniques. Applied Energy, 236, 1078–1088. https://doi.org/10.1016/
j.apenergy.2018.12.042.

Chenbin, L., Guohua, Z., Zhihua, L. (2018). News text classification based on improved Bi-LSTM-CNN. In:
9th International Conference on Information Technology in Medicine and Education (ITME), pp. 890–893.
https://doi.org/10.1109/ITME.2018.00199.

Choi, K., Fazekas, G., Sandler, M. (2016). Text-based LSTM networks for automatic music composition. In: 1st
Conference on Computer Simulation of Musical Creativity.

Coca, A., Correa, D., Zhao, L. (2013). Computer-aided music composition with LSTM neural network and
chaotic inspiration. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–7. https://
doi.org/10.1109/IJCNN.2013.6706747.

Cortez, P., Rocha, M., Neves, J. (2004). Evolving time series forecasting ARMA models. Journal of Heuristics,
10(4), 415–429. https://doi.org/10.1023/B:HEUR.0000034714.09838.1e.

Cui, Z., Ke, R., Wang, Z.P.Y. (2018). Deep bidirectional and unidirectional LSTM recurrent neural network for
network-wide traffic speed prediction. arXiv e-print 1801.02143 [cs.LG].

Elman, J. (1990). Finding structure in time. Cognitive Science, 14, 179–211. https://doi.org/10.1016/0364-0213
(90)90002-E.

Fernandes, B., Silva, F., Alaiz-Moretn, H., Novais, P., Analide, C., Neves, J. (2019). Traffic flow forecasting on
data-scarce environments using ARIMA and LSTM networks. Advances in Intelligent Systems and Comput-
ing, 930, 273–282. https://doi.org/10.1007/978-3-030-16181-1_26.

Fu, R., Zhang, Z., Li, L. (2016). Using LSTM and GRU neural network methods for traffic flow prediction. In:
31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp. 324–328. https://
doi.org/10.1109/YAC.2016.7804912.

Gers, F., Schmidhuber, J., Cummins, F. (2000). Learning to forget: continual prediction with LSTM. Neural
computation, 12(10), 2451–2471. https://doi.org/10.1162/089976600300015015.

Gers, F., Eck, D., Schmidhuber, J. (2002). Applying LSTM to time series predictable through time-window
approaches. Perspectives in Neural Computing, 193–200. https://doi.org/10.1007/978-1-4471-0219-9_20.

Graves, A., Mohamed, A., Hinton, G. (2013). Speech recognition with deep recurrent neural networks. In:
IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6645–6649. https://doi.org/
10.1109/ICASSP.2013.6638947.

Greff, K., Srivastava, R.K., Koutnik, J., Steunebrink, B.R., Schmidhuber, J. (2017). LSTM: a search space
odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222–2232. https://doi.
org/10.1109/TNNLS.2016.2582924.

Hochreiter, S. (1998). Recurrent neural net learning and vanishing gradient. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems, 6(2), 107–116.

Hochreiter, S., Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
https://doi.org/10.1162/neco.1997.9.8.1735.

Huang, X., Tan, H., Lin, G., Tian, Y. (2018). A LSTM-based bidirectional translation model for optimizing rare
words and terminologies. In: International Conference on Artificial Intelligence and Big Data (ICAIBD),
pp. 185–189. https://doi.org/10.1109/ICAIBD.2018.8396191.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L. (2014). Large-scale video classifica-
tion with convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1725–1732. https://doi.org/10.1109/CVPR.2014.223.

Li, K., Zhai, C., Xu, J. (2017). Short-term traffic flow prediction using a methodology based on ARIMA and
RBF-ANN. In: Chinese Automation Congress (CAC), pp. 2804–2807. https://doi.org/10.1109/CAC.2017.
8243253.

https://doi.org/10.1007/978-3-642-04277-5_76
https://doi.org/10.1007/978-3-642-04277-5_76
https://doi.org/10.1109/ICDAR.2017.12
https://doi.org/10.1109/ICDAR.2017.12
https://doi.org/10.1016/j.apenergy.2018.12.042
https://doi.org/10.1016/j.apenergy.2018.12.042
https://doi.org/10.1109/ITME.2018.00199
https://doi.org/10.1109/IJCNN.2013.6706747
https://doi.org/10.1109/IJCNN.2013.6706747
https://doi.org/10.1023/B:HEUR.0000034714.09838.1e
https://doi.org/10.1016/0364-0213(90)90002-E
https://doi.org/10.1016/0364-0213(90)90002-E
https://doi.org/10.1007/978-3-030-16181-1_26
https://doi.org/10.1109/YAC.2016.7804912
https://doi.org/10.1109/YAC.2016.7804912
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1007/978-1-4471-0219-9_20
https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.1109/TNNLS.2016.2582924
https://doi.org/10.1109/TNNLS.2016.2582924
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/ICAIBD.2018.8396191
https://doi.org/10.1109/CVPR.2014.223
https://doi.org/10.1109/CAC.2017.8243253
https://doi.org/10.1109/CAC.2017.8243253

748 B. Fernandes et al.

Ma, X., Tao, Z., Wang, Y., Yu, H., Wang, Y. (2015). Long short-term memory neural network for traffic speed
prediction using remote microwave sensor data. Transportation Research Part C: Emerging Technologies,
54, 187–197. https://doi.org/10.1016/j.trc.2015.03.014.

Messina, R., Louradour, J. (2015). Segmentation-free handwritten Chinese text recognition with LSTM-
RNN. In: 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 171–175.
https://doi.org/10.1109/ICDAR.2015.7333746.

Pham, V., Bluche, T., Kermorvant, C., Louradour, J. (2014). Dropout improves recurrent neural networks
for handwriting recognition. In: 14th International Conference on Frontiers in Handwriting Recognition,
pp. 285–290. https://doi.org/10.1109/ICFHR.2014.55.

Rahimilarki, R., Gao, Z., Jin, N., Zhang, A. (2019). Time-series deep learning fault detection with the applica-
tion of wind turbine benchmark. In: IEEE 17th International Conference on Industrial Informatics (INDIN),
pp. 1337–1342. https://doi.org/10.1109/INDIN41052.2019.8972237.

Sak, H., Senior, A., Beaufays, F. (2014). Long short-term memory based recurrent neural network architectures
for large vocabulary speech recognition. arXiv e-print 1402.1128 [cs.NE].

Serra, J., Pascual, S., Karatzoglou, A. (2018). Towards a universal neural network encoder for time series. arXiv
e-print 1805.03908 [cs.LG].

Tian, Y., Pan, L. (2015). Predicting short-term traffic flow by long short-term memory recurrent neural net-
work. In: IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity), pp. 153–158.
https://doi.org/10.1109/SmartCity.2015.63.

Trianto, R., Tai, T., Wang, J. (2018). Fast-LSTM acoustic model for distant speech recognition. In: IEEE Interna-
tional Conference on Consumer Electronics (ICCE), pp. 1–4. https://doi.org/10.1109/ICCE.2018.8326195.

Van Der Voort, M., Dougherty, M., Watson, S. (1996). Combining kohonen maps with arima time series
models to forecast traffic flow. Transportation Research Part C: Emerging Technologies, 4(5), 307–318.
https://doi.org/10.1016/S0968-090X(97)82903-8.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, L., Polosukhin, I. (2017). At-
tention is all you need. In: 31st Conference on Neural Information Processing Systems (NIPS), pp. 5998–6008.

Werbos, P. (1990). Backpropagation through time: what it does and how to do it. Proceedings of the IEEE,
78(10), 1550–1560. https://doi.org/10.1109/5.58337.

Williams, B. (2001). Multivariate vehicular traffic flow prediction: evaluation of ARIMAX modeling. Trans-
portation Research Record, 1776(1), 194–200. https://doi.org/10.3141/1776-25.

Yao, S., Hu, S., Zhao, Y., Zhang, A., Abdelzaher, T. (2017). DeepSense: a unified deep learning framework
for time-series mobile sensing data processing. In: International World Wide Web Conference Committee
(IW3C2), pp. 351–360. https://doi.org/10.1145/3038912.3052577.

Zhang, K., Zhang, Z., Li, Z., Qiao, Y. (2016). Joint face detection and alignment using multitask cas-
caded convolutional networks. IEEE Signal Processing Letters, 23(10), 1499–1503. https://doi.org/10.1109/
LSP.2016.2603342.

Zhang, S., Liu, S., Liu, M. (2017). Natural language inference using LSTM model with sentence fusion. In: 36th
Chinese Control Conference (CCC), pp. 11081–11085. https://doi.org/10.23919/ChiCC.2017.8029126.

Zhao, Z., Chen, W., Wu, X., Chen, P., Liu, J. (2017). LSTM network: a deep learning approach for short-term
traffic forecast. Intelligent Transport Systems, 11(2), 68–75. https://doi.org/10.1049/iet-its.2016.0208.

Zheng, J., Xu, C., Zhang, Z., Li, X. (2017). Electric load forecasting in smart grids using long-short-term-
memory based recurrent neural network. In: 51st Annual Conference on Information Sciences and Systems
(CISS), pp. 1–6. https://doi.org/10.1109/CISS.2017.7926112.

B. Fernandes holds a Master’s degree in informatics engineering from the University
of Minho, in Braga, Portugal. At this same university he is now concluding his PhD in
informatics. He currently holds a doctoral grant, which allows him to be fully dedicated
to his research at the ALGORITMI Centre, a research unit of the School of Engineering
of the University of Minho. He is also an invited assistant professor at the same university,
lecturing machine learning and intelligent systems. His current research interests include
smart cities, internet of people, machine learning, multi-agent systems, blockchain, and
road safety.

https://doi.org/10.1016/j.trc.2015.03.014
https://doi.org/10.1109/ICDAR.2015.7333746
https://doi.org/10.1109/ICFHR.2014.55
https://doi.org/10.1109/INDIN41052.2019.8972237
https://doi.org/10.1109/SmartCity.2015.63
https://doi.org/10.1109/ICCE.2018.8326195
https://doi.org/10.1016/S0968-090X(97)82903-8
https://doi.org/10.1109/5.58337
https://doi.org/10.3141/1776-25
https://doi.org/10.1145/3038912.3052577
https://doi.org/10.1109/LSP.2016.2603342
https://doi.org/10.1109/LSP.2016.2603342
https://doi.org/10.23919/ChiCC.2017.8029126
https://doi.org/10.1049/iet-its.2016.0208
https://doi.org/10.1109/CISS.2017.7926112

Long Short-Term Memory Networks for Traffic Flow Forecasting 749

F. Silva obtained a PhD in informatics, in 2016, from the University of Minho in Braga,
Portugal. Currently, he is a post-doc researcher at the ALGORITMI Centre at the same
university. His current research interests include computational sustainability, smart cities,
multi-agent support systems, and urban transportation.

H. Alaiz-Moreton received his degree in computer science, performing the final project
at Dublin Institute of Technology, in 2003. He received his PhD in information technolo-
gies in 2008 (University of Leon). He has worked as a lecturer since 2005 at the school of
engineering at the University of Leon. His research interests include knowledge engineer-
ing, machine and deep learning, networks communication, and security. He has several
works published in international conferences, as well as books and scientific papers in
peer reviewed journals. He has been a member of scientific committees in conferences.
He has headed several PhD thesis and research projects.

P. Novais is a full professor of computer science at the Department of Informatics, in
the University of Minho, Braga, Portugal, and a researcher at the ALGORITMI Centre.
He received a PhD in computer science from the same university, in 2003. He develops
scientific research in the field of artificial intelligence, namely knowledge representation
and reasoning, machine learning and multi-agent systems, with applications to the areas
of law and ambient intelligence.

J. Neves is an emeritus professor at the Department of Informatics at the School of Engi-
neering at the University of Minho and is a researcher at the ALGORITMI Centre. He has
his graduation in chemical engineering, MSc, PhD and habilitation degrees, respectively,
from the universities of University of Coimbra (1976), Portugal, Heriot Watt (1981, 1983),
Edinburgh, Scotland, and the University of Minho, Portugal (1988). He was the founder
of the artificial intelligence area at the University of Minho. His research interests include,
among others, artificial intelligence, machine learning, knowledge representation and rea-
soning, and evolutionary computing.

C. Analide is a professor at the Department of Informatics of the University of Minho and
a researcher and founder member of ISLab – Synthetic Intelligence Laboratory, a branch
of the ALGORITMI Centre at University of Minho. His main interests are in the areas of
knowledge representation, intelligent agents and multi-agent systems, and sensorization.

	Introduction
	State of the Art
	ARIMA Models and LSTM Networks
	The Importance of Spatial-Temporal Dependencies in Time Series
	The Literature

	Materials and Methods
	Data Collection
	Data Preparation and Pre-Processing
	From an Unsupervised to a Supervised Problem
	Technologies and Libraries
	Evaluation Metrics

	Experiments
	ARIMA and ARIMAX
	Recursive Multi-Step vs Multi-Step Vector Output LSTMs
	Uni-Variate vs Multi-Variate LSTMs

	Results and Discussion
	ARIMA Models vs LSTM Networks
	Recursive Multi-Step vs Multi-Step Vector Output LSTMs
	Uni-Variate vs Multi-Variate LSTMs

	Conclusions

