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Abstract. Ligand Based Virtual Screening methods are widely used in drug discovery as filters
for subsequent in-vitro and in-vivo characterization. Since the databases processed are enormously
large, this pre-selection process requires the use of fast and precise methodologies. In this work, the
similarity between compounds is measured in terms of electrostatic potential. To do so, we propose
a new and alternative methodology, called LBVS-Electrostatic. Accordingly to the obtained results,
we are able to conclude that many of the compounds proposed with our novel approach could not
be discovered with the classical one.
Key words: virtual screening, shape similarity, electrostatic similarity.

1. Introduction

The constant increase in the size of the databases used in Drug Discovery requires efficient
techniques and methods that can be used to select the compounds most similarly to a query
molecule and at the lowest possible cost. One of these techniques is Virtual Screening
(VS). VS is an in-silico technique that allows large libraries with millions of compounds to
be processed in order to find new compounds related to a pharmacological query based on
one or more features (Hamza et al., 2012; Boström et al., 2013; Kumar and Zhang, 2016;
Wang et al., 2009). This represents a great advantage over experimental methods such as
High-Throughput Screening (HTS) in terms of efficiency, budget, time and development
cost (Kar and Roy, 2013). The resulting compounds from VS are subsequently acquired
and empirically tested in the laboratory. In addition, VS techniques are often used as a
pre-filter for HTS (López-Ramos et al., 2009). All these advantages have increased the
popularity of these techniques, which have experienced great advances over the last two
decades. The interested reader is referred to previous works (Lešnik et al., 2015; Kalászi
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et al., 2014; Liu et al., 2011; Dou et al., 2018; Schmidt et al., 2018) for a description of
different methods and tools currently used on VS.

However, there is still room for improvement regarding the accuracy of VS predictions
so as not to discard promising compounds, or to reduce the time and error of calculations
that compute the different features of the studied compounds (Böhm and Stahl, 2003). VS
applied to the electrostatic similarity of compounds is a clear example of this. Contrary
to what happens when VS is applied to select the most similar compounds in shape or
pharmacophore properties, where the tools base their predictions on scoring functions that
measure these particular features (Lešnik et al., 2015; Puertas-Martín et al., 2019; Yan et
al., 2013), the predictions in this field are not exclusively based on this descriptor, but on
both the similarity of the three dimensional shape and electrostatic similarity (Tresadern
et al., 2009; Chu and Gochin, 2013; Kim et al., 2015; Kossmann et al., 2016; Woodring
et al., 2017; Maccari et al., 2011; Kim et al., 2016; López-Ramos and Perruccio, 2010;
Hevener et al., 2012; Kaoud et al., 2012; Tiikkainen et al., 2009; Massarotti et al., 2014;
Oyarzabal et al., 2009).

Broadly speaking, all the previous works follow the same methodology, called LBVS-
Shape throughout this paper, although they may differ in the selection procedure used to
determine the compounds proposed as best predictions. Essentially, they initially optimize
the compounds in the database against the query in terms of shape by using ROCS (Open-
Eye Scientific Software, 2019a). After that they select a number N of compounds with
the highest shape similarity values and then finally evaluate them in terms of electrostatic
similarity.

The value of N is not fixed, as it depends on the particular study. Usually, N is less than
10% of the total compounds in the database (Kossmann et al., 2016; Hevener et al., 2012;
Kaoud et al., 2012). A search for the best compounds basing on shape pre-filtering may
be counterproductive, since the selection of a low value of N can rule many promising
compounds out, which may have a significant impact on the final results.

Additionally, we also believe that using a more realistic description of compound
bioactivity during the optimization procedure may help to obtain better predictions. As
such, we propose a new approach as part of this work, named LBVS-Electrostatic, which
involves the direct optimization of the electrostatic similarity. To do so, a new version
of the algorithm OptiPharm, called OptiPharm_ES, has been implemented. OptiPharm
(Puertas-Martín et al., 2019) was initially designed to optimize the shape similarity
between two given molecules, but now it has been adapted to maximize the electro-
static similarity. As results will show, the new LBVS-Electrostatic methodology is able
to obtain better solutions than the ones obtained with the classical LBVS-Shape ap-
proach.

The rest of the paper is organized as follows. Section 2 gives a brief description about
the mathematical formulation of the scoring functions. Sections 3 and 4 describe the two
methods used for virtual screening based on electrostatic similarity, both the literature
approach and the novel proposal. The former is currently the method most frequently
used in the literature. In short, it computes a sublist of molecules with the highest three-
dimensional shape similarity. Usually, such a sublist is only composed of less than 10% of
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the total number of compounds in the database. From the reduced list, the compound(s)
with the greatest electrostatic similarity is/are selected. The second one involves the reso-
lution of an optimization problem guided by a electrostatic similarity function. Section 5
describes the framework where the experiments have been carried out and the main results
obtained. Finally, the conclusions and lines for future research are summarized in the last
section.

2. Scoring Functions to Measure Similarity Between Compounds

This section is devoted to defining the mathematical functions used to guide the searching
processes. The figures in which the values of these objective functions are graphically
represented have been created with VIDA v4.4.0 (OpenEye Scientific Software, 2019b)
using the default configuration.

2.1. Shape Similarity

The shape similarity of two compounds is calculated as follows:
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where pi and pj are set to 2.7, αi and αj obtain the van der Waals value for each atom
and
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where Rij is the distance between atoms i and j .
Notice that the accuracy obtained from (1) depends on the number of atoms in the two

compared molecules, i.e. the higher this number, the longer the value of VAB as an absolute
value. To be able to measure the level of similarity between compounds, regardless of
the number of atoms that they are composed of and the descriptor used, the Tanimoto
Similarity (Jaccard, 1901) value is computed as follows:

T cs = VAB

VAA + VBB − VAB

, (3)

where VAB is the A molecule overlaid onto B molecule. VAA and VBB is the overlap of
the molecules A and B, respectively. (3) has a value in the range [0, 1], where 0 means
there is no overlapping and 1 means the shape of both molecules is the same.
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2.2. Electrostatic Similarity

The electrostatic similarities are obtained by numerical solution of the Poisson equation
(Böttcher et al., 1974), viz:

∇{
ε(r)∇φ(r)

} = −ρmol(r), (4)

where φ(r) is the electrostatic potential, ε(r) is the dielectric constant, and ρmol(r) is the
molecular charge distribution. Electrostatic similarity between two compounds is com-
pared by determining EAB :

EAB =
∫
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ijk�
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ijk�

B
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where � is a masking function to ensure potentials interior to the compound are not con-
sidered part of the comparison. The integral appearing in (5) is a volume integral, com-
puted using a grid-spacing parameter, h.

Again the accuracy obtained by (5) depends on the number of atoms in the compared
molecules. As such, similarly to what was done previously, the Tanimoto Similarity (Jac-
card, 1901) value has been computed as follows:

T cE = EAB

EAA + EBB − EAB

, (6)

where EAB is the A molecule overlaid onto B molecule. EAA and EBB is the overlap of
the molecules A and B, respectively. In this case, (6) has a value in the range [−0.33, 1],
where −0.33 means the charges of both compounds have the same value but opposite
loads, 0 means there is no overlapping, and 1 means the charges of both molecules are the
same.

3. The Previous Approach: The LBVS Method Guided by Molecular Shape
(LBVS-Shape)

This method bases its predictions on a previous pre-filtering process consisting of iden-
tifying the N candidate compounds from the database with the highest shape similarity.
After that, for each selected compound, the electrostatic similarity is calculated at the
optimum superimposition obtained in the previous stage. Finally, the molecule with the
highest electrostatic similarity value is selected as the one for the solution.

In this work, we have used the tool ROCS (OpenEye Scientific Software, 2019a) to op-
timize the shape similarity between two molecules. ROCS is a parametrized piece of soft-
ware used to maximize volume overlapping similarity and utilizes the previously described
(3) to represent molecules by means of Gaussian functions (Grant and Pickup, 1995; Grant
et al., 1996). Electrostatic similarity has been calculated using the ZAP Toolkit (see (6)).
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This software has been downloaded without modification from the original website (Open-
Eye Scientific Software, 2019c). It is worth mentioning that ROCS and ZAP are, by far,
the most widely used tools in the literature for VS based on shape and electrostatic simi-
larity (Ellingson et al., 2010; Thomas et al., 2013; Hawkins and Stahl, 2018; Connelly et
al., 2015; Gowthaman et al., 2015). For this reason they have been selected as part of this
study; i.e. a fair and complete study must be carried out by making a comparison with the
state-of-the-art methods.

4. The New Approach: A LBVS Method Guided by Electrostatic Similarity
(LBVS-Electrostatic)

Our main aim when using this approach is to obtain the compound(s) with the highest
electrostatic similarity values. Thus, an optimization problem must be defined with this
aim in mind. Broadly speaking, any tool, method or algorithm used will be better guided
towards the optima if the objective function is a numerical model representing the real
objective. Until now, most methods focus on prioritizing the search of compounds with
the same global shape, while they place electrostatic similarities at much lower priority.
Consequently, they solve a shape similarity optimization problem instead of focusing on
the electrostatic similarity, which may be more useful from the drug discovery point of
view.

The new approach being presented here is based on the idea that the scoring function
used to guide the optimization method must be mainly based on electrostatic similarity,
since it is very likely that compounds with very high electrostatic similarity will share
very similar chemical properties. The same can not be said while just focusing on shape
similarity. In the latter, the search may converge to a sub-optimal solution (Ivorra et al.,
2018; Fernández et al., 2017, 2019). OptiPharm (Puertas-Martín et al., 2019), a recent
algorithm proposed for working on LBVS problems, is used to prove our hypothesis. The
interested reader is referred to as Puertas-Martín et al. (2019) for an in-depth description
of this algorithm. For the sake of completeness, some of its main strengths and important
features are briefly described in the following.

OptiPharm is a global evolutionary optimizer that can solve any optimization prob-
lem that concerns the computation of the similarity of two compounds, named query and
target. It implements procedures to increasingly adjust the query molecule to the target,
which remains fixed throughout the optimization method. A solution s represents the ro-
tation and translation of the query with respect to the target. The parameters associated
with s are dynamically bounded for each particular instance to reduce as much as possible
the feasible region.

OptiPharm analyses the entire search space looking for likely areas where the local
and global optima can be. To do so, it runs on a set of M solutions, called population,
on which it applies a sequence of reproduction, selection and improvement procedures
during several iterations.

Each solution in the population has a radius value that delimits a multidimensional
subarea of the search space where the reproduction and improvement methods are applied.
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Fig. 1. OptiPharm algorithm: main stages.

The radius corresponding to a solution depends on the iteration i where it was created. The
real strength of the radius is that it allows us to focus the search on different subareas since
many solutions with different radii can coexist simultaneously during the optimization
procedure. Therefore, at the same stage of the optimization procedure, new promising
regions are systematically analysed, while others are examined thoroughly. Besides, the
maximum number of initial solutions M , the number of iterations tmax and the smallest
radius value Rtmax OptiPharm has, as input parameter, a maximum number N of function
evaluations.

Figure 1 shows the main stages of the algorithm and a brief description of the proce-
dures implemented.

During this work, the scope of its functionalities has been extended to include the
electrostatic potential as the scoring function. The new version has been called Op-
tiPharm_ES. The electrostatic similarity between two compounds has been computed by
using the source code of the ZAP Toolkit, also downloaded from https://docs.eyesopen.
com/toolkits/cpp/zaptk/thewayofzap.html (OpenEye Scientific Software, 2019c). This ap-
proach ensures that the comparisons between methodologies are made under the same
conditions. Additionally, OptiPharm_ES have been made available at https://hpca.ual.es/
optipharm/ES.

https://docs.eyesopen.com/toolkits/cpp/zaptk/thewayofzap.html
https://docs.eyesopen.com/toolkits/cpp/zaptk/thewayofzap.html
https://hpca.ual.es/optipharm/ES
https://hpca.ual.es/optipharm/ES
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4.1. Hardware Setup

All the experiments in this work have been executed using a Bullx R424-E3, which
consists of 2 Intel Xeon E5 2650v2 (16 cores), 128 GB of RAM memory and 1 TB
HDD (http://hpca.ual.es/en/infraestructure) along with the cluster Eagle https://wiki.man.
poznan.pl/hpc/index.php?title=Eagle.

4.2. Benchmarks

In this work, a database provided by The Food and Drug Administration has been used
(FDA). The Food and Drug Administration is a federal agency of the United States De-
partment of Health and Human Services responsible for protecting and promoting public
health by controlling, among other things, prescription and over-the-counter pharmaceu-
tical drugs (medications). This agency provides a data set containing 1751 compounds,
which represents approved medicines that can be safely used on humans in the USA. This
database is useful since in the high similarity cases it would directly contribute to drug
re-purposing. This is of relevant utility given the clear trend regarding re-purposing drugs
observed over the last 5 years (Dakshanamurthy et al., 2012; Kumar and Zhang, 2018;
Yuan et al., 2017).

The version of the database used in this work was obtained from DrugBank v5.0.1
(Wishart et al., 2018) and necessary mol2 files for the VS calculations were set up by
using AmberTools (Case et al., 2017) by removing salts and neutralizing their protona-
tion state, computing partial charges by MMFF94 force field, adding hydrogen atoms and
minimizing energies (default parameters) (Halgren, 1995).

A comprehensive computational analysis may cover a representative sample of the
database. The compounds included in the FDA database have different attributes, one of
the most relevant for the study at hand being the number of atoms. In this work, a selection
of 50 compounds has been made in the following way: the compounds in the database
have been sorted by the number of atoms, including hydrogen, and then divided into 24
intervals (see Fig. 2). From each sector, at least one compound was chosen at random and
proportional to the number of compounds in the sector.

Finally, these comparisons between compounds have been run using OptiPharm_ES
with the following input parameter configuration: N = 200000 function evaluations,
M = 5 starting poses, tmax = 5 iterations and Rtmax = 1 as the smallest possible radius.

5. Results

5.1. Influence of the Size List of Top-Ranked Compounds in the LBVS-Shape Method

As previously mentioned, the LBVS-Shape bases its predictions on a pre-selection of the
first best compounds in terms of superimposition score (N ). In this subsection, a study
has been conducted to know how the value of N affects the final results from the point of
view of electrostatic similarity. In particular, the LBVS-Shape has been performed on the

http://hpca.ual.es/en/infraestructure
https://wiki.man.poznan.pl/hpc/index.php?title=Eagle
https://wiki.man.poznan.pl/hpc/index.php?title=Eagle
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Fig. 2. Number of compounds included in the FDA database, according to their number of atoms.

selected 50 queries and for five different values of N , i.e. N has been set to 175, 438, 876,
1313 and 1751 compounds. It means that for each query, we have selected either 10%,
25%, 50%, 75% or 100% of the ranked compounds during the pre-selection phase.

Figure 3 illustrates a toy example of the main steps of the LBVS-Shape method for
the Query DB01213 and N = 1751, i.e. the total number of compounds in the FDA set.
Initially, the Query is compared to each compound TargetS from the database to obtain
their optimum position and corresponding shape similarity value T cS . As previously men-
tioned, this stage is carried out by using ROCS. Afterwards, compounds are sorted (RkS)
in decreasing order by T cS . The N best compounds are selected and evaluated to measure
the corresponding electrostatic similarity value T cEval

E . Notice that the evaluation of the
electrostatic similarity considers the pose obtained with the shape similarity optimization.
The compound with the highest T cEval

E , called BestComp throughout this paper, is selected
as the best prediction. Finally, as an additional and unconsidered stage in the LBVS-Shape
method, we have computed the optimized superposition between the BestComp and the
Query by using OptiPharm_ES. The corresponding T cE value is then provided.

To get an overview of the results, average values of the BestComp found for the 50
queries and each value for N have been computed, and shown in Table 1. In particular,
the average position Av(RkS) in the sorted list where the BestComp were located have
been computed, together with the following: their mean number of atoms Av(NS), their
average shape similarity value Av(T cS), their corresponding electrostatic similarity value
Av(T cEval

E ) when they are evaluated, and finally, their mean electrostatic similarity when
they are optimized Av(T cE).

As it can be seen, the predictions seem to improve in term of electrostatic similarity as
the number N of selected molecules in the sorted list increases (see columns Av(T cEval

E )

and Av(T cE)). In accordance with these results, the posterior comparison between LBVS-
Shape and LBVS-Electrostatic methods has been carried out by setting N = 1751.
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Fig. 3. Toy example of the performance of the LBVS-Shape method for a particular case where Query =
DB01213 and N = 1751 using the FDA database.

Table 1
Influence of the parameter N in the results obtained by the LBVS-Shape method. For each value of N , the

following average values from the 50 queries, are shown: position in the shape ranking (Av(RkS)), number of
atoms (Av(NS)), shape similarity score (Av(T cS)), electrostatic similarity evaluation score (Av(T cEval

E
)) and

electrostatic optimized similarity value (T cE ).

N Av(RkS) Av(NS) Av(T cS) Av(T cEval
E

) Av(T cE)

175 73 53 0.627 0.451 0.559
438 162 50 0.587 0.486 0.568
876 287 51 0.564 0.495 0.569
1313 324 50 0.559 0.497 0.570
1751 362 49 0.554 0.497 0.569

5.2. Performance Comparison Between LBVS-Shape and LBVS-Electrostatic Methods

To analyse the performance of both methods, we have conducted a study in which the
selected 50 molecular queries are processed with reference to the FDA database. Notice
that comparing a query with itself always reaches the maximum similarity value, both
for electrostatic potential as well as for shape. Subsequently, these results were removed
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Fig. 4. An example of the performance of the LBVS-Electrostatic method for a particular case where Query =
DB01213 is compared to the FDA database.

when ranking the compounds. In other words, the compounds given as a result are not the
most similar ones, but the second compounds in the ranked list. Additionally, as previously
mentioned, the traditional method has been carried out considering the total number of
compounds in the database N = 1751, so as to increase the probability of finding better
predictions.

To illustrate how we generate the later summarizing tables, a sample of the results
obtained by both methods when comparing a query to the molecules in the dataset is
studied. In particular, the instance Query = DB01213 is analysed. Notice that this is
the example used to illustrate the stages of the LBVS-Shape method in Fig. 3. After that,
the same instance is considered to exemplify the performance of the LBVS-Electrostatic
method (see Fig. 4). Notice that this Query has been selected because it is small and it helps
to see the main ideas of the paper very easily by using figures. However, the conclusions
inferred from the associated results can be extrapolated to any other Query. As can be
observed, the LBVS-Electrostatic technique solves an optimization problem to determine
the electrostatic similarity, T cE , between the pharmaceutical Query and every TargetE in
the database. Afterwards, the list of compounds is sorted by the T cE value and the one
located in first position, RkE = 1, is selected as the best prediction. Finally, to complete
the study, optimization is carried out to calculate the shape similarity T cS between the
chosen compound and the Query.

For the sake of clarity and comparison, the results shown in Figs. 3 and 4 are summa-
rized in Table 2. The meaning of the columns as well as the particular values in the tables,
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Table 2
Summary of the results obtained for both LBVS-Shape and LBVS-Electrostatic methods for the query

compound DB01213. The column notation, the colours included and the corresponding results come from
Figs. 3 and 4, i.e. they maintain the same meaning as shown previously for those pictures. The last row

indicates the results associated with the top solution selected for each method.

Query NQ LBVS-Shape LBVS-Electrostatic

RkS TargetS NS T cS RkEval
E

T cEval
E

T cE RkE TargetE NE T cE T cEval
S

T cS

DB01213 12 1 DB03255 13 0.963 111 0.140 1 DB03255 13 0.810 0.880
2 DB06637 13 0.961 242 0.081 2 DB06637 13 0.798 0.885
3 DB01005 9 0.943 1722 −0.172 3 DB00763 13 0.796 0.845

... ...
183 DB00184 26 0.621 1 0.500 110 DB00184 26 0.609 0.319

... ...
DB01213 12 183 DB00184 26 0.621 1 0.500 0.609 1 DB03255 13 0.810 0.880 0.963

Fig. 5. Summary of results of LBVS-Shape and LBVS-Electrostatic where Query = DB01213. The Query
compound is coloured green. Query electrostatic fields are coloured deep blue and red. Best compounds are
shown in grey and their electrostatic potential fields, in light blue and pink.

are the ones previously explained and shown in each figure. The last row corresponds to
the values associated with the best predictions. As can be observed, each method obtains a
different compound as a top solution. LBVS-Shape provides the DB00184 molecule with
a T cS = 0.621 and a T cEval

E = 0.500. At the same time, LBVS-Electrostatic proposes
the DB03255 compound as being the most similar to the query with T cE = 0.810 and
T cEval

S = 0.880. As such, the LBVS-Electrostatic method has not only obtained a more
similar compound in terms of electrostatic potential, but also in shape. In Fig. 5, the final
position for each case is shown.

Once the specific case of DB01213 has been explained in detail, the results of the 50
queries have been summarized in Table 3. Columns RkEval

E and RkE have been removed
in this table because their values are always 1. The last row summarizes the average of the
results.
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Table 3
Rows are sorted by the number of atoms of queries. For each query, the same procedure explained in Table 2 is

followed. The last row summarizes the average values for each column.

Query NQ LBVS-Shape LBVS-Electrostatic
RkS TargetS NS T cS T cEval

E
T cE TargetE NE T cE T cEval

S
T cS

DB00529 10 316 DB05266 35 0.496 0.437 0.593 DB00818 31 0.720 0.468 0.614
DB01213 12 182 DB00184 26 0.621 0.500 0.609 DB03255 13 0.810 0.880 0.963
DB00173 15 102 DB00851 23 0.792 0.546 0.536 DB01119 21 0.834 0.777 0.830
DB00172 17 24 DB00128 16 0.881 0.469 0.561 DB00677 25 0.699 0.690 0.769
DB00331 20 380 DB00961 40 0.598 0.599 0.697 DB01018 24 0.790 0.559 0.649
DB01119 21 513 DB00828 15 0.655 0.519 0.613 DB00173 15 0.832 0.779 0.829
DB02513 25 27 DB01275 20 0.872 0.526 0.569 DB06637 13 0.915 0.745 0.805
DB00915 28 125 DB00160 13 0.684 0.404 0.543 DB00478 34 0.946 0.673 0.924
DB01352 29 1 DB00306 32 0.926 0.947 0.983 DB00306 32 0.983 0.901 0.926
DB01365 30 180 DB01191 33 0.738 0.902 0.960 DB01626 26 0.964 0.628 0.824
DB00657 33 47 DB06770 16 0.788 0.396 0.517 DB01043 34 0.979 0.609 0.861
DB00478 34 30 DB00752 21 0.787 0.508 0.637 DB01043 34 0.957 0.615 0.879
DB01043 34 27 DB00945 21 0.765 0.400 0.478 DB00657 33 0.973 0.711 0.861
DB00380 35 601 DB00731 50 0.620 0.380 0.407 DB08971 56 0.505 0.435 0.655
DB00693 37 1034 DB04575 59 0.525 0.362 0.429 DB00692 40 0.454 0.391 0.783
DB09185 37 243 DB01233 43 0.722 0.839 0.506 DB09021 39 0.916 0.429 0.650
DB07615 40 71 DB04552 28 0.704 0.861 0.866 DB09218 28 0.892 0.610 0.574
DB09219 40 123 DB00321 44 0.698 0.347 0.329 DB00316 20 0.450 0.249 0.462
DB00674 42 279 DB00575 23 0.688 0.505 0.653 DB00514 45 0.662 0.415 0.695
DB00887 45 209 DB00232 31 0.642 0.401 0.454 DB01127 39 0.662 0.378 0.576
DB01198 45 273 DB00209 59 0.648 0.748 0.768 DB00123 25 0.894 0.334 0.491
DB01155 48 1 DB01165 46 0.858 0.671 0.818 DB01208 50 0.899 0.385 0.835
DB00246 50 467 DB00268 44 0.542 0.843 0.852 DB05271 48 0.877 0.391 0.604
DB00381 53 525 DB00573 32 0.577 0.285 0.278 DB00630 27 0.377 0.397 0.524
DB00876 54 576 DB01002 49 0.516 0.395 0.505 DB00774 28 0.532 0.276 0.524
DB09237 54 380 DB09092 44 0.580 0.759 0.824 DB08998 40 0.902 0.447 0.596
DB00254 55 1100 DB00271 28 0.521 0.626 0.836 DB00271 28 0.836 0.219 0.521
DB01268 57 902 DB09014 54 0.518 0.792 0.765 DB01409 48 0.883 0.421 0.564
DB01196 60 7 DB00783 44 0.741 0.397 0.385 DB08797 17 0.527 0.195 0.385
DB01621 66 274 DB00268 44 0.552 0.821 0.845 DB04861 55 0.867 0.330 0.454
DB09236 66 459 DB00607 51 0.509 0.406 0.438 DB00449 54 0.664 0.439 0.551
DB00632 69 537 DB00511 123 0.348 0.067 0.246 DB00898 9 0.997 0.126 0.137
DB08903 69 6 DB01433 58 0.621 0.840 0.867 DB01359 51 0.888 0.307 0.464
DB01419 70 380 DB09209 61 0.431 0.854 0.879 DB01611 51 0.933 0.291 0.423
DB00320 80 204 DB00438 59 0.515 0.367 0.396 DB00120 23 0.563 0.245 0.278
DB00728 91 1383 DB06204 40 0.399 0.688 0.761 DB09131 3 0.874 0.068 0.101
DB00503 98 655 DB00206 84 0.371 0.256 0.243 DB01144 22 0.401 0.180 0.280
DB01232 100 639 DB06480 52 0.389 0.691 0.741 DB09089 58 0.791 0.290 0.387
DB00309 110 385 DB01603 45 0.455 0.241 0.297 DB00319 63 0.467 0.267 0.534
DB04786 120 4 DB09158 82 0.377 0.424 0.708 DB09159 18 0.910 0.108 0.120
DB09114 130 117 DB00595 57 0.376 0.273 0.506 DB00583 26 0.876 0.183 0.190
DB06439 137 657 DB01628 39 0.383 0.336 0.425 DB00878 64 0.488 0.274 0.423
DB01078 140 34 DB00204 56 0.424 0.201 0.259 DB01085 31 0.540 0.169 0.211
DB01590 151 1037 DB01193 53 0.265 0.248 0.358 DB00653 6 0.529 0.070 0.100
DB04894 152 82 DB01199 87 0.361 0.348 0.484 DB09131 3 0.662 0.006 0.040
DB00403 167 325 DB04855 84 0.261 0.325 0.395 DB06335 49 0.575 0.120 0.198
DB00732 169 640 DB08967 52 0.222 0.236 0.353 DB00653 6 0.508 0.051 0.069
DB00050 194 7 DB01369 141 0.349 0.238 0.383 DB00516 19 0.385 0.059 0.080
DB06699 221 1465 DB01245 56 0.119 0.365 0.513 DB09131 3 0.642 0.013 0.029
DB06219 229 69 DB01369 141 0.293 0.277 0.394 DB09131 3 0.670 0.009 0.021
Mean 74 362 – 49 0.554 0.497 0.569 – 31 0.738 0.372 0.505



Optimizing Electrostatic Similarity for Virtual Screening: A New Methodology 833

As evidenced, LBVS-Electrostatic obtains on average T cE = 0.738, which is higher
than that given by LBVS-Shape, T cEval

E = 0.497. Similar conclusions can be inferred
when comparing the T cE average values for both methods. Additionally, when the re-
sults are analysed individually, we can see that LBVS-Electrostatic provides solutions with
higher T cE values than those achieved by LBVS-Shape. In fact, in 48 out of 50 cases,
LBVS-Electrostatic obtains a different compound than that reached by LBVS-Shape.

Regarding shape similarity, it is possible to infer that, on average, the methods are
equivalent in terms of accuracy of the predictions, i.e. LBVS-Shape obtains an average
value of T cs = 0.554 while LBVS-Electrostatic reaches a mean value of T cs = 0.505.
Furthermore, analysing the obtained results individually, we can see that in 2 out of 50
cases, LBVS-Electrostatic offers better or equivalent predictions than that achieved by
LBVS-Shape in terms of shape (see columns T cs in LBVS-Shape and T CEval

s in LBVS-
Electrostatic). It means that cases exist where two compounds can be very similar in terms
of electrostatic potential, although they can be very different in terms of three-dimensional
shape. It means that those solutions could not be obtained by using the methodology fol-
lowed by the traditional LBVS-Shape method, since it only focuses on the compounds
with the highest similarity in shape.

Making a somewhat more detailed approach for compounds smaller than 50 atoms,
which means the first 23 query compounds in the table, there are 5 cases where the dif-
ference is less than 0.05 (DB00529, DB00173, DB00331, DB00915 and DB01352) and
in another 3 cases the difference is 0.1 (DB01043, DB07615 and DB01268). Considering
the values of these 7 cases in which the shape LBVS-Electrostatic is smaller than that of
LBVS-Shape, the average difference is 0.048, while the mean gain in electrostatic similar-
ity for those 7 compounds is 0.271. In large compounds, which includes 27 queries, there
are only two cases with similar characteristics, which are compounds DB09236 with a
difference of 0.07 and DB06699 with a difference of 0.013, both of them for shape simi-
larity. In view of these results, the LBVS-Electrostatic method seems to be justified when
proposing new solutions for small compounds.

However, not all the improvements are related to electrostatic fields. The optimization
of electrostatic potential using OptiPharm_ES might allow a better solution to be found in
terms of shape too. Compounds DB01119 and DB1213 in Table 3 are some outstanding
examples. For example, in the case of Query = DB01119, the best compound found by
LBVS-Shape is DB00828 with T cS = 0.655 and T cEval

E = 0.519. Moreover, LBVS-
Electrostatic’s best compound is DB00173. It has a better T cE , i.e. 0.829, but also the
position of those compounds after the electrostatic optimization is improved, T cEval

S =
0.779.

5.3. ZAP Toolkit Accuracy Problem

The ZAP Toolkit has been widely used in the literature to calculate the electrostatic sim-
ilarity score for two compounds (Boström et al., 2013; Tresadern et al., 2009; Chu and
Gochin, 2013; Kim et al., 2015; Kossmann et al., 2016; Woodring et al., 2017; Maccari
et al., 2011; Kim et al., 2016; López-Ramos and Perruccio, 2010; Hevener et al., 2012;
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Fig. 6. Compound DB01365 is printed green. Compound DB00459 is represented in three coloured figures:
light blue, red and pink. Electrostatic fields are printed in dark blue and red using VIDA.

Kaoud et al., 2012; Tiikkainen et al., 2009; Massarotti et al., 2014; Oyarzabal et al., 2009;
Haque and Pande).

In this subsection we would like to remark that the ZAP Toolkit can return an erro-
neous value, which was discovered when using OptiPharm_ES. During the optimization
procedure, OptiPharm_ES can progressively separate two input compounds aimed to es-
cape from local optima and explore the searching space in depth. In fact, it is possible
to analyse cases where no overlap exists between the input molecules. During the anal-
ysis of the results, we discovered that cases exist where the ZAP Toolkit can overflow,
mainly when situations such as the previously mentioned happen. See Fig. 6 to see a par-
ticular example. Herein, compound DB01365 remains fixed on the left while compound
DB00459 occupies three positions (red, blue and pink). The red compound obtains an
electrostatic similarity value of 1. The light blue compound is displaced half a unit to
the left, i.e. closer to the reference compound and its similarity value is 0.38. The pink
compound is shifted 0.5 units to the right, that is, away from the reference compound.
Its similarity value is 0. Calculations can be made using the ZAP Python script available
at https://docs.eyesopen.com/toolkits/python/zaptk/thewayofzap.html in the Electrostatic
Similarity section.

This problem has been solved in OptiPharm_ES by considering the poses with the
previously mentioned problem unfeasible. It means that they are no longer considered
during the optimization process.

6. Conclusions

In this work, a new approach to solve the LBVS problem based on the electrostatic sim-
ilarity has been put forward. It has been called LBVS-Electrostatic. This methodology is
based on the direct optimization of electrostatic similarity. For this purpose, a new version
of OptiPharm has been used. Conversely, the method proposed in the literature, which has
been named LBVS-Shape throughout the paper, looks for a sublist of the top compounds
with the highest shape similarity by using ROCS, to later evaluate their electrostatic simi-
larity with ZAP. In this work, a study to analyse the influence of the number of compounds
in such a sublist has been carried out. As the results have shown, the larger the number

https://docs.eyesopen.com/toolkits/python/zaptk/thewayofzap.html
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of molecules considered, the better the prediction obtained in terms of electrostatic sim-
ilarity. From this conclusion, a computational study has been carried out to compare the
new method LBVS-Electrostatic with the one in the literature LBVS-Shape. To increase
the probability of finding good predictions, LBVS-Shape has been executed taking into
account the whole database prior to the electrostatic similarity evaluation. Even so, LBVS-
Electrostatic performs better than LBVS-Shape, achieving better predictions in electro-
static potential for the 50 queries included in the study. Regarding the shape similarity,
both methods behave in a similar fashion, on average obtaining compounds with similar
shape similarity values. It is important to mention that the new methodology proposed
in this paper is novel, which means that the predictions proposed have not been analysed
previously.

Finally, we have shown that ZAP can return erroneous values. This is an important
discovery, since it is the most commonly used software in the literature to measure the
electrostatic similarity.

In the future, we have plans to implement this objective function from scratch, but for
the study at hand, we considered that it was more important to compare it with the state-
of-the-art software. Additionally, other functions measuring the pharmacophore similarity
will be implemented. Finally, we will analyse the problem from a multi-objective perspec-
tive, where shape an electrostatic similarity are optimized simultaneously.

A. Appendix Availability of data and materials

• Project name: OptiPharm_ES.
• Project home page: https://hpca.ual.es/optipharm/ES/.
• Project source code repository: https://gitlab.hpca.ual.es/savins/optipharm_es.
• Operating system(s): Linux and MacOS.
• Programming language: C++.
• License: Mozilla Public License 2.0.
• Any restrictions to use by non-academics: licence needed, contact with the authors.

The databases belong to their authors and access to them depends on any applicable re-
strictions.
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