
INFORMATICA, 2020, Vol. 31, No. 3, 621–658 621
© 2020 Vilnius University
DOI: https://doi.org/10.15388/20-INFOR423

An Entropy-Based Method for Probabilistic
Linguistic Group Decision Making and its
Application of Selecting Car Sharing Platforms

Gai-li XU1, Shu-Ping WAN2, Jiu-Ying DONG3,∗
1 College of Science, Guilin University of Technology, Guilin 541002, China
2 College of Information Technology, Jiangxi University of Finance and Economics,

Nanchang 330013, China
3 School of Statistics, Jiangxi University of Finance and Economics, Nanchang 330013, China
e-mail: jiuyingdong@126.com

Received: February 2020; accepted: June 2020

Abstract. As the tourism and mobile internet develop, car sharing is becoming more and more
popular. How to select an appropriate car sharing platform is an important issue to tourists. The
car sharing platform selection can be regarded as a kind of multi-attribute group decision making
(MAGDM) problems. The probabilistic linguistic term set (PLTS) is a powerful tool to express
tourists’ evaluations in the car sharing platform selection. This paper develops a probabilistic lin-
guistic group decision making method for selecting a suitable car sharing platform. First, two ag-
gregation operators of PLTSs are proposed. Subsequently, a fuzzy entropy and a hesitancy entropy
of a PLTS are developed to measure the fuzziness and hesitancy of a PLTS, respectively. Combin-
ing the fuzzy entropy and hesitancy entropy, a total entropy of a PLTS is generated. Furthermore, a
cross entropy between PLTSs is proposed as well. Using the total entropy and cross entropy, DMs’
weights and attribute weights are determined, respectively. By defining preference functions with
PLTSs, an improved PL-PROMETHEE approach is developed to rank alternatives. Thereby, a novel
method is proposed for solving MAGDM with PLTSs. A car sharing platform selection is examined
at length to show the application and superiority of the proposed method.
Key words: Multi-attribute decision making, Probabilistic linguistic term set, Entropy, Cross
entropy.

1. Introduction

With the development of mobile internet and “Internet +”, sharing economy, such as
traffic-sharing, health care-sharing and food-sharing, has boomed in recent years. Car-
sharing, a new mode of traffic-sharing, is becoming more and more popular along with
the development of tourism. People usually complete the car rental and provide their feed-
backs on consumer experiences on sharing platforms. Therefore, how to select a suitable
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car sharing platform is important for tourists. Since the car sharing platforms are often
evaluated in safety, convenience, the brand of car and so on, the selection of car sharing
platform can be described as a kind of multi-attribute decision making problems. Ordinar-
ily, several tourists travel together. Hence, more than one tourist (decision maker, shorted
by DM) decides which car sharing platform is selected. Thereby, the car sharing platform
selection can be considered as a kind of multi-attribute group decision making (MAGDM)
(Xu et al., 2016; Wan et al., 2015; Dong et al., 2018; Kou et al., 2020; Zhang et al., 2019).

Owing to the complexity of problems and vagueness of human thinking, it is diffi-
cult for DMs to describe the decision information as crisp numbers. DMs are more apt
to use linguistic variables (Zadeh, 1975) to evaluate alternatives. However, the linguistic
variable allows DMs to express decision information with only one linguistic term (LT).
Sometimes, DMs cannot adequately describe their evaluations using one exact LT and
have hesitancy among several LTs. To overcome this drawback of the linguistic variable,
Rodríguez et al. (2012) introduced the hesitant fuzzy linguistic term set (HFLTS) which
permits DMs to express their preferences on alternatives with several possible LTs. Nev-
ertheless, all possible LTs in a HFLTS have the same importance. In fact, DMs may prefer
a LT to others. Thus, some useful information may be lost (Pang et al., 2016). To make up
for this limitation, Pang et al. (2016) generalized HFLTS and presented the probabilistic
linguistic term set (PLTS) in which each possible LT is assigned a probability (weight).
Hence, the PLTS contains more useful information compared with the HFLTS. In recent
years, the PLTS has gained more attention and some research achievements have been
obtained. These achievements can be roughly divided into four categories.

(1) Operations and aggregation operators of PLTSs. Operations of PLTSs and aggrega-
tion operators are important to aggregate decision information in the PLTS circumstance.
Pang et al. (2016) firstly defined some operational laws of PLTSs, and then put forward
PLWA and PLWG operators of PLTSs, respectively. Subsequently, Zhang et al. (2017)
pointed that the operation result by the laws (Pang et al., 2016) is a linguistic term rather
than a PLTS. To remedy this defect, Zhang et al. (2017) defined new operations of PLTSs.
Nevertheless, the operation results by these new operations in Zhang et al. (2017) may
exceed the bounds of LTSs. To overcome this limitation, Gou and Xu (2016) introduced
novel operations of PLTSs by a linguistic scale function. Later, using this function, Mao
et al. (2019) introduced new operation laws and developed the GPLHWA operator and
GPLHOWA operator based on Archimedean t-norms and s-norms. Zhang (2018) investi-
gated the large group decision making and proposed a PL-WAA operator. Recently, diverse
types of operators, such as power operators (Liu et al., 2019) and dependent weighted av-
erage operators (Liu et al., 2019), have been proposed one after another. Furthermore, Mi
et al. (2020) conducted a survey of existing achievements on operations of PLTSs and
aggregation operators.

(2) Distance measure of PLTSs. Pang et al. (2016) and Zhang et al. (2016) defined
Euclidean distance and Hamming distance measures, respectively, of PLTSs based on
the probabilities and subscripts of possible LTs. Afterwards, Wu and Liao (2018) argued
that the results derived by these two distance measures (Pang et al., 2016; Zhang et al.,
2016) occasionally are against human intuition. To overcome this defect, they proposed an
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improved distance measure. However, the calculation of this improved distance measure
is very complex. Lately, Mao et al. (2019) proposed a simple Euclidean distance measure
by a linguistic scale function (Gou and Xu, 2016). Unfortunately, some counterintuitive
results still appear based on this Euclidean distance, please see Table 2 in Section 3.2.

(3) Entropy and cross entropy of PLTSs. Due to the uncertainty of information with
PLTSs, how to measure such a certainty is important. Entropy of PLTSs, as an efficient
tool to measure the uncertainty of information, is an interesting topic but has not gained
wide attention. Only Lin et al. (2019) developed an information entropy of PLTSs by
probabilities of possible LTs in a PLTS. Liu et al. (2018) proposed three kinds of entropy
of PLTSs by extending the entropy of HFSs into the PLTS context, including the fuzzy
entropy, hesitancy entropy and total entropy. On the other hand, the cross entropy is effec-
tive for measuring the differences between PLTSs. Up to now, only Liu and Teng (2019)
presented two cross entropy measures of PLTSs based on sine and tangent trigonometric
functions.

(4) Decision methods for solving MAGDM problems with PLTSs. It is important to
choose proper decision methods for selecting best alternatives. At present, pools of meth-
ods have been proposed to solve MAGDM problems with PLTSs. For example, Pang et al.
(2016) presented a distance-based extended TOPSIS method with PLTSs. Zhang X.F. et
al. (2019) argued that this extended TOPSIS only considered the distance proximity of al-
ternatives with respect to ideal and negative ideal solutions, while ignored the proximity
in direction. In response to this problem, Zhang X.F. et al. (2019) developed a projec-
tion method to solve MAGDM with PLTSs. Later, by improving the classical MULTI-
MOORA method in different angles, Wu et al. (2018) and Liu and Li (2019) developed
a PL-MULTIMOORA method and an extended MULTIMOORA method, respectively.
Unfortunately, these two methods did not take negative ideal solutions into account. Con-
sidering both positive and negative ideal solutions, Li et al. (2020) put forward a PP-
MULTIMOORA method. In addition, diverse types of outranking methods (Lin et al.,
2019; Liao et al., 2019; Xu et al., 2019; Peng et al., 2020; Liu and Li, 2018), such as ELEC-
TRE and PROMETHEE, are also presented. To facilitate the study on decision methods
of PLTSs, Liao et al. (2020) provided a survey which includes most decision methods and
their applications.

Although many achievements have been achieved, they suffer from some limitations.
(1) Though the GPLHWA operator (Mao et al., 2019) improved the PLWA operator

(Pang et al., 2016) and the PL-WAA operator (Zhang et al., 2017) to some extent, it has
some flaws that the aggregated result obtained by the GPLHWA operator is not a PLTS
in a strict sense. The reason is that the sum of probabilities of all possible LTs in the
aggregated result is more than 1. Therefore, proposing new aggregation operators with
desirable properties is helpful for aggregating evaluation values of alternatives.

(2) By existing distance measures of PLTSs (Pang et al., 2016; Mao et al., 2019; Zhang
et al., 2016), some counter-intuitive results appears. Although the results derived by the
distance measure (Wu and Liao, 2018) almost agree with human intuition, the computation
of this distance measure is too complex to use easily. Therefore, it is necessary to develop
a new simple distance measure of PLTSs by which computation results coincide with
human intuition.
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(3) The research on entropy and cross entropy of PLTSs is very little. Up to date,
only Lin et al. (2019) and Liu et al. (2018) addressed the entropy of PLTSs. However,
the distinguishing power of the entropy proposed by Lin et al. (2019) is not high enough.
Although the fuzzy entropy and hesitancy entropy proposed by Liu et al. (2018) can neatly
measure the uncertainty of PLTSs, some properties of this fuzzy entropy are counter-
intuitive and the computation of this hesitancy entropy is not simple. In addition, the cross
entropy proposed by Liu and Teng (2019) fails for the symmetric linguistic term sets in
PLTSs. Thereby, it is valuable to study deeply on the entropy and cross entropy of PLTSs.

(4) Existing decision methods are fruitful to solve decision problems with PLTSs. Nev-
ertheless, some methods (Lin et al., 2019; Xu et al., 2019; Li et al., 2020) can only solve
MADM problems, but fail for MAGDM problems. Although these methods (Pang et al.,
2016; Wu et al., 2018; Zhang X.F. et al., 2019; Liu et al., 2019) are capable to solve
MAGDM problems with PLTSs, DMs’ weights or attribute weights are not considered
or assigned in advance, which may result in subjective random weights. Hence, it is in-
teresting to seek a novel method which not only can solve MAGDM problems, but also
determine DMs’ weights and attribute weights objectively.

To make up for above limitations, this paper proposes a novel method for solving
MAGDM problems with PLTSs. First, two aggregation operators, including PLWAM
(probabilistic linguistic weighted arithmetic mean) operator and PLWGM (probabilistic
linguistic weighted geometric mean) operator, respectively, are proposed and some de-
sirable properties are studied. To measure the hesitancy degree of a PLTS, a hesitancy
index of the PLTS is introduced. Then a general distance measure of PLTSs is defined to
measure the deviation between two PLTSs. Considering the fact that the uncertainty of
a PLTS includes the fuzziness and hesitancy, a fuzzy entropy and hesitancy entropy of a
PLTS are defined and then a total entropy of a PLTS is derived to measure such uncertain-
ties. Meanwhile, a cross entropy of PLTSs is defined to measure the distinction between
PLTSs. Afterwards, by minimizing the total entropy and the cross entropy of a DM, an
objective program model is built to determine DMs’ weights. Subsequently, individual
decision matrices are aggregated into a collective one by the PLWAM operator. To de-
rive attributes weights objectively, a bi-objective program is built by minimizing the total
entropy of attribute values with respect to each attribute as well as maximizing the cross
entropy between attribute values of alternatives. By defining a new preference function in
the form of PLTSs, an improved PL-PROMETHEE method is developed to rank alterna-
tives. Thereby, a novel method is proposed for solving MAGDM problems with PLTSs.
A case of car sharing platform selection is applied to show the effectiveness and advan-
tages of the proposed method at length. The primary features of the proposed method are
outlined as follows:

(1) Two new probabilistic linguistic average aggregation operators of PLTSs (i.e.
PLWAM and PLWAG operators) are proposed. A prominent characteristic of them is that
the aggregated result obtained by these two operators is not only a PLTS with the sum of
probabilities of possible LTs being equal to 1, but also is consistent with human intuition.

(2) A new generalized distance measure of PLTSs is defined. It is worth mentioning
that the hesitancy degree of a PLTS is considered in this distance measure. Thus, the new
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distance has a stronger distinguishing power. Moreover, a ranking approach is presented
to rank PLTSs.

(3) A fuzzy entropy, a hesitancy entropy and a cross entropy of PLTSs are introduced.
The fuzzy entropy has desirable properties and the computation of the hesitancy entropy
is simple. Meanwhile, the cross entropy can distinguish the deviations between PLTSs
with symmetric linguistic term sets.

(4) Based on entropy and cross entropy of PLTSs, distinct objective programs are es-
tablished to determine DMs’ weights and attribute weights objectively. Finally, an im-
proved PL-PROMETHEE method is developed to rank alternatives.

The remainder of this paper is organized as follows: In Section 2, some basic concepts
of PLTSs are reviewed. Moreover, PLWAM and PLWGM operators are proposed. Section
3 introduces a hesitancy index of a PLTS and then develops a generalized distance mea-
sure of PLTSs. Based on this distance measure, a ranking approach is presented to sort
PLTSs. Section 4 defines several types of entropy of PLTSs, including the fuzzy entropy,
hesitancy entropy, total entropy and cross entropy of PLTSs. In Section 5, an improved PL-
PROMETHEE method is developed to solve MAGDM problems with PLTSs. Section 6
provides a case study of car sharing platform selection to illustrate the application of the
proposed method. Furthermore, comparison analyses are conducted to show advantages
of the proposed method. Some conclusions are made in Section 7.

2. Preliminaries

In this section, some definitions and notions related to the PLTS are reviewed. Further-
more, two aggregation operators of PLTSs are proposed and some desirable properties of
them are investigated.

Definition 1 (See Xu, 2005). Let S = {sα|α = −τ, . . . ,−1, 0, 1, . . . , τ } be a finite and
totally ordered discrete LTS, where sα represents a possible value for a linguistic term,
and τ is a positive integer. Especially, the mid-linguistic label s0 represents an assessment
of “indifference”, and the rest of them are placed symmetrically around it. s−τ and sτ are
lower and upper bounds of linguistic labels.

To preserve all given linguistic information, Xu (2004) extended the discrete LTS S

into a continuous LTS S̄ = {sα|α ∈ [−τ, τ ]. If sα ∈ S, then sα is called an original
linguistic term; Otherwise, sα is called a virtual linguistic term.

Definition 2 (See Gou and Xu, 2016). Let S = {sα|α = −τ, . . . ,−1, 0, 1, . . . , τ } be a
LTS, the linguistic term sα that expresses the equivalent information to the membership
degree γ is obtained by a linguistic scale function g:

g : [s−τ , sτ ] → [0, 1], g(sα) = α + τ

2τ
= γ.
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Additionally, the membership degree γ that expresses the equivalent information to
the linguistic term sα is obtained by the following function

g−1 : [0, 1] → [s−τ , sτ ], g−1(γ ) = s(2γ−1)τ = sα.

Definition 3 (See Pang et al., 2016). Let S = {sα|α = −τ, . . . ,−1, 0, 1, . . . , τ } be a
linguistic term set, a PLTS is defined as

L(p) =
{
L(k)

(
p(k)

)∣∣L(k) ∈ S, p(k) � 0, k = 1, 2, . . . , #L(p),

#L(p)∑
k=1

p(k) � 1

}
,

where L(k)(p(k)) represents the linguistic term L(k) associated with the probability p(k),
and #L(p) is the number of all different linguistic terms in L(p).

For a PLTS L(p) with
∑#L(p)

k=1 p(k) � 1, Pang et al. (2016) gave a normalizing method.

Definition 4 (See Pang et al., 2016). Given a PLTS L(p) with
∑#L(p)

k=1 p(k) � 1, the
normalized PLTS L̇(p) is defined as:

L̇(p) = {L(k)
(
ṗ(k)

)∣∣k = 1, 2, . . . , #L(p)
}
,

where ṗ(k) = p(k)/
∑#L(p)

k=1 p(k) for all k = 1, 2, . . . , #L(p).
To ensure that the operational results among PLTSs can be straightforwardly deter-

mined, Mao et al. (2019) defined an ascending ordered PLTS below.

Definition 5. Given a PLTS L(p) = {L(k)(p(k))|L(k) ∈ S, p(k) � 0, k =
1, 2, . . . , #L(p)}, where r(k) is the subscript of linguistic term L(k), an ascending ordered
PLTS can be derived by the following steps:

(1) If all elements in a PLTS are with different values of r(k)p(k), then all elements are
arranged according to the value of r(k)p(k) (k = 1, 2, . . . , #L(p)) in an ascending
order;

(2) If two or more elements with equal values of r(k)p(k), then
(a) When the subscripts r(k) (k = 1, 2, . . . , #L(p)) are unequal, r(k)p(k) (k =

1, 2, . . . , #L(p)) are arranged according to values of r(k) (k = 1, 2, . . . , #L(p))
in an ascending order;

(b) When the subscripts r(k) (k = 1, 2, . . . , #L(p)) are equal, r(k)p(k) (k =
1, 2, . . . , #L(p)) are arranged according to values of p(k) (k = 1, 2, . . . , #L(p))
in an ascending order.

If a PLTS L(p) is normalized by Definition 4 and all elements of L(p) is or-
dered by Definition 5, then L(p) is converted into a normalized ordered PLTS L̄(p) =
{L̄(k)(p̄(k))|k = 1, 2, . . . , #L̄(p)}.

In real decision making problems, the numbers of linguistic terms in two different
PLTSs are often different. This makes trouble to operate. In order to make them have the



An Entropy-Based Method for Probabilistic Linguistic Group Decision Making 627

same number of linguistic terms, Pang et al. (2016) provided a method to add the number
of linguistic terms for PLTSs in which the number of linguistic terms is relatively small
as follows.

Definition 6. Let L1(p) and L2(p) be two PLTSs, where L1(p) = {L(k)
1 (p

(k)
1 )|k =

1, 2, . . . , #L1(p)} and L2(p) = {L(k)
2 (p

(k)
2 )|k = 1, 2, . . . , #L2(p)}, #L1(p) and #L2(p)

are the numbers of linguistic terms in L1(p) and L2(p), respectively. If #L1(p) > #L2(p),
then add #L1(p) − #L2(p) linguistic terms to L2(p). The added linguistic terms are the
smallest linguistic terms in L2(p) and the probabilities of added linguistic terms are zero.

Definition 7 (See Mao et al., 2019). Let L̄1(p) and L̄2(p) be two PLTSs, where L̄1(p) =
{L̄(k)

1 (p̄
(k)
1 )|k = 1, 2, . . . , #L̄1(p)}, L̄2(p) = {L̄(k)

2 (p̄
(k)
2 )|k = 1, 2, . . . , #L̄2(p)} and

#L̄1(p) = #L̄2(p). Then the Euclidean distance d(L̄1(p), L̄2(p)) between L̄1(p) and
L̄2(p) is defined as

d
(
L̄1(p), L̄2(p)

) =

√√√√√#L̄1(p)∑
k=1

(
p̄

(k)
1 g
(
L̄

(k)
1

)− p̄
(k)
2 g
(
L̄

(k)
2

))/
#L̄1(p). (1)

Definition 8 (See Wu and Liao, 2018). Given a PLTS L(p) = {L(k)(p(k))|L(k) ∈
S, p(k) � 0, k = 1, 2, . . . , #L(p)}, the expected function of L(p) is defined as

e
(
L(p)

) =
#L(p)∑
k=1

g
(
L(k)

)
p(k)

/ #L(p)∑
k=1

p(k). (2)

2.1. Aggregation Operators of PLTSs

This subsection reviews the operational laws of PLTSs presented by Gou and Xu (2016),
and then proposes PLWAM and PLWGM aggregation operators, which are used to aggre-
gate the decision information in GDM discussed in later sections.

Definition 9 (See Gou and Xu, 2016). Let S = {sα|α = −τ, . . . ,−1, 0, 1, . . . , τ }, L(p),
L1(p) and L2(p) be three PLTSs, and λ be a positive real number, it stipulates:

(i) L1(p) ⊕ L2(p) = g−1(
⋃

k1=1,2,...,#L1(p)
k1=1,2,...,#L2(p)

{(
g
(
L

(k1)
1

)+ g
(
L

(k2)
2

)
− g
(
L

(k1)
1

)
g
(
L

(k2)
2

))(
p

(k1)
1 p

(k2)
2

)}) ;

(ii) L1(p) ⊗ L2(p) = g−1
(⋃

k1=1,2,...,#L1(p)
k1=1,2,...,#L2(p)

{(
g
(
L

(k1)
1

)
g
(
L

(k2)
2

))(
p

(k1)
1 p

(k2)
2

)})
;

(iii) λL(p) = g−1
(⋃

k=1,2,...,#L(p)

{
1 − (1 − g

(
L(k)

))λ
,
(
p(k)

)})
;

(iv)
(
L(p)

)λ = g−1
(∪k=1,2,...,#L(p)

{(
g
(
L(k)

))λ
,
(
p(k)

)})
;

(v) The complement of L(p): (L(p))(c) = g−1(
⋃

k=1,2,...,#L(p){(1 − g(L(k)))(p(k))}).
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Remark 1. As reviewed in Mi et al. (2020), up to now existing operations of PLTSs can be
divided into five types: symbolic-based computation (Pang et al., 2016), semantic-based
computation (Gou and Xu, 2016; Wu and Liao, 2019), triangular norms-based compu-
tation (Klement et al., 2000), evidence reasoning-based computation (Li and Wei, 2019)
and double alpha-cut-based computation (Jiang and Liao, 2020). Among these operations,
only the semantic-based computation (Gou and Xu, 2016; Wu and Liao, 2019) and the ev-
idence reasoning-based computation (Li and Wei, 2019) satisfy the closure of operation
of PLTSs. The semantic-based computations (Gou and Xu, 2016; Wu and Liao, 2019)
defined common operations, such as additive, subtraction and numerical operations of
PLTSs. However, the computation (Li and Wei, 2019) only defined the additive operation
of PLTSs. To sum up, the semantic-based computation (Gou and Xu, 2016; Wu and Liao,
2019) is more reasonable compared with other computations. Therefore, it is natural to
choose this kind of computation to complete the operations of PLTSs. The differences
between operations in Gou and Xu (2016) and Wu and Liao (2019) are the selections of
linguistic scale functions and the tools for handling two PLTSs with different numbers of
LTs. Compared with the computation in Wu and Liao (2019) (see Definition 3 in Wu and
Liao, 2019), the computation in Gou and Xu (2016) is easier to operate and more widely
used. For example, many achievements (Bai et al., 2017; Liang et al., 2018; Feng et al.,
2020) have been gained based on the computation in Gou and Xu (2016), while only one
method (Wu et al., 2019) was developed by the computation in Wu and Liao (2019). At
this point, we choose the computation in Gou and Xu (2016) to conduct the operations of
PLTSs in this paper.

In virtue of Definition 9, a PLWAM operator of PLTS is presented.

Definition 10. Let Li(p) = {L(k)
i (p

(k)
i )|k = 1, 2, . . . , #Li(p)} (i = 1, 2, . . . , n) be n

PLTSs. A PLWAM operator is a function f n → f such that:

PLWAM
(
L1(p), L2(p), . . . , Ln(p)

) = ω1L1(p)⊕ω2L2(p)⊕· · ·⊕ωnLn(p), (3)

where ω = (ω1, ω2, . . . , ωn)
T is the weight vector of Li(p) (i = 1, 2, . . . , n), satisfying

0 � ωi � 1(i = 1, 2, . . . , n) and
∑n

i=1 ωi = 1.

Theorem 1. Given n PLTSs L1(p), L2(p), . . . , Ln(p), the aggregated value by the
PLWAM operator is also a PLTS as

PLWAM
(
L1(p), L2(p), . . . , Ln(p)

)
= g−1

( ⋃
kj =1,2,...,#Lj (p)

j=1,2,...,n

{(
1 −

n∏
j=1

(
1 − g

(
L

(kj )

j

))ωj

)(
p

(k1)
1 p

(k2)
2 · · ·p(kn)

n

)})
.

(4)
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Furthermore,
∑

kj =1,2,...,#Lj (p)

j=1,2,...,n

p
(k1)
1 p

(k2)
2 · · · p(kn)

n = 1. (5)

Proof. Please see Appendix A.

Analogously, a PLWGM operator of PLTSs is presented.

Definition 11. Let Li(p) = {Lk
i (p)|k = 1, 2, . . . , #Li(p)} (i = 1, 2, . . . , n) be n

PTTSs. A PLWGM operator of PLTSs is a function f n → f such that:

PLWGM
(
L1(p), L2(p), . . . , Ln(p)

) = (L1(p)
)ω1 ⊗(L2(p)

)ω2 ⊗· · ·⊗(Ln(p)
)ωn,

(6)

where ω = (ω1, ω2, . . . , ωn)
T is the weight vector of Li(p) (i = 1, 2, . . . , n), satisfying

0 � ωi � 1(i = 1, 2, . . . , n) and
∑n

i=1 ωi = 1.

In a way similar to the proving process of Theorem 1, Theorem 2 can be proved based
on the operational laws (ii) and (iv) in Definition 9.

Theorem 2. Given n PLTSs L1(p), L2(p), . . . , Ln(p), the aggregated value by the
PLWGM operator is also a PLTS as follows

PLWGM
(
L1(p), L2(p), . . . , Ln(p)

)
= g−1

( ⋃
kj =1,2,...,#Lj (p)

j=1,2,...,n

{( n∏
j=1

(
g
(
L

(kj )

j

))ωj

)(
p

(k1)
1 p

(k2)
2 · · · p(kn)

n

)})
, (7)

and
∑

kj =1,2,...,#Lj (p)

j=1,2,...,n

p
(k1)
1 p

(k2)
2 · · · p(kn)

n = 1. (8)

Remark 2. Compared with existing aggregation operators (Pang et al., 2016; Mao et al.,
2019; Zhang, 2018), the proposed operators have significant advantages. For instance, they
satisfy the closure of operations and the computation results are closer to human intuition.
These advantages can be verified by Example 1 in what follows.

Example 1. Given a LTS S = {s−3, s−2, s−1, s0, s1, s2, s3}. Let L1(p) = {s2(0.4),

s3(0.4)}, L2(p) = {s1(0.1), s2(0.6), s3(0.1)} and L3(p) = {s2(0.2), s3(0.1)} be three
PLTSs. The weight vector is w = (0.3, 0.2, 0.5)T. By applying existing arithmetic
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Table 1
Results obtained by different aggregation operators.

Operators Results PLTS Information
lost

Information
distortion

PLWA
(Pang et al., 2016)

{s0, s0.2, s0.4, s0.6, s0.75, s0.95, s1.15, s1.5, s1.7, s2.25} No Yes Yes

GPLHWA
(Mao et al., 2019)

{s1.85(0.14), s2.00(0.16), s3(1.36)} No Yes Yes

PL-WAA

(Zhang, 2018) {s−3(0.064), s−2(0.064), s−1(0.064), s0(0.064),

s1(0.084), s2(0.424), s3(0.254)} Yes Yes Yes

PLWAM in this
paper

{s1.85(0.04), s2.00(0.25), s3(0.71)} Yes No No

weighted aggregation operators and the proposed PLWAM operator, aggregated results
are obtained and shown in Table 1.

It is observed from Table 1 that the PLWAM operator proposed in this paper has fol-
lowing merits:

(1) The PLWAM operator satisfies the closure of operations, i.e. the aggregated result
of PLTSs obtained by the PLWAM operator is still a PLTS. However, the aggregated result
obtained by the PLWA operator (Pang et al., 2016) is a linguistic term rather than a PLTS.
Thus, the probability information is lost. Although the aggregated result obtained by the
GPLHWA operator (Mao et al., 2019) seems to be a PLTS, the sum of probabilities of all
possible LTs in this result is more than 1. Therefore, this result is not a PLTS in a strict
sense. Hence, there exists information distortion while using the GPLHWA operator.

(2) The aggregated result obtained by the proposed PLWAM operator is more con-
sistent with human intuition. Observing L1(p), L2(p) and L3(p), it is deduced that the
aggregated result should be larger than s1 and smaller than s3. Furthermore, the probabil-
ity of s3 should be more than that of s1 because three PLTSs include s3 but only L2(p)

contains s1 with a small probability. By the PLWAM operator proposed in this paper, the
aggregated result (see Table 1) is in accordance with this analysis indeed. On the other
hand, the aggregated result obtained by the PL-WAA operator (Zhang, 2018) is counter-
intuitive because LTs s−3, s−2 and s−1 are all included in this result, which means that the
information is distorted in aggregating process.

(3) Observing Table 1, the aggregated results obtained by the proposed PLWAM op-
erator and the PL-WAA (Zhang, 2018) operator are both PLTSs. Nevertheless, this paper
proves that all the aggregated results by the PLWAM operator are all PLTSs for any PLTSs
(see Theorem 1), but Zhang (2018) failed to do so.

Analogously, the PLWGM operator has above advantages.

3. A Hesitancy Index of a PLTS and an Approach to Ranking PLTSs

In this section, a hesitancy index of a PLTS is introduced to measure the hesitancy degree
of a PLTS, and then a new generalized distance measure between two PLTSs is developed.
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Finally, based on the proposed distance measure, a TOPSIS-based approach is presented
to rank PLTSs.

3.1. A Hesitancy Index of a PLTS

Definition 12. Suppose a normalized PLTS L̇(p) = {L(k)(ṗ(k))|k = 1, 2, . . . , #L(p)}.
A hesitancy index of L̇(p) is defined as

h
(
L̇(p)

) =
{

2
∑#L̇(p)

k=1 |g(L(k)) − ḡ|ṗ(k) #L̇(p) > 1,

0 #L̇(p) = 1,
(9)

where ḡ = 1
#L̇(p)

∑#L̇(p)

k=1 g(L(k)).
It is clear from Eq. (9) that the hesitancy index h(L̇(p)) satisfies 0 � h(L̇(p))

� 1. Especially, h(L̇(p)) = 0 if L̇(p) = {sα(1)|sα ∈ S} and h(L̇(p)) = 1 if
L̇(p) = {s−τ (0.5), sτ (0.5)}. This result is in accordance with human intuition.

3.2. A General Distance Measure Between PLTSs

First, this subsection reviews existing distance measures between PLTSs (Pang et al., 2016;
Mao et al., 2019; Zhang et al., 2016), and then develops a general distance measure be-
tween PLTSs based on the proposed hesitancy index. In the end, comparative analyses of
the proposed distance measure and existing ones are conducted.

Let S = {sα|α = −τ, . . . ,−1, 0, 1, . . . , τ } be a LTS. L̄1(p) and L̄2(p) are two
PLTSs, where L̄1(p) = {L̄(k)

1 (p̄
(k)
1 )|k = 1, 2, . . . , #L̄1(p)}, L̄2(p) = {L̄(k)

2 (p̄
(k)
2 )|k =

1, 2, . . . , #L̄2(p)} and #L̄1(p) = #L̄2(p) = #L̄(p).
Pang et al. (2016) defined a deviation degree between two PLTSs as

dP

(
L̄1(p), L̄2(p)

) =

√√√√√#L̄(p)∑
k=1

(
p

(k)
1 r

(k)
1 − p

(k)
2 r

(k)
2

)/
#L̄(p), (10)

where r
(k)
1 and r

(k)
2 are the subscripts of linguistic terms of L̄1(p) and L̄2(p), respectively.

Later, Zhang et al. (2016) introduced a distance measure between PLTSs as below.

dZ

(
L̄1(p), L̄2(p)

) =
#L̄(p)∑
k=1

p
(
r
(k)
1 , r

(k)
2

)
d
(
r
(k)
1 , r

(k)
2

)
, (11)

where p(r
(k)
1 , r

(k)
2 ) = p(r

(k)
1 )p(r

(k)
2 ) = p

(k)
1 p

(k)
2 and d(r

(k)
1 , r

(k)
2 ) = (r

(k)
1 − r

(k)
2 )/T , T is

the number of linguistic terms in S.
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Mao et al. (2019) argued some limitations of above distance measures and developed
an Euclidean distance as

dM

(
L̄1(p), L̄2(p)

) =

√√√√√#L̄(p)∑
k=1

(
p

(k)
1 g
(
L̄

(k)
1

)− p
(k)
2 g
(
L̄

(k)
2

))/
#L̄(p). (12)

This paper defines a general distance measure between PLTSs by the proposed hesi-
tancy index.

Definition 13. Given two PLTSs L̄1(p) = {L̄(k)
1 (p̄

(k)
1 )|k = 1, 2, . . . , #L̄1(p)} and

L̄2(p) = {L̄(k)
2 (p̄

(k)
2 )|k = 1, 2, . . . , #L̄2(p)}, where #L̄1(p) = #L̄2(p) = #L̄(p), a

general distance measure of PLTSs is defined as

dG

(
L̄1(p), L̄2(p)

) = (
1

2

(
1

#L̄(p)

#L(p)∑
k=1

1

2

(∣∣g(L̄(k)
1

)− g
(
L̄

(k)
2

)∣∣q + ∣∣p̄(k)
1 − p̄

(k)
2

∣∣)q

+ ∣∣h(L̄1(p)
)− h

(
L̄2(p)

∣∣q))1/q

, (13)

where q � 1.
Specially, when q = 1, a Manhattan distance is obtained as

dM

(
L̄1(p), L̄2(p)

) = 1

2
(

1

#L̄(p)

#L(p)∑
k=1

1

2

(∣∣g(L̄(k)
1

)− g
(
L̄

(k)
2

)∣∣+ ∣∣p̄(k)
1 − p̄

(k)
2

∣∣)
+ ∣∣h(L̄1(p)

)− h
(
L̄2(p)

∣∣), (14)

when q = 2, a novel Euclidean distance of PLTSs is developed as

dE

(
L̄1(p), L̄2(p)

)
=
√√√√1

2
(

1

#L̄(p)

#L(p)∑
k=1

1

2

((
g
(
L̄

(k)
1

)− g
(
L̄

(k)
2

))2 + (p̄(k)
1 − p̄

(k)
2

)2)+ (h(L̄1(p)
)− h

(
L̄2(p)

)2)
.

(15)

According to Eqs. (14) and (15), it is easily proved that dM and dE have desirable
properties described in Theorem 3.

Theorem 3. For two PLTSs L̄1(p) and L̄2(p) with #L̄1(p) = #L̄2(p), dM and dE are
the novel Manhattan and Euclidean distances of PLTSs, respectively. They satisfy:

(i) 0 � dM

(
L̄1(p), L̄2(p)

)
, dE

(
L̄1(p), L̄2(p)

)
� 1;

(ii) dM

(
L̄1(p), L̄2(p)

) = dE

(
L̄1(p), L̄2(p)

) = 0 if and only if L̄1(p) = L̄2(p);
(iii) dM

(
L̄1(p), L̄2(p)

) = dM

(
L̄2(p), L̄1(p)

)
and dE

(
L̄1(p), L̄2(p)

) = dE

(
L̄2(p),

L̄1(p)
)
.
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Table 2
Distances between PLTSs obtained by different distance measures.

PLTSs Different distance measures Distances between PLTSs

L̄1(p) = {s2(0.8), s3(0.2)}
L̄2(p) = {s2(0.5), s3(0.5)}

Zhang’s distance (Zhang et al., 2016) dZ(L̄1(p), L̄2(p)) = 0
The Manhattan distance proposed in
this paper

dM(L̄1(p), L̄2(p)) = 0.075 > 0

The Euclidean distance proposed in
this paper

dE(L̄1(p), L̄2(p)) = 0.15 > 0

L̄3(p) = {s0(0.4), s1(0.6)}
L̄4(p) = {s0(0.8), s3(0.2)}

Pang’s distance (Pang et al., 2016) dP (L̄3(p), L̄4(p)) = 0
The Manhattan distance proposed in
this paper

dM(L̄3(p), L̄4(p)) = 0.3083 > 0

The Euclidean distance proposed in
this paper

dE(L̄3(p), L̄4(p)) = 0.3308 > 0

L̄5(p) = {s−3(0.8), s1(0.2)}
L̄6(p) = {s−3(0.7333), s0(0.2667)}

The Mao’s Euclidean distance (Mao
et al., 2019)

d(L̄5(p), L̄6(p)) = 0

The Manhattan distance proposed in
this paper

dM(L̄5(p), L̄6(p)) = 0.1208 > 0

The Euclidean distance proposed in
this paper

dE(L̄5(p), L̄6(p)) = 0.1359 > 0

Note: The considered LTS in Table 2 is S = {s−3, s−2, s−1, s0, s1, s2, s3}.

Remark 3. Compared with existing distance measures in Pang et al. (2016), Mao et al.
(2019) and Zhang et al. (2016), the distance measures defined in Definition 13 have a
stronger distinguishing power. Table 2 shows this advantage explicitly.

It is shown from Table 2 that PLTSs in each pair are not identical completely. Therefore,
the distance between each pair PLTSs should be more than zero intuitively. The proposed
distance measures do this exactly. However, the distances by existing distance measures
(Pang et al., 2016; Mao et al., 2019; Zhang et al., 2016) are all zeros, so the difference
of PLTSs in each pair cannot be distinguished. This means that the proposed distance
measures have stronger distinguishing powers, which can be attributed to the following
factors:

(1) According to Zhang’s distance (Zhang et al., 2016) (i.e. Eq. (11)), the distance
between two PLTSs is zero if these two PLTSs have the same possible LTs regardless
of their probabilities. Hence, such PLTSs, like L̄1(p) and L̄2(p) in Table 2, cannot be
distinguished even if they are not remarkably identical.

(2) From Eq. (10), it is noticed that Pang’s distance (Pang et al., 2016) has some lim-
itations: the distance between any two PLTSs is zero if these PLTSs satisfy p

(k)
1 r

(k)
1 =

p
(k)
2 r

(k)
2 (k = 1, 2, . . . , #L̄(P )) for all possible LTs. In fact, PLTSs satisfying these con-

ditions (for example, L̄3(p) and L̄4(p)) are different.
(3) Although Mao’s distance (Mao et al., 2019) (i.e. Eq. (12)) improved Pang’s dis-

tance (Pang et al., 2016) by replacing the subscripts r
(k)
i with corresponding linguistic

scale functions g(L̄
(k)
i ) (i = 1, 2; k = 1, 2, . . . , #L̄(P )), a limitation still cannot be over-

come that the distance between such PLTSs satisfying p
(k)
1 g(L̄

(k)
1 ) = p

(k)
2 g(L̄

(k)
2 )(k =

1, 2, . . . , #L̄(P )), like L̄5(p) and L̄6(p), is zero.
(4) The distance measures in this paper are developed by considering each possible

element of a PLTS L̄(p) as a two-dimensional vector (i.e. L̄(k)(p̄(k)) = (g(L̄(k)), p̄(k)))
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and then extending the corresponding classical distance measures into the PLTS context.
Furthermore, it is worth noticing that the proposed distances take the hesitancy index of
a PLTS into consideration. Thus, the distances proposed in this paper overcome above
limitations and strengthen the distinguishing power.

3.3. A Ranking Approach for PLTSs

Based on the developed distance measures, this subsection introduces a TOPSIS based
ranking approach to comparing PLTSs.

Let L(p)+ = {sτ (1)} be a positive ideal PLTS and L(p)− = {s−τ (1)} be a negative
ideal PLTS. According to the TOPSIS method, the closer a PLTS L(p) = {L(k)(p(k))|k =
1, 2, . . . , #L(p)} is to L(p)+ and at the same time the farther L(p) to L(p)−, the better
the PLTS L(p). Thus, a closeness degree of the PLTS L(p) is defined as

T
(
L(p)

) = dM(L̄(p), L̄(p)−)

dM(L̄(p), L̄(p)+) + dM(L̄(p), L̄(p)−)
, (16)

where L̄(p), L̄(p)+ and L̄(p)− are the normalized ordered PLTSs corresponding to L(p),
L(p)+ and L(p)−, respectively. dM(L̄(p), L̄(p)+) and dM(L̄(p), L̄(p)−) are the Man-
hattan distances of L̄(p) from L̄(p)+ and L̄(p)−, respectively.

In virtue of the closeness degree, a ranking approach for PLTSs is introduced.

Definition 14. Let L1(p) and L2(p) be two PLTSs, where L1(p) = {L(k)
1 (p

(k)
1 )|k =

1, 2, . . . , #L1(p)} and L2(p) = {L(δ)
2 (p

(δ)
2 )|δ = 1, 2, . . . , #L2(p)}. Thus, it is stipulated

as

(i) If T (L1(p)) > T (L2(p)), then L1(p) is bigger than L2(p), denoted by L1(p) �
L2(p);

(ii) If T (L1(p)) = T (L2(p)), then L1(p) is indifferent to L2(p), denoted by L1(p) ∼
L2(p);

(iii) If T (L1(p)) < T (L2(p)), then L1(p) is smaller to L2(p), denoted by L1(p) <

L2(p).

4. Entropy and Cross Entropy of PLTSs

In order to judge the quality of decision information provided by DMs and the discrim-
inations between DMs in the sequel, this section develops some entropy measures and a
cross entropy measure.

4.1. Entropy measures of PLTSs

This subsection addresses the entropy of PLTSs and proposes some new entropy measures
of PLTSs. The main motivations are outlined as follows: (1) Measure the uncertainty of
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a PLTS neatly. Although Lin et al. (2019) defined an entropy measure of a PLTS, the
distinguishing power of this measure is not high and cannot neatly measure the uncertainty
of a PLTS. Therefore, it is necessary to develop some new entropy measures of a PLTS.
(2) Overcome the shortcomings of entropy measures proposed by Liu et al. (2018). As Liu
et al. (2018) stated that, the uncertainty of a PLTS includes the fuzziness and the hesitancy.
To measure such fuzziness and hesitancy, Liu et al. (2018) defined a fuzzy entropy measure
and a hesitancy entropy measure of a PLTS respectively. However, these entropy measures
have two shortcomings: one is that some properties of the fuzzy entropy measure are not
consistent with intuition. The other is that the computation of the hesitancy entropy is
time-consuming. To overcome these shortcomings, this subsection proposes a new fuzzy
entropy measure with desirable properties and a hesitancy entropy measure with simple
computation, respectively. Finally, the total entropy of a PLTS is defined by combining
the proposed fuzzy entropy and the hesitancy entropy.

4.1.1. The Fuzzy Entropy of PLTSs
Definition 15 (See Liu et al., 2018). Let S = {s0, . . . , sg/2, . . . , sg} be a linguistic term
set. Given a PLTS L(p) = {li (pi)|li ∈ S; i = 1, 2, . . . , #L(p)}, a fuzzy entropy of the
PLTS ĒF should satisfy the following properties:

(i) ĒF

(
s0(1)

) = ĒF

(
sg(1)

) = 0 further ĒF

(
s0(p), sg(1 − p)

) = 0;
(ii) ĒF

(
sg/2(1)

) = 1;
(iii) ĒF

(
L(p)(1)

)
� ĒF

(
L(p)(2)

)
if l

(1)
i � l

(2)
i � sg/2 or l

(1)
i � l

(2)
i � sg/2 and P (1) =

P (2), #L(P )(1) = #L(P )(2), i = 1, 2, . . . , #L(P )(1).
(iv) ĒF

(
L(p)

) = ĒF

(
L(p)(c)

)
.

According to Definition 15, some properties of the fuzzy entropy ĒF are not in accor-
dance with intuitions (please see Remark 4). Therefore, we define a new fuzzy entropy of
a PLTS with desirable properties as below.

Definition 16. Let S = {s−τ , . . . , s0, s1, . . . , sτ } be a linguistic term set. L̄(p), L̄1(p)

and L̄2(p) are normalized ordered PLTSs, where L̄(p) = {L̄(k)(p̄(k))|L̄(k) ∈ S, p̄(k) �
0, k = 1, 2, . . . , #L̄(p)} and L̄t (p) = {L̄(k)

t (p̄
(k)
t )|L̄(k)

t ∈ S, p̄
(k)
t � 0, t = 1, 2; k =

1, 2, . . . , #L̄(p), #L̄(p) = #L̄1(p) = #L̄2(p)}. We call EF a fuzzy entropy of the PLTS
if it satisfies the following properties:

(i) EF

(
L̄(p)

) = 0 ⇔ L̄(p) = {s−τ (1)
}

or L̄(p) = {sτ (1)
}
;

(ii) EF (L̄(p)) = 1 ⇔ e(L̄(p)) = 0.5, where e(L̄(p)) = ∑#L̄(p)

k=1 g(L̄(k))p̄(k) is the
expected function;

(iii) EF

(
L̄1(p)

)
� EF

(
L̄2(p)

)
if L̄1(p) and L̄2(p) satisfy e

(
L̄1(p)

)
� e
(
L̄2(p)

)
� 0.5

or e
(
L̄1(p)

)
� e
(
L̄2(p)

)
� 0.5;

(iv) EF

(
L̄(p)(c)

) = EF

(
L̄(p)

)
.

According to these properties, a general fuzzy entropy of PLTSs is defined below.
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Theorem 4. Suppose f : [0, 1] → [0, 1] is a strictly concave function and satisfies the
following conditions:

(i) f (t) = f (1 − t) for any t ∈ [0, 1];
(ii) f (1) = f (0) = 0;

(iii) f is monotone increasing in [0, 0.5] and monotone decreasing in [0.5, 1.0]. Then the
function

EF

(
L̄(p)

) = f
(
e
(
L̄(p)

))
(17)

is a fuzzy entropy of the PLTS L̄(p).

Proof. Please see Appendix B.

Remark 4. Compared with the fuzzy entropy ĒF , the proposed fuzzy entropy EF has
the following merits:

(1) The properties of the latter are more consistent with intuitions. Let’s compare the
property (i) of ĒF with that of EF . From (i) in Definition 15, we have ĒF (s0(p), sg(1 −
p)) = 0. Specially, p = 0.5, the equality ĒF (s0(0.5), sg(0.5)) = 0 means that
the fuzzy uncertainty of the PLTS L∗(P ) = {s0(0.5), sg(0.5)} is zero. However, in
real decision making, the decision information represented by L∗(P ) is very fuzzy be-
cause L∗(P ) indicates that the probability of DM dissatisfying an alternative totally
and that of DM satisfying an alternative completely are both 0.5. Therefore, the prop-
erty ĒF (s0(0.5), sg(0.5)) = 0 is counter-intuitive. However, according to the proposed
fuzzy entropy EF defined in Eq. (17), one gets ĒF (s0(p), sg(1 − p)) = f (p). This in-
dicates that the fuzzy entropy of L∗(P ) varies with p. Employing Theorem 4, we have
EF (s0(0.5), sg(0.5)) = f (0.5) = 1. At this point, the proposed entropy EF is more
consistent with intuition.

(2) The latter can be regarded as an extension of the former in some sense. It is worth
mentioning that a normalized PLTS can be considered as a type of discrete random vari-
ables. Therefore, the expectation value E(L̄(P )) represents the average level of L̄(P ).
Based on this idea, it is reasonable that the decision information described by L̄(P ) and
that of {sg/2(1)} in Definition 15 are equivalent if E(L̄(P )) = 0.5. Hence, the prop-
erty ĒF (sg/2(1)) = 1 in Definition 15 can be extended to the one EF (L̄(p)) = 1 ⇔
e(L̄(p)) = 0.5 in Definition 16. Likewise, the property (iii) in Definition 15 is also ex-
tended into the one (iii) in Definition 16.

According to Theorem 4, let f (t) = ln(1+t−t2)
ln 5−ln 4 . A fuzzy entropy of a PLTS is defined

as

EF

(
L̄(p)

) = ln(1 + e(L̄(p)) − (e(L̄(p)))2)

ln 5 − ln 4
. (18)

4.1.2. The Hesitancy Entropy of PLTSs
Hesitancy is an important feature of a PLTS. How to measure the hesitant uncertainty of a
PLTS is often ignored. To fill in this gap, this subsection defines a hesitancy entropy mea-
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sure of PLTSs by the deviations between the linguistic scale function values of possible
linguistic terms in a PLTS and their mean value.

Definition 17. Let S = {s−τ , . . . , s0, s1, . . . , sτ } be a linguistic term set. L̄(p), L̄1(p)

and L̄2(p) are normalized ordered PLTSs, where L̄(p) = {L(k)(p̄(k))|L(k) ∈ S, p̄(k) �
0, k = 1, 2, . . . , #L̄(p)} and L̄t (p) = {L(k)

t (p̄
(k)
t )|L(k)

t ∈ S, p̄
(k)
t � 0, t = 1, 2; k =

1, 2, . . . , #L̄(p), #L̄(p) = #L̄1(p) = #L̄2(p)}. We call EH a hesitancy entropy of a PLTS
if it satisfies the following properties:

(i) EH

(
L̄(p)

) = 0 ⇔ L̄(p) = {sα(1)|α = −τ, . . . , 0, 1, . . . , τ
}
;

(ii) EH

(
L̄(p)

) = 1 ⇔ L̄(p) = {s−τ (0.5), sτ (0.5)
}
;

(iii) EH

(
L̄1(p)

)→ 0 if L̄(p) = {L(1)(p), L(2)(1 − p)
}

and L(1) → L(2).
(iv) EH

(
L̄1(p)

)
� EH

(
L̄2(p)

)
if h
(
L̄1(p)

)
� h

(
L̄2(p)

)
for any i, j = 1, 2, . . . , #L̄(p).

(v) EH

((
L̄(p)

)(c)) = EH

(
L̄(p)

)
.

Theorem 5. Given a normalized ordered PLTS L̄(p). The hesitancy index

Eh

(
L̄(p)

) = h
(
L̄(p)

) =
{

2
∑#L̄(p)

i=1 |g(L(i)) − ḡ|pi #L̄(p) > 1,

0 #L̄(p) = 1,
(19)

is a hesitancy entropy, where ḡ = 1
#L̄(p)

∑#L̄(p)

i=1 g(L(i)).

Proof. Please see Appendix C.

Remark 5. Let S = {s0, . . . , sg/2, . . . , sg} be a linguistic term set. Given a PLTS
L(p) = {li (pi)|li ∈ S; i = 1, 2, . . . , #L(p)}, Liu et al. (2018) defined a hesitancy
entropy measure as follows:

Ēh

(
L̄(p)

) =
{∑#L̄(p)−1

i=1

∑#L̄(p)

j=i+1 4pipjf (γij ) #L̄(p) > 1,

0 #L̄(p) = 1,
(20)

where γij = |I (li )−I (lj )|
g

and I (li) is the subscript of the linguistic term li .

Compared Ēh with Eh, the difference between them is that the former measures the
deviations between different linguistic terms in a PLTS, while the latter measures the devi-
ations between all the transformation function values of possible linguistic terms and their
mean value. Although the expressions of Ēh and Eh are different, they have similar prop-
erties (please see Definition 5 in Liu et al. (2018). However, the computation of Eh needs
#L̄(P ) + 1 times, while Ēh needs #L̄(P )(#L̄(P ) − 1)/2 times. Thus, the computations
of Eh is more time-saving when #L̄(P ) � 4.

Combining the fuzzy entropy and hesitancy entropy with an adjusted coefficient θ , a
total entropy is determined as

ET

(
L̄(p)

) = θEF

(
L̄(p)

)+ (1 − θ)EH

(
L̄(p)

)
. (21)
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As 0 � EF (L̄(p)), EH (L̄(p)) � 1, one has 0 � ET (L̄(p)) � 1.
Furthermore, the total entropy of a probabilistic linguistic matrix is derived.

Definition 18. Let Ū = (L̄ij (p))m×n be a matrix with PLTSs. The total entropy of Ū is
defined as

ET (Ū) =
m∑

i=1

n∑
j=1

ET (
(
L̄ij (p)

)
. (22)

Remark 6. Lin et al. (2019) proposed an information entropy as

μ
(
L(p)

) = −
#L(p)∑
k=1

p(k) log2 p(k), (23)

where L(p) is a PLTS, #L(p) is the number of all different linguistic terms in L(p) and
p(k) is the probability of kth possible linguistic value of L(p).

It is obvious from Eq. (23) that this information entropy only considered the proba-
bilities of possible linguistic terms in a PLTS, but ignored all possible linguistic terms.
However, the total entropy presented in this paper takes them into consideration together.
Therefore, compared with μ(L(p)) in Eq. (23), the presented total entropy ET (L̄(p)) has
a stronger distinguishing power while measuring the uncertainty of a PLTS, which can be
verified by Example 2.

Example 2. Given two PLTSs L1(p) = {s−3(0.30), s0(0.25), s3(0.45)} and L2(p) =
{s1(0.30), s2(0.25), s3(0.45)}. Obviously, the uncertainty of L1(p) is larger than that of
L2(p). In fact, the total entropy is calculated as ET (L1(p)) = 0.552 > ET (L2(p)) =
0.398, which is in accordance with our intuition. However, by Eq. (23), it obtains that
μ(L1(p)) = μ(L2(p)) = 1.5395, by which the uncertainties of L1(p) and L2(p) are
considered the same. In other words, μ(L(p)) in Eq. (23) is unable to distinguish the
degrees of uncertainty of L1(p) and L2(p). Therefore, the total entropy proposed in this
paper has a stronger distinguishing power.

4.2. The Cross Entropy of PLTSs

In this subsection, to measure the discrimination degree between PLTSs, a cross entropy is
defined. Motivated by the cross entropy in the hesitant fuzzy linguistic environment (Gou
et al., 2017), the axiomatic definition of cross-entropy measure for PLTSs is given below.

Definition 19. Suppose S = {s−τ , . . . , s0, s1, . . . , sτ } is a linguistic term set. L̄1(p)

and L̄2(p) are two normalized ordered PLTSs with #L̄1(p) = #L̄2(p), where L̄t (p) =
{L̄(k)

t (p̄
(k)
t )|L̄(k)

t ∈ S, p̄
(k)
t � 0, t = 1, 2; k = 1, 2, . . . , #L̄1(p)}. Then the cross entropy

CE(L̄1(p), L̄2(p)) of L̄1(p) and L̄2(p) should satisfy the following conditions:
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(i) CE
(
L̄1(p), L̄2(p)

)
� 0;

(ii) CE(L̄1(p), L̄2(p)) = 0 if and only if e(L̄1(p)) = e(L̄2(p)).

Theorem 6. Given two normalized ordered PLTSs L̄1(p) and L̄2(p), the function

CE
(
L̄1(p), L̄2(p)

) = e
(
L̄1(p)

)
ln

2e(L̄1(p))

e(L̄1(p)) + e(L̄2(p))

+ (1 − e
(
L̄1(p)

))
ln

2(1 − e(L̄1(p)))

1 − e(L̄1(p)) + 1 − e(L̄2(p))
(24)

is a cross entropy.

Proof. Please see Appendix D.

It is observed from Eq. (24) that the cross entropy, CE(L̄1(p), L̄2(p)), is not symmet-
ric. A symmetric cross entropy between PLTSs can be obtained as

D
(
L̄1(p), L̄2(p)

) = CE
(
L̄1(p), L̄2(p)

)+ CE
(
L̄2(p), L̄1(p)

)
. (25)

Moreover, a symmetric cross entropy between two probabilistic linguistic matrices is
defined below.

Definition 20. Let Ū1 = (L̄1
ij (p))m×n and Ū2 = (L̄2

ij (p))m×n be two matrices with
PLTSs. The symmetrical cross entropy between Ū1 and Ū2 is defined as

D(Ū1, Ū2) =
m∑

i=1

n∑
j=1

D
(
L̄1

ij (p), L̄2
ij (p)

)
. (26)

5. A Novel Method for MAGDM with PLTSs

In this section, we first describe the problems of MAGDM with PLTSs, and then propose
a novel method for solving such problems.

5.1. Problem Description

Let A = {A1, A2, . . . , Am} be the set of m feasible alternatives, U = {u1, u2, . . . , un}
be the set of attributes whose weights are W = (w1, w2, . . . , wn)

T with
∑n

j=1 wj = 1,
and E = {e1, e2, . . . , et } be the set of DMs whose weights are λ = (λ1, λ2, . . . , λt )

T

satisfying
∑t

k=1 λk = 1. DM ek (k = 1, 2, . . . , t) provides his/her evaluations on
alternative Ai with respect to attribute uj is in the form of PLTS Lk

ij (p) (i = 1,
2, . . . , m; j = 1, 2, . . . , n; k = 1, 2, . . . , t) based on the linguistic term set S =
{sα|α = −τ, . . . ,−1, 0, 1, . . . , τ }. All evaluations construct the decision matrices U k =
(Lk

ij (p))m×n (k = 1, 2, . . . , t). Denote the normalized ordered decision matrices by
Ū k = (L̄k

ij (p))m×n (k = 1, 2, . . . , t).
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5.2. Determine DMs’ Weights Based on the Total Entropy and the Symmetric Cross
Entropy

In this subsection, an approach is developed to determine DMs’ weights objectively by
using the proposed total entropy and symmetric cross entropy of PLTSs. As we know, the
less uncertainty (i.e. a smaller total entropy) of an individual matrix provided by a DM, the
better the quality of decision information reflected by this matrix is. Thus, the bigger the
weight of this DM should be assigned. In virtue of this criterion, a programming model
for deriving DMs’ weights is built by minimizing the total entropy of decision matrices,
i.e.

(M − 1)

{
min F(λk

1) = 1
t

∑t
k=1 ET (Ū k)λ

k
1,

s.t.
∑t

k=1(λ
k
1)

2 = 1,
(27)

where ET (Ū k) are the total entropy of Ū k (k = 1, 2, . . . , t).
Solving Eq. (27) with Lagrange multiplier approach, it is obtained as

λ∗k
1 = ET (Ū k)√∑t

k=1(ET (Ū k))2
. (28)

Normalizing λ∗k
1 , one has

λk
1 = ET (Ū k)∑t

k=1 ET (Ū k)
(k = 1, 2, . . . , t). (29)

On the other hand, a closer degree of a DM to other DMs means that the information
supplied by this DM is much closer to that of the group. In this case, this DM should
be assigned a larger weight. From this viewpoint, another optimal model for determining
DMs’ weights is constructed based on the symmetric cross entropy as

(M − 2)

{
min F(λk

2) = 1
t−1

∑t
k=1
∑t

δ=1,δ �=k D(Ū k, Ū δ)λ
k
2,

s.t.
∑t

k=1(λ
k
2)

2 = 1.
(30)

Eq. (30) can also be solved with Lagrange multiplier approach, and the optimal solu-
tions are derived as

λ∗k
2 =

1
t−1

∑t
δ=1,δ �=k D(Ū k, Ū δ)√∑t

k=1(
1

t−1

∑t
δ=1,δ �=k D(Ū k, Ū δ))2

(k = 1, 2, . . . , t). (31)

Normalizing λ∗k
2 , one gets

λk
2 =

∑t
δ=1,δ �=k D(Ū k, Ū δ)∑t

k=1
∑t

δ=1,δ �=k D(Ū k, Ū δ)
(k = 1, 2, . . . , t). (32)
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Combining Eq. (29) and Eq. (32), the ultimate DMs’ weights λk are determined as

λk = βλk
1 + (1 − β)λk

2 (k = 1, 2, . . . , t), (33)

where β ∈ [0, 1] is a compromise coefficient.

5.3. Construct Bi-Objective Programs For Deriving Attribute Weights

In group decision making process, attribute weights play an important role because differ-
ent attribute weights may result in diverse ranking of alternatives. In this subsection, con-
sidering the information of attribute weights is completely unknown or partially known,
two bi-objective programs are constructed respectively for deriving attribute weights.

(i) Aggregating individual decision matrices into a collective one
By employing DMs’ weights determined in Section 5.2, individual decision matrices

are integrated into a collective one with the proposed PLWAM operator. Denote the col-
lective decision matrix by U = (Lij (p))m×n, where

Lij (p) = PLWAM
(
L1

ij (p), L2
ij (p), . . . , Ln

ij (p)
)
. (34)

Then, the normalized ordered collective decision matrix Ū = (L̄ij (p))m×n is obtained
from U = (Lij (p))m×n by Definition 4, where L̄ij (p) = {L̄(k)

ij (p̄
(k)
ij )|L̄(k)

ij ∈ S, p̄
(k)
ij �

0, k = 1, 2, . . . , #L̄ij (p)}.
(ii) Constructing bi-objective programs for deriving attribute weights
It is known to us that an attribute plays a more important role if the performance val-

ues of alternatives on it have distinct differences. Thus, such an attribute should be given a
bigger weight. Conversely, if the evaluation values of alternatives with respect to a certain
attribute have little difference, this attribute should be given a smaller weight. In addition,
the credibility of decision information on an attribute should also be taken into account
while determining attribute weights. The more credibility of evaluation values on an at-
tribute, the bigger weight of this attribute should be assessed. As mentioned before, the
symmetric cross entropy and the total entropy can reflect the differences between alter-
natives and the credibility of evaluation values, respectively. Keeping this idea in mind,
we can determine attribute weights by maximizing the symmetric cross entropy as well as
minimizing the total entropy. Thus, a bi-objective program is established if the information
of attribute weights is completely unknown, i.e.

(M − 3)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max F(w) =∑m
j=1 Fj (w)

=∑m
j=1(

∑n
i=1
∑n

r=1,r �=i D(L̄ij (p), L̄rj (p)))wj ,

min T (w) =∑m
j=1 Tj (w) =∑m

j=1(
∑n

i=1 ET (L̄ij (p))wj ),

s.t.
∑t

k=1(wj )
2 = 1.

(35)
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As 0 � ET (L̄ij (p)) � 1, Eq. (35) can be converted into the following single objective
program:

(M−4)

⎧⎪⎨
⎪⎩

max F(w) =∑m
j=1 Fj (w)

=∑m
j=1

∑n
i=1(

∑n
r=1,r �=i D(L̄ij (p), L̄rj (p)) + (1 − ET (L̄ij (p))))wj ,

s.t.
∑t

k=1(wj )
2 = 1.

(36)

Solving Eq. (36) with Lagrange multiplier approach, the weights of attributes are de-
rived as

w∗
j =

∑n
i=1(

∑n
r=1,r �=i D(L̄ij (p), L̄rj (p)) + (1 − ET (L̄ij (p))))√∑m

j=1(
∑n

i=1(
∑n

r=1,r �=i D(L̄ij (p), L̄rj (p))) + (1 − ET (L̄ij (p)))))2
(37)

(j = 1, 2, . . . , n).

The normalized weights wj are obtained by normalizing w∗
j , i.e.

wj =
∑n

i=1(
∑n

r=1,r �=i D(L̄ij (p), L̄rj (p)) + (1 − ET (L̄ij (p))))∑m
j=1(

∑n
i=1(

∑n
r=1,r �=i D(L̄ij (p), L̄rj (p)) + (1 − ET L̄ij (p))))

(j = 1, 2, . . . , n). (38)

Similarly, for the situations where the information of attribute weights is incomplete,
another programming model is obtained by modifying Eq. (36), i.e.

(M − 5)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max F(w) =∑m
j=1 Fj (w)

=∑m
j=1

∑n
i=1(

1
n−1

∑n
r=1,r �=i D(L̄ij (p), L̄rj (p))

+ (1 − ET (L̄ij (p))))wj ,

s.t. wj ∈ 
; ∑t
k=1(wj )

2 = 1,

(39)

where 
 represents the incomplete attribute weight information. Solving Eq. (39) with
Lingo software, the corresponding optimal solution vector w∗ = (w∗

1, w∗
2, . . . , w∗

2)T is
generated and then normalized as the attribute weight vector w = (w1, w2, . . . , wn)

T.

5.4. Ranking Alternatives by an Improved PL-PROMETHEE Method

The PROMETHEE method is a popular outranking method in decision making. It has been
extended to different fuzzy environments, such as intuitionistic fuzzy sets (Krishankumar
et al., 2017) and linguistic variables Halouani et al. (2009). In the PLTS environment, al-
though Xu et al. (2019) proposed a PL-PROMETHEE method, the distinguishing power
of PL-PROMETHEE is not high, which can be verified by Example 3 in the sequel. To
improve the distinguishing power, this subsection constructs new probabilistic linguis-
tic preference relations, the integrated preference index and positive/negative outranking
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flows to adapt the main framework of PROMETHEE in the PLTS context. Thus, an im-
proved PL-PROMETHEE method is proposed to solve MAGDM problems with PLTSs.

(i) The probabilistic linguistic preference function
Suppose that Ai and Ar are two alternatives in the alternative set. L̄ij (p) and L̄rj (p)

are respectively normalized ordered attribute values of Ai and Ar with respect to at-
tribute uj . Preference function P

j
X(Ai, Ar) of L̄ij (p) with respect to L̄rj (p) is defined

as

P
j
X(Ai, Ar) = Ljir (p) =

⋃
k1=1,2,...,#L̄ij (p)

k2=1,2,...,#L̄rj (p)

{
P
(
L

(k1)
ij , L

(k2)
rj

)}
(i �= r), (40)

where

P
(
L

(k1)
ij , L

(k2)
rj

) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s−τ (p̄
(k1)
ij p̄

(k2)
rj ) if g(L̄

(k1)
ij )p̄

(k1)
ij − g(L̄

(k2)
rj )p̄

(k2)
rj � q,

g−1(
g(L̄

(k1)

ij )p̄
(k1)

ij −g(L̄
(k2)

rj )p̄
(k2)

rj

p
)(p̄

(k1)
ij p̄

(k2)
rj )

if q < g(L̄
(k1)
ij )p̄

(k1)
ij − g(L̄

(k2)
rj )p̄

(k2)
rj � p,

sτ (p̄
(k1)
ij p̄

(k2)
rj ) if g(L̄

(k1)
ij )p̄

(k1)
ij − g(L̄

(k2)
rj )p̄

(k2)
rj > p.

(41)

In Eq. (41), parameters p(� 0) and q(� 0) are the indifference threshold and the strict
preference threshold, respectively. Functions g(x) and g−1(x) are defined in Definition 2.

Obviously, the preference function P
j
X(Ai, Ar) constructed by Eqs. (40) and (41) is a

PLTS.
(ii) The integrated preference index
According to the probabilistic linguistic preference index P

j
X(Ai, Ar), an integrated

preference index is defined as

πX(Ai, Ar) =
n∑

j=1

wjT
(
P

j
X(Ai, Ar)

)
, (42)

where T (Pj (Ai, Ar)) is the closeness degrees of P
j
X(Ai, Ar) and computed by Eq. (16).

(iii) The positive and negative outranking flows
Employing the integrated preference indices, the positive/negative outranking flows,

φ+(Ai) and φ−(Ai), are defined as follows.

φ+(Ai) = 1

m − 1

m∑
r=1,r �=i

πX(Ai, Ar). (43)

φ−(Ai) = 1

m − 1

m∑
r=1,r �=i

πX(Ar,Ai). (44)

(iv) Ranking alternatives.
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In virtue of Eqs. (43) and (44), the net flow of alternative Ai is calculated as

φ(Ai) = φ+(Ai) − φ−(Ai). (45)

Finally, alternatives are ranked by the descending order of net flows.

Remark 7. In PL-PROMETHEE method (Xu et al., 2019), the preference function and
the total preference index are defined respectively as

Pj (Ai, Ar) =
{

0, p(Ai,j > Ar,j ) � 0.5,

1, p(Ai,j > Ar,j ) > 0.5
(46)

and

π(Ai,Ar) =
m∑

j=1

Pj (Ai, Ar)wj , (47)

where P(Ai,j > Ar,j ) is the probability of Ai preferred to Ar with respect to uj .
Obviously, the value of the preference function Pj (Ai, Ar) in Eq. (46) only takes 0 or

1, which may result in the loss of decision information. However, the preference function
P

j
X(Ai, Ar) in Eq. (40) is described by the PLTS which is more flexible than the crisp num-

ber for representing decision information. Therefore, compared with PL-PROMETHEE,
the distinguishing power of the improved PL-PROMETHEE is stronger and the sensitiv-
ity to the ratings of alternatives on attributes is increased. To illustrate this advantage,
Example 3 is given below.

Example 3. For convenience, we only consider one of attributes in a real prob-
lem. Suppose that the ratings of three alternatives on this attribute are L1(p) =
{s2(0.35), s3(0.25), s4(0.40)}, L2(p) = {s−3(0.70), s−2(0.30)} and L3(p) = {s1(0.40),

s2(0.25), s4(0.35)}, respectively. Intuitively, the relation L1(p) � L3(p) � L2(p) holds,
where the symbol “�” means “preferred to”. Hence, it is deduced that the degree of
L1(p) preferred to L2(p) should be more than that of L1(p) preferred to L3(p). In fact,
take q = 0 and p = 0.5 in the proposed preference function (i.e. Eq (41)), the prefer-
ence values are calculated as P 1

X(A1, A2) = {s−1.9(0.175), s−1.7(0.075), s−1.2(0.245),

s−1(0.105), s1(0.280), s1.2(0.120)} and P 1
X(A1, A3) = {s−4(0.31), s−3.8(0.140),

s−3.5(0.063), s−3.2(0.14), s−2.8(0.088), s−1.6(0.160), s−0.6(0.100)}. The preference in-
dex is calculated as πX(A1, A2) = 0.455 > πX(A1, A3) = 0.306. This result is in
line with human intuition. However, using the preference function and preference in-
dex in method (Xu et al., 2019) (i.e. Eqs. (46) and (47)), one obtains P1(A1, A2) =
P1(A1, A3) = 1 and π12 = π13 = 1, which are not consistent with the above anal-
ysis. In other words, method (Xu et al., 2019) has no ability to distinguish alternatives
A2 and A3. Therefore, the improved PL-PROMETHEE method has a stronger distin-
guishing power than the method (Xu et al., 2019). Furthermore, the sensitivity of the im-
proved PL-PROMETHEE method is strong, too. For example, when L2(p) is increased
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to L′
2(p) = {s2(0.80), s3(0.20)} while L1(p) and L3(p) remain unchanged, the corre-

sponding preference index πX(A1, A2) decreases to 0.271 from 0.455, whereas π12 is not
changed.

5.5. A Novel Method for MAGDM with Probabilistic Linguistic Information

A novel method is generated for MAGDM problems with PLTSs. The main procedure of
this method is outlined below.

Step 1. Each DM establishes his/her individual probabilistic linguistic matrices U k =
(Lk

ij (p))m×n (k = 1, 2, . . . , t). Further, matrices U k are transformed into corresponding
normalized ordered matrices Ū k = (L̄k

ij (p))m×n (k = 1, 2, . . . , t) by Definitions 4-6.

Step 2. Calculate the total entropy ET (Ū k) (k = 1, 2, . . . , t) and the symmetric cross
entropy D(Ū k, Ū δ) (k, δ = 1, 2, . . . , t; k �= δ) by Eqs. (18), (19), (21), (24) and (25).

Step 3. Determine the weight vector of DMs λ = (λ1, λ2, . . . , λt )
T by Eqs. (29), (32) and

(33).

Step 4. Aggregate all matrices Ū k = (Lk
ij (p))m×n (k = 1, 2, . . . , t) into a collective one

U = (Lij (p))m×n by the PLWAM operator (Eq. (4)), and then transform matrix U into a
normalized ordered matrix Ū = (L̄ij (p))m×n.

Step 5. Calculate the entropy ET (L̄ij (p)) (i = 1, 2, . . . , m; j = 1, 2, . . . , n) and the
symmetric cross entropy D(L̄ij (p), L̄rj (p)) (i, r = 1, 2, . . . , m; r �= i; j = 1, 2, . . . , n)
by Eqs. (18), (19), (21), (24) and (25).

Step 6. Determine the weight vector of attributes w = (w1, w2, . . . , wn)
T by Eq. (38) or

(39).

Step 7. Compute the preference function values P
j
X(Ai, Ar) (i, r = 1, 2, . . . , m; r �= i;

j = 1, 2, . . . , n) by Eqs. (40) and (41).

Step 8. Obtain the total preference index matrix π = (πX(Ai, Ar))m×m by Eq. (42).

Step 9. Calculate the positive and negative flows φ+(Ai) and φ−(Ai) (i = 1, 2, . . . , m)
based on Eqs. (43) and (44).

Step 10. Determine net flows φ(Ai) (i = 1, 2, . . . , m) by Eq. (45). Alternatives are ranked
based on the descending orders of φ(Ai) (i = 1, 2, . . . , m).

6. A Case Study

In this section, an example of a car sharing platform selection is provided to illustrate the
application of the proposed method. Furthermore, the comparative analyses are performed
to show the merits of the proposed method.
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Table 3
Linguistic variables corresponding to linguistic terms.

Linguistic variables Linguistic terms Linguistic variables Linguistic terms

Very bad s−4 Slightly good s1
Bad s−3 A little good s2
A little bad s−2 Good s3
Slightly bad s−1 Very good s4
Medium s0

Table 4
Probabilistic linguistic decision matrices U1, U2 and U3.

u1 u2 u3 u4

d1 A1 {s−2(0.4), s1(0.5)} {s2(0.6), s4(0.4)} {s0(1)} {s−2(0.4), s−1(0.6)}
A2 {s4(1)} {s2(0.4), s4(0.5)} {s0(0.3), s1(0.3), s2(0.4)} {s2(0.3), s3(0.7)}
A3 {s1(0.3), s2(0.7)} {s1(0.4), s2(0.3), s3(0.3)} {s2(1)} {s−1(0.8), s1(0.2)}
A4 {s−1(1)} {s1(0.6), s2(0.4)} {s0(0.5), s2(0.5)} {s3(1)}

d2 A1 {s−1(0.3), s1(0.7)} {s2(0.4), s3(0.2), s4(0.4)} {s0(0.7), s1(0.3)} {s−1(1)}
A2 {s3(0.4), s4(0.5)} {s3(1)} {s3(0.5), s4(0.5)} {s0(0.4), s2(0.6)}
A3 {s0(0.7), s1(0.3)} {s1(0.6), s2(0.3)} {s1(0.3), s2(0.7)} {s−1(1)}
A4 {s−2(1)} {s1(0.5), s2(0.4)} {s−1(1)} {s1(0.1), s2(0.2), s3(0.7)}

d3 A1 {s0(0.4), s1(0.6)} {s3(0.6), s4(0.4)} {s−1(0.2), s0(0.8)} {s−1(1)}
A2 {s3(0.4), s4(0.6)} {s1(0.3), s2(0.7)} {s3(0.6), s4(0.4)} {s2(1)}
A3 {s0(0.6), s1(0.4)} {s1(1)} {s−1(0.2), s2(0.8)} {s−1(0.7), s1(0.3)}
A4 {s−4(0.4), s−2(0.4)} {s1(0.5), s2(0.5)} {s−1(0.8), s0(0.2)} {s2(1)}

6.1. Car Sharing Platform Selection

With the rapid development of internet technology and the deep advocation of green travel,
the car sharing has sprung up over the last three years. Up to now, several car sharing plat-
forms have emerged in China, such as Evcard, Gofun, Togo and so on. The popularization
of car sharing greatly facilitates peoples’ travel and relieves the traffic pressure.

As a famous tourist city in China, Guilin cannot satisfy the travel of tourists due to the
limited operational capacity of public transportation. So it is necessary for the government
to introduce a car sharing platform to resolve the traffic problem. Now, the government
invites three DMs to select the best car sharing platform from four candidate platforms
(alternatives), including Evcard, Gofun, Togo and Greengo. Four attributes are consid-
ered, including safety (u1), convenience (u2), service (u3) and car brand (u4). Suppose a
linguistic term set S = {s−4, s−3, s−2, s−1, s0, s1, s2, s3, s4} is provided in Table 3. Three
invited DMs, d1, d2 and d3, utilize PLTSs to evaluate four alternatives with respect to four
attributes, and construct three probabilistic linguistic decision matrices U1, U2 and U3.

Step 1. Each DM establishes decision matrices U1, U2 and U3 as shown in Table 4, and
the corresponding normalized ordered matrices Ū1, Ū2 and Ū3 are listed in Table 5.

Step 2. Calculate the total entropy and the symmetric cross entropy.
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Table 5
Normalized ordered decision matrices Ū1, Ū2 and Ū3.

u1 u2 u3 u4

d1 A1 {s−2(4/9), s−2(0), s1(5/9)} {s2(0), s2(0.6), s4(0.4)} {s0(0), s0(0), s0(1)} {s−2(0.4), s−1(0.6), s−2(0)}
A2 {s4(0), s4(0), s4(1)} {s2(0), s2(4/9), s4(5/9)} {s0(0.3), s1(0.3), s2(0.4)} {s2(0), s2(0.3), s3(0.7)}
A3 {s1(0), s1(0.3), s2(0.7)} {s1(0.4), s2(0.3), s3(0.3)} {s2(0), s2(0), s2(1)} {s−1(0.8), s−1(0), s1(0.2)}
A4 {s−1(1), s−1(0), s−1(0)} {s1(0), s1(0.6), s2(0.4)} {s0(0), s0(0.5), s2(0.5)} {s3(0), s3(0), s3(1)}

d2 A1 {s−1(0.3), s−1(0), s1(0.7)} {s3(0.2), s2(0.4), s4(0.4)} {s0(0), s0(0.7), s1(0.3)} {s−1(1), s−1(0), s−1(0)}
A2 {s3(0.), s3(4/9), s4(5/9)} {s3(0), s3(0), s3(1)} {s3(0), s3(0.5), s4(0.5)} {s0(0), s0(0.4), s2(0.6)}
A3 {s0(0), s0(0.7), s1(0.3)} {s1(0), s1(6/9), s2(3/9)} {s1(0), s1(0.3), s2(0.7)} {s−1(1), s−1(0), s−1(0)}
A4 {s−2(1), s−2(0), s−2(0)} {s1(0), s1(5/9), s2(4/9)} {s−1(1), s−1(0), s−1(0)} {s1(0.1), s2(0.2), s3(0.7)}

d3 A1 {s0(0), s0(0.4), s1(0.6)} {s3(0), s3(0.6), s4(0.4)} {s−1(0.2), s−1(0), s0(0.8)} {s−1(1), s−1(0), s−1(0)}
A2 {s3(0), s3(0.4), s4(0.6)} {s1(0), s1(0.3), s2(0.7)} {s3(0), s4(0.4), s3(0.6)} {s0(0), s0(0.1), s1(0.9)}
A3 {s0(0), s0(0.6), s1(0.4)} {s1(0), s1(0), s1(1)} {s−1(0.2), s−1(0), s2(0.8)} {s−1(0.7), s−1(0), s1(0.3)}
A4 {s−4(0.5), s−2(0.5), s−4(0)} {s1(0), s1(0.5), s2(0.5)} {s−1(0.8), s−1(0), s0(0.2)} {s2(0), s2(0), s2(1)}

Table 6
The symmetric cross entropies between Ū1, Ū2 and Ū3.

Ū i Ū j D(Ūk , Ū δ) Ū1 Ū2 Ū3

Ū1 – 0.2804 0.3965
Ū2 0.2804 – 0.084
Ū3 0.3965 0.084 –

By Eqs. (18), (19), (21) and (22), the total entropies of matrices Ū1, Ū2 and Ū3 are
respectively calculated as ET (Ū1) = 7.4022, ET (Ū2) = 7.4223, ET (Ū2) = 7.7322.
Employing Eqs. (24)–(26), the symmetric cross entropies are obtained and represented in
Table 6.

Step 3. Determine the weight vector of DMs.
Suppose β = 0.15, and the weight vector of DMs is derived by Eqs. (29), (32) and

(33) as λ = (0.4273, 0.2529, 0.3198)T.

Step 4. Aggregate individual decision matrices into a collective one.
By employing the PLWAM operator (see Eq. (4)), individual normalized ordered ma-

trices Ū k (k = 1, 2, 3) are aggregated into a collective one U = (Lij (p))m×n, which is
converted into an normalized ordered matrix Ū = (L̄ij (p))m×n, please see Table 7.

Steps 5. Calculate the total entropy and symmetric cross entropy of alternatives.
Take θ = 0.5, and the total entropy matrix E = ET (L̄ij (p)) is obtained by Eqs. (18),

(19) and (21) as

E =

⎛
⎜⎜⎝

0.5878 0.4990 0.5225 0.5084
0.4170 0.5538 0.5246 0.5386
0.5311 0.5343 0.5369 0.5561
0.4780 0.5154 0.5717 0.4783

⎞
⎟⎟⎠ .

Employing Eqs. (24) and (25), the symmetric cross entropy matrix, denoted by D =
(Dij )4×4, where Dij =∑4

r=1,r �=i D(L̄ij (p), L̄rj (p)) (j = 1, 2, 3, 4), is derived as
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Table 7
Collective normalized ordered matrix Ū .

u1 u2 u3 u4

d1 A1 {s−1.03(0.05), s−0.59(0.08),

s−0.42(0.12), s−0.03(0.19),

s0.26(0.07), s0.58(0.10),

s0.71(0.16), s1(0.23)}

{s2.40(0.14), s2.66(0.07),

s4(0.78)}
{s−0.30(0.14), s0(0.56),

s0.01(0.06), s0.28(0.24)}
{s−1.40(0.4), s−1(0.6)}

A2 {s4(1)} {s2.10(0.13), s2.32(0.31),

s4(0.56)}
{s2.19(0.09), s2.41(0.09),

s2.66(0.12), s4(0.7)}
{s1.02(0.01), s1.29(0.11),

s1.50(0.00), s1.72(0.16),

s1.78(0.03), s1.98(0.25),

s2.14(0.04), s2.31(0.38)}
A3 {s0.46(0.13), s0.71(0.05),

s0.77(0.08), s1(0.04),

s1.02(0.29), s1.23(0.13),

s1.29(0.20), s1.48(0.08)}

{s1(0.27), s1.29(1.33),

s1.47(0.20), s1.72(0.10),

s2.10(0.20), s2.30(0.10)}

{s1.03(0.06), s1.32(0.14),

s1.78(0.24), s2.00(0.56)}
{s−1(0.56), s−0.25(0.24),

s−0.02(0.14), s0.59(0.06)}

A4 {s−2.1(0.5), s−1.56(0.5)} {s1(0.17), s1.30(0.13),

s1.37(0.17), s1.47(0.11),

s1.63(0.13), s1.72(0.09),

s1.78(0.11), s2.00(0.09)}

{s−0.55(0.40), s−0.23(0.10),

s0.61(0.40), s0.85(0.10)}
{s2.35(0.1), s2.51(0.2),

s2.75(0.7)}

D =

⎛
⎜⎜⎝

0.3386 1.1016 0.2956 0.5730
1.1016 0.1767 0.4484 0.2310
0.2956 0.4484 0.1779 0.2662
0.5730 0.2310 0.2662 0.4789

⎞
⎟⎟⎠ .

Step 6. Determine the weight vector of attributes.
The weight vector of attributes is determined by Eq. (38) as

w = (0.2932, 0.2632, 0.2070, 0.2367)T.

Step 7. Compute the preference function values.
Using Eqs. (40) and (41), preference function values are computed. In view of limited

space, the concrete preference function values are not listed.
Step 8. Obtain the integrated preference index.

By Eq. (42), the total preference index matrix is derived as

π =

⎛
⎜⎜⎝

− 0.2232 0.5000 0.2239
0.4323 − 0.4422 0.4234
0.1541 0.1533 − 0.1472
0.1441 0.2218 0.2001 −

⎞
⎟⎟⎠ .

Step 9. Calculate positive and negative flows of alternatives.
In virtue of Eqs. (43) and (44), positive and negative flows of alternatives are respec-

tively calculated as

φ+(A1) = 0.3157, φ+(A2) = 0.4326, φ+(A3) = 0.1515, φ+(A4) = 0.1887.

φ−(A1) = 0.2435, φ−(A2) = 0.1994, φ−(A3) = 0.3808, φ−(A4) = 0.2648.

Step 10. Rank alternatives.
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Net flows of alternatives are obtained by Eq. (45) as

φ(A1) = 0.0722, φ(A2) = 0.2332, φ(A3) = −0.2292, φ(A4) = −0.0762.

As φ(A2) > φ(A1) > φ(A4) > φ(A3), alternatives are ranked as A2 � A1 � A4 �
A3. Therefore, the alternative A2 (Gofun platform) is the best one.

6.2. Comparative Analyses

To show the advantages of the proposed method, comparative analyses with Mao’s method
(Mao et al., 2019), PL-PROMETHEE method (Xu et al., 2019) and other existing decision
methods are performed in the sequel.

6.2.1. Comparison with Mao’s method
Mao et al. (2019) presented a new method integrating ELECTRE and TOPSIS to solve
MAGDM problems with PLTSs. Now we use Mao’s method (Mao et al., 2019) to solve the
above problem. Set γ = 1 and λ = 1. DMs’ subjective weight vector is assigned as λ1 =
(0.04, 0.88, 0.08)T. Thus, the corresponding ordering results are derived as A1 � A2 �
A4 � A3. Clearly, these results are not consistent with those obtained by the proposed
method, which can be explained as follows:

(1) The proposed method determines DMs’ weights objectively by the total entropy
and cross entropy of decision information. However, method (Mao et al., 2019) assigned
DMs’ weights subjectively, by which the random cannot be avoided. Although an ad-
justed coefficient obtained from the consistency degree between DMs is used to adjust
the subjective weights of DMs, the adjusted DMs’ weights may be irrational because the
consistency degree ρir indicating the consistency between DM di and dr (i.e. Eq. (40) in
method Mao et al., 2019) does not satisfy the symmetry. For example, the consistency
degree ρ12 = 0.5125, while ρ21 = 0.4799, So ρ21 �= ρ12. In fact, the consistency de-
gree should be symmetrical theoretically. Hence, DMs’ weights derived by the proposed
method are more reasonable.

(2) The aggregated value obtained by the proposed PLWAM operator is more
convincing than that obtained by GPLHWAw operator in Mao et al. (2019). The
former is a PLTS based on Theorem 1. Conversely, the latter cannot always sat-
isfy this property. For example, while solving example in Section 6.1, L11(p) =
GPLHWAw(L̄1

11(p), L̄2
11(p), L̄3

11(p)) = {g−1(0.6937)(0.442), g−1(0.7449)(0.3),

g−1(1)(0.7691), g−1(0.7521)(0.3750), g−1(0.2191)}. Clearly, one has 0.442 + 0.3 +
0.7691 + 0.7521 + 0.2191 = 2.375 > 1. Hence, the latter sometimes is not a PLTS in a
strict sense. Thus, the result derived by the proposed method is more convincing.

6.2.2. Compared with the PL-PROMETHEE Method
The PL-PROMETHEE method (Xu et al., 2019) is applied to solve the problem in Sec-
tion 6.1. Suppose attribute weight vector as w = (0.3, 0.2, 0.3, 0.2)T. The Borda’s scores
of alternatives for each DM are shown as Table 8.
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Table 8
The Borda’s scores of alternatives for each alternatives.

d1 d2 d3 Borda’s scores

A1 1 4 3 8
A2 4 2 1 7
A3 3 3 2 8
A4 2 1 4 7

It finds from Table 8 that the ranking result is A1 ∼ A3 � A2 ∼ A4, which is different
from the one derived by the proposed method, i.e, A2 � A1 � A4 � A3. The primary
reasons may result from the following two aspects.

(1) PL-PROMETHEE method ignored the determination of attribute weights and
DMs’ weights, but assigned them subjectively. Thus, the arbitrariness cannot be avoided.
By contrast, the proposed method derives attribute weights and DMs’ weights objectively
based on the total entropy and symmetric cross entropy of decision information. There-
fore, the subjectivity is effectively reduced and the decision results are more credible.

(2) In the preference function of PL-PROMETHEE method (Xu et al., 2019), the pref-
erence value is taken as 1 if the probability of one alternative preferred to the other with
respect to an attribute is bigger than 0.5. Otherwise, the preference value is taken as 0.
Therefore, the distinguishing power of this preference function is not STRONG enough,
which may be the reason why alternatives A1 and A3 cannot be discriminated. However,
in the proposed method, the preference function is neatly defined based on the deviations
of attribute values and described by PLTSs, please see Eqs. (40) and (41). Hence, the
proposed method has a stronger distinguishing power.

6.2.3. Compared with Other Existing Decision Making Methods
To further demonstrate the superiority of the proposed method, this subsection conducts a
theoretical analysis and a practical analysis with other existing methods (Pang et al., 2016;
Gou et al., 2017; Liu and Li, 2018; Mao et al., 2019; Liu and Li, 2019; Peng et al., 2020).

(1) Theoretical analysis
(i) The proposed method introduces two new probabilistic linguistic weighted average

operators (i.e. PLWAM operator and PLWAG operator). Compared with existing operators
mentioned in Pang et al. (2016) and Gou et al. (2017), the proposed operators have some
advantages, such as the closure of operations and operation values being consistent with
intuition (please see Remark 2). Therefore, the aggregated information obtained by the
proposed operators is more reliable, and thus the decision results based on such aggregated
information are more reasonable.

(ii) In the proposed method, two cases including the attribute weights with unknown
or partially known values are both taken into account. To determine attribute weights, the
proposed method builds two different bi-objective programming models by maximizing
the cross entropy and minimizing the total entropy of the collective evaluation values. As
analysed in Section 5.3, this model considers the quality of the collective evaluations and
the deviations between evaluations. However, in the extended MULTIMOORA method
(Liu and Li, 2019), the attribute weights were given in advance, which may be not able to
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avoid the subjective arbitrariness in decision process. Although the TOPSIS method (Pang
et al., 2016) derived attribute weights objectively by the maximum deviation approach,
it ignored the quality of decision information. Thus, the creditability of attribute weights
derived by the proposed method is higher.

(iii) Although method (Peng et al., 2020) and the proposed method can solve decision
making problems with PLTSs, the former failed to handle group decision making prob-
lems while the latter can manage both single decision making problems and the group
ones. Thereby, the latter has wider application fields.

(2) Practical analysis
The distinguishing power of the proposed method is stronger than that of method (Xu

et al., 2019), which can be verified by Section 6.2. This is largely due to the fact that the
preference functions of the improved PL-PROMETHEE approach proposed in this paper
are in the form of PLTSs and can distinguish alternatives neatly, whereas the preference
functions defined in method (Xu et al., 2019) and the other PL-PROMETHEE approach
(Liu and Li, 2018) are all crisp numbers.

(2) The stableness of the proposed method is better than method (Liu and Li, 2019).
The former determines DMs’ weights and attribute weights by building objective pro-
gramming model. Thereby, the decision result is unique under the given decision informa-
tion. In contrast, the latter assigned DMs’ weights or attribute weights in advance. Hence,
the change of such weights may result in different decision results.

(3) Method Gou et al. (2017) is suitable for the environment of hesitant fuzzy linguistic
variables. Nevertheless, it cannot handle MAGDM problems with PLTSs which can be
solved by the proposed method.

7. Conclusions

In today’s internet age, car sharing is more and more popular. The car sharing platform se-
lection is important for tourists, which can be regarded as a MAGDM problem. The PLTS
is a powerful tool to represent the evaluation information of DMs in complex MAGDM
problems. This paper introduces PLWAM and PLWGM operators firstly and studies some
desirable properties of them. Subsequently, a hesitancy index of a PLTS and a general
distance measure between PLTSs are defined. Then, a new approach is proposed to rank
PLTSs. To measure the fuzziness and hesitancy of a PLTS, a fuzzy entropy and a hesitancy
entropy of PLTSs are presented. Afterwards, a total entropy of PLTSs is defined to mea-
sure the uncertainty of a PLTS. Meanwhile, a cross entropy between PLTSs is presented.
Based on the total entropy and the cross entropy of PLTSs, DMs’ weights and attribute
weights are determined objectively. Finally, an improved PL-PROMETHEE method is de-
veloped by defining new preference functions and a total preference index. A car sharing
platform selection is operated at length to illustrate the applications and advantages of the
proposed method.

Apart from solving the selection of car sharing platform, the proposed method can
be applied into many decision making fields, such as financial management (Kou 2019a,
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2019b) and supplier selection. This paper ignores the risk attitudes of DMs which may
play an important role in some finance decision problems. Future study will investigate
MAGDM problems with PLTSs considering DMs’ risk attitudes.

A. Appendix

Theorem 1 can be proved by mathematical induction on n as follows:
For n = 1, Theorem 1 obviously holds based on (ii) in Definition 9.
Suppose Theorem 1 holds for n = q, which means that:

PLWAX

(
L1(p), L2(p), . . . , Lq(p)

)
= g−1

( ⋃
kj =1,2,...,#Lj (p)

j=1,2,...,q

{(
1 −

n∏
j=1

(
1 − g

(
L

(kj )

j

))ωj

)(
p

(k1)
1 p

(k2)
2 . . . p

(kq )
n

)})
.

(A.1)

Furthermore, one gets∑
kj =1,2,...#Lj (p)

j=1,2,...n

p
(k1)
1 p

(k2)
2 . . . p(kn)

n = 1. (A.2)

When n = q + 1, one has

PLWAX

(
L1(p), L2(p), . . . , Lq(p), Lq+1(p)

)
= (ω1L1(p) ⊕ ω2L2(p) ⊕ . . . ⊕ ωqLq(p)

)⊕ ωq+1Lq+1(p). (A.3)

According to Eq. (A.1) and the operational laws (i.e. (i) and (ii)) in Definition 9, it
generates

PLWAX
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× (1 − (1 − g
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Thus, Eq. (4) holds for n = q + 1. Therefore, Eq. (5) holds for all n.
On the other hand, consider∑

kj =1,2,...#Lj (p)

j=1,2,...q,q+1

p
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1 p
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2 . . . p
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q p
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As p
(1)
q+1 + p

(2)
q+1 + · · · + p

(#Lq+1(p)

q+1 = 1, according to Eq. (A.2), one has

∑
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p
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1 p
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q p
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p
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1 p
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2 . . . p

(kq)
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Thus, Eq. (5) holds for n = q + 1. Hence, Eq. (6) holds for all n.

B. Appendix

In order to prove that EF (L̄(p)) is a fuzzy entropy, it is necessary only to prove that
EF (L̄(p)) satisfies the properties in Definition 15.

By the conditions (ii) and (iii) in Theorem 3, the properties (i), (ii) and (iii) obviously
hold.

Next, we only prove the property (iv).
As (L̄(p))(c) = g−1(

⋃
k=1,2,...,#L(p){(1 − g(L̄(k)))(p(k))}), it can be easily deduced

that e((L̄(p))(c)) = 1 − e((L̄(p))) Therefore, one obtains

EF

((
L̄(p)

)(c)) = f
(
e
((

L̄(p)
)(c))) = f

(
1 − e

(
L̄(p)

))
. (B.1)

Since 0 � e(L̄(p) � 1 and f (1 − t) = f (t), one has f (1 − e(L̄(p))) = f (e(L̄(p))).
Hence, in virtue of Eq. (B.1), one gets EF ((L̄(p))(c)) = EF (L̄(p)).

The proof is completed.

C. Appendix

In order to prove that h(L̄(p)) is a hesitancy entropy of L̄(p), it is necessary to prove that
h(L̄(p)) satisfies three properties in Definition 16.
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(i) The sufficiency obviously holds.
Next, we prove the necessity.
When h(L̄(p)) = 0, suppose #L̄(p) > 1. In virtue of Eq. (9), we have

∣∣g(L(k)
)− ḡ

∣∣ = 0 for any k = 1, 2, . . . , #L̄(p). (C.1)

Therefore, one has g(L(k)) = ḡ (k = 1, 2, . . . , #L̄(p)) and then #L̄(p) = 1, which
is contrary with the condition #L̄(p) > 1. Thus, we obtain #L̄(p) = 1. Therefore, it
concludes that L̄(p) = {sα(1)}.

(ii) When L̄(p) = {s−τ (0.5), sτ (0.5)}, from Eq. (9), it is clear that h(L̄(p)) = 1.
Furthermore, when h(L̄(p)) = 1, we derive that 2

∑#L̄(p)

k=1 |g(L(k)) − ḡ|pi = 1. As 0 �
p(k), |g(L(k)) − ḡ| � 1. Hence, we get p(k) = p(δ) = 0.5, L(k) = s−τ and L(δ) = sτ .
Therefore, L̄(p) = {s−τ (0.5), sτ (0.5)}.

(iii) Suppose L̄(p) = {L(1)(p), L(2)(1 − p)}, then one obtains ḡ = (g(L(1)) +
g(L(2)))/2. For convenience, let g(L(1)) > g(L(2)), we have 2

∑#L̄(p)

k=1 |g(L(k))− ḡ|pi =
|g(L(1)) − g(L(2))|. When L(1) → L(2), one gets |g(L(1)) − g(L(2))| → 0. Therefore, it
generates EH (L̄1(p)) → 0.

(iv) This is obviously true.
(v) Since (L(p))(c) = g−1(

⋃
k=1,2,...,#L(p){(1 − g(L(k)))(p(k))}), it is deduced that

EH

((
L̄(p)

)(c)) = 2
#L̄(p)∑
k=1

(
1 − g

(
L(k)

)− (1 − ḡ)
)
pk = 2

#L̄(p)∑
k=1

(
g
(
L(k)

)− ḡ
)
pk

= EH

(
L̄(p)

)
.

The proof is completed.

D. Appendix

In virtue of Eq. (24), one has

− CE
(
L̄1(p), L̄2(p)

)
=

#L̄1(p)∑
k=1

(
−A

(k)
1 ln

2A
(k)
1

A
(k)
1 + A

(k)
2

− (1 − A
(k)
1

)
ln

2(1 − A
(k)
1 )

1 − A
(k)
1 + 1 − A

(k)
2

)

=
#L̄1(p)∑
k=1

(
A

(k)
1 ln

A
(k)
1 + A

(k)
2

2A
(k)
1

+ (1 − A
(k)
1

)
ln

1 − A
(k)
1 + 1 − A

(k)
2

2(1 − A
(k)
1 )

)
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As f (x) = ln x is a concave function, by employing the Jessen inquality, we get

− CE
(
L̄1(p), L̄2(p)

)
�

#L̄1(p)∑
k=1

ln

(
A

(k)
1

A
(k)
1 + A

(k)
2

2A
(k)
1

+ (1 − A
(k)
1

)1 − A
(k)
1 + 1 − A

(k)
2

2(1 − A
(k)
1 )

)
= ln 1 = 0.

That is −CE(L̄1(p), L̄2(p)) � 0. Therefore, CE(L̄1(p), L̄2(p)) � 0. The equal-
ity holds if and only if A

(k)
1 = A

(k)
2 (k = 1, 2, . . . , #L̄1(p)). Namely, g(L̄

(k)
1 )p̄

(k)
1 =

g(L̄
(k)
2 )p̄

(k)
2 (k = 1, 2, . . . , #L̄1(p)). Hence, one has e(L̄1(p)) = e(L̄2(p)).

The proof is completed.
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