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Abstract. This paper presents a non-iterative deep learning approach to compressive sensing (CS)
image reconstruction using a convolutional autoencoder and a residual learning network. An effi-
cient measurement design is proposed in order to enable training of the compressive sensing mod-
els on normalized and mean-centred measurements, along with a practical network initialization
method based on principal component analysis (PCA). Finally, perceptual residual learning is pro-
posed in order to obtain semantically informative image reconstructions along with high pixel-wise
reconstruction accuracy at low measurement rates.
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perceptual loss, principal component analysis.

1. Introduction

Compressive sensing (CS) is a signal processing technique that enables accurate signal
recovery from an incomplete set of measurements (Candes and Tao, 2006; Baraniuk, 2007;
Duarte and Eldar, 2011; Duarte and Baraniuk, 2012):

y = �x + ε, (1)

where � is an M × N measurement matrix, y ∈ R
M is a set of M measurements (where

M can be much smaller than the original dimensionality of the signal N ), and ε is mea-
surement noise. Efficient signal recovery is possible even in the case when the number of
the acquired measurements is far below the Shannon-Nyquist limit.

The CS reconstruction process can be observed as a linear inverse problem that occurs
in numerous image processing tasks such as inpainting (Bertalmio et al., 2000; Bugeau
et al., 2010), super-resolution (Yang et al., 2010; Dong et al., 2016), and denoising (Elad
and Aharon, 2006). In order to reconstruct the signal x from a set of measurements y, one
has to solve the underdetermined (i.e. M<N ) system of linear equations in Eq. (1). In the
CS literature, the ratio r = M/N is called the CS measurement rate. In order to recover the
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signal x from its low dimensional measurements, it is necessary to use a signal prior that
enables the identification of a true solution from an infinite set of feasible solutions. This
is usually done by introducing a regularization term to an existing loss function. Usually,
the l0 norm, or its convex relaxation, the l1 norm, is used as the regularizer under the
assumption that the observed signal is sparse in certain transformation domain �:

s = �x, (2)

where s denotes the sparse representation of the signal x. Other signal priors can be used as
regularizers as well. An unconstrained optimization problem for the sparse signal recovery
using l1 regularization can be written as:

min
s

∥∥y − ��−1s
∥∥2

2 + λ‖s‖1. (3)

Most of the algorithms for solving sparse optimization problems are iterative and have
high computational complexity (Mallat and Zhifeng, 2006; Pati et al., 1993; Needell and
Tropp, 2009; Beck and Teboulle, 2009; Becker et al., 2011; Wright et al., 2009). This
presents a serious drawback when it comes to the real-world applications of CS.

After being successfully applied to numerous previously mentioned image processing
tasks, machine learning methods started to gain more interest in the area of CS (Mousavi
et al., 2015; Mousavi and Baraniuk, 2017; Mousavi et al., 2017; Kulkarni et al., 2016;
Hantao et al., 2019; Lohit et al., 2018). Novel CS reconstruction algorithms based on
deep neural networks have recently been proposed, and they represent a non-iterative, fast
and efficient alternative to the traditional CS reconstruction algorithms.

2. Related Work

A deep learning framework based on the stacked denoising autoencoder (SDA) has been
proposed in Mousavi et al. (2015) and it represents pioneer work in the area of CS recon-
struction using the learning-based approach. The main drawback of the SDA approach
is that the network consists of fully-connected layers, which means that all units in two
consecutive layers are connected to each other. Thus, as the signal size increases, so does
the computational complexity of the neural network. Authors present an extension of their
previous work in Mousavi and Baraniuk (2017) and Mousavi et al. (2017). The DeepIn-
verse network proposed in Mousavi and Baraniuk (2017) solves the image dimensionality
problem by using the adjoint operator �T to initialize the weights of the fully connected re-
construction layer. In Mousavi et al. (2017), a non-linear measurement operator is trained
to learn a transformation from the original signal space to an undersampled measurement
space. A novel class of convolutional neural networks (CNN) architectures inspired by the
work of Dong et al. (2016) was proposed in Kulkarni et al. (2016). The proposed CNN
takes image block CS measurements as inputs and outputs a block reconstruction obtained
from low-dimensional measurements. Improved ReconNet was proposed in Lohit et al.
(2018), where the authors use adversarial loss to further improve the CS reconstruction
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results. Moreover, the authors add a linear fully connected layer to the existing ReconNet
architecture and learn the optimal measurement and reconstruction matrix in a single net-
work. Based on their initial work in Xie et al. (2017) and Du et al. (2019), the authors
propose to train the neural network using perceptual loss in Du et al. (2018). Percep-
tual loss (Johnson et al., 2016) is defined in the latent space of a secondary network and
helps to preserve higher level information when compared to the commonly used per-pixel
Euclidean loss. In Hantao et al. (2019), the authors propose a novel Deep Residual Recon-
struction Network (DR2-Net) to restore the image from its blockwise CS measurements
with an additional residual layer that enhances the preliminary image reconstruction.

In this paper, we propose an efficient deep learning model for CS acquisition and re-
construction. Our model is based on a fully convolutional autoencoder with a residual net-
work. Fully convolutional architecture alleviates the signal dimensionality problems that
occur in the full-connected network design (Mousavi et al., 2015). Disadvantage of using
the fully convolutional architecture is that it is not directly applicable to certain imaging
modalities where the measurements correspond to the whole signal, and one cannot per-
form measurements in a blockwise manner. In contrast to Mousavi et al. (2017) where
the authors propose to learn a non-linear measurement operator in their DeepCodec net-
work, we use a linear encoding part while the non-linearities are introduced only into the
residual learning network. Motivation for this is to ensure that the learned measurement
operator is implementable in the real-world CS measurement systems which are mostly
linear. The residual network improves the initial image reconstruction and removes even-
tual reconstruction artifacts.

Although it is well known that normalization of the training data significantly speeds
up the training procedure (Ioffe and Szegedy, 2015), applying the measurement normal-
ization in the learning-based CS is not straightforward. In order to normalize and mean-
centre the CS measurements, measurement process has to be redesigned. Mean values
of the observed image blocks have to be known in order to perform mean-centring and
normalization. Therefore, we dedicate a single measurement vector to measure the mean
value of the observed image block. The rest of the measurement matrix is optimized in
the training process. Input to the decoding part of the proposed model are mean-centred
measurements, and the decoding process results in mean-centred image reconstruction.
Mean value for the observed block is then added to the initial image estimate to obtain
the final image reconstruction. Without the proposed modifications of the measurement
process, performing reconstruction on normalized measurements would not be feasible.
As expected, we show that the measurement normalization process speeds up the conver-
gence of the network significantly.

Furthermore, we discuss the connection between the linear autoencoder network and
principal component analysis (PCA). Based on our observations, an efficient method for
initialization of the network weights is proposed. The proposed method serves as a boot-
straping step in the network training procedure. Instead of initializing the model using
random weights, we propose to use an educated guess for the initial weights by using the
PCA initialization method.

Finally, we introduce perceptual loss in the residual network training in order to im-
prove the reconstructions at extremely low measurement rates. Experimental results ob-
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Fig. 1. Proposed design of the CS image reconstruction model. The convolutional autoencoder learns the end-
to-end CS mapping. The encoder performs synthetic measurements on the input image, transforming it into
the low-dimensional measurement space. The decoding part learns the optimal inverse mapping from the low-
dimensional measurements into the intermediate image reconstruction. The residual network additionally im-
proves the initial image reconstruction.

tained using the proposed model show improvements in terms of the reconstruction qual-
ity.

The paper is organized as follows: in Section 3.1, convolutional autoencoder for CS
image reconstruction is proposed. Section 3.2 and Section 3.4 offer a discussion on the
measurement matrix optimality and efficient network initialization. Section 3.3 introduces
the normalized measurement process. Finally, perceptual residual learning is introduced
in Section 3.5 in order to improve the image reconstructions obtained by the autoencoder.
Section 4 presents the main results with discussion, while Section 6 offers the conclusion.

3. Proposed Architecture for the CS Model

3.1. Convolutional Autoencoder

The encoding part of the proposed shallow autoencoder network performs the CS mea-
surement process on an input image, while the decoding part models the CS reconstruc-
tion process and reconstructs the input image from the low-dimensional measurement
space (Fig. 1).

In the traditional CS measurement process, an image is vectorized to form a one-
dimensional vector x ∈ R

N and is projected into a low-dimensional measurement vec-
tor y ∈ R

M using an inner product with a collection of measurement vectors {φm}Mm=1:

ym = 〈φm, x〉 =
N∑

i=1

φm,ixi . (4)

The measurement matrix � is created by arranging the measurement vectors φT
m as rows.

Signal dimensionality (i.e. image dimensions) determines the number of columns in the
measurement matrix. Consequently, when image dimensions are large, a block-based CS
approach is suitable since it operates on local image patches (Du et al., 2012). The block-
based CS results in a lower computational complexity and requires less memory to store
the measurement matrix.
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Fig. 2. Creating a set of measurement filters from the measurement matrix. Row vector φm is reshaped column-
wise to create a measurement filter φm. The first row vector φ1 of the measurement matrix is kept fixed during
the training and corresponds to the measurement vector that calculates the mean value of the observed block.
The measurement matrix � has M − 1 rows that are optimized. The collection of measurement filters {φm} has
a depth size of M (i.e. M − 1 trainable filters and one fixed filter).

Fig. 3. Visualization of the measurement process using decimated 2D convolution. Block x of size B × B from
the whole image X of size N ×N is convolved with a collection of measurement filters {φm} of size B ×B ×M .
This results in a measurement tensor y of size 1 × 1 × M . A set of measurement tensors is denoted by Y and
has a size of N

B
× N

B
× M .

In this paper, a linear convolutional layer performs decimated convolution, as in
Eq. (5), in order to obtain the measurements. Convolution can be used as an extension
of the inner product in which the inner product is computed repeatedly over the image
space.

Y = X ∗∗
D

{φm},

Ym[i, j ] =
∑

k

∑

l

X[Di + k,Dj + k]φm[k, l]. (5)

In Eq. (5), decimation factor D equals the size of the block B and the double asterisk (∗∗
D

)
denotes a 2D convolutional operator decimated with the same factor. A two-dimensional
measurement filter φm is created column-wise from the measurement vector φm as shown
in Fig. 2. In Eq. (5), Y denotes all the measurements obtained using decimated convolution
over the whole input image X with the collection of measurement filters {φm}. A visual-
ization of the measurement process modelled using 2D convolution is shown in Fig. 3.

The CS reconstruction process is modelled using a transposed convolution (Dumoulin
and Visin, 2016), and the decoding part of the autoencoder is trained to learn the optimal
pseudo-inverse linear mapping operator �+ from the measurement data.
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3.2. Predefined vs. Adaptive Measurement Matrix

There are two basic approaches for the measurement matrix design. An arbitrary mea-
surement matrix � can be used in the measurement process to obtain measurements y

from the input images. In the traditional CS, the measurement matrix with independent
and identically distributed (i.i.d.) Gaussian measurement vectors is often used. In that
case, the encoding layer of the autoencoder is initialized using the weights defined by
the vectors from the measurement matrix � and is kept fixed during the training process.
A signal dimensionality reduction using a predefined (e.q. random Gaussian, Hadamard,
DCT) measurement matrix � is sub-optimal due to the fact that it does not exploit the
underlying structure of the observed signal.

Alternatively, the optimal measurement matrix can be inferred from the training data.
Such a matrix better adapts to the dataset and preserves more information in the measure-
ments, resulting in better reconstruction results. In our proposal, we optimize the encoding
part of the autoencoder to learn the optimal linear measurement matrix � from the train-
ing dataset. In the experimental section, we show the effect of the measurement matrix
choice on the reconstruction results.

3.3. Network Training Using Normalized Measurements

Training neural networks on normalized, mean-centred data became standard in all areas
of machine learning (Ioffe and Szegedy, 2015). It is well known that such practice sig-
nificantly reduces the training time, but the application to the learning based CS is not
straightforward. The measurement process needs to be redesigned in order to obtain nor-
malized and mean-centred measurements, since the mean value of the observed signal
has to be measured during the CS acquisition process. In this section, we present an ef-
ficient measurement process which enables the direct application of data normalization
techniques, which is in contrast with the previous work in this area.

In order to measure the mean value y1 of the observed block (Fig. 2), we fix the first
row of the measurement matrix �, so that it corresponds to a row vector containing all
ones:

y1 = 1

B2

B2∑

i=1

φ1,ixi = 1

B2

B2∑

i=1

xi. (6)

The rest of the matrix (M − 1 rows) is left to be optimized in the training procedure. We
mean-centre the normalized measurements ym using the obtained mean measurement y1:

ŷm = 1
∑B2

i=1 φm,i

ym − y1, m ∈ [2,M]. (7)

The decoding part of the network is trained using the mean-centred measurement vector ŷ

as its input, and it results in the mean-centred image reconstruction. In order to obtain the
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Fig. 4. Training loss function. Normalized mean-centred measurements vs. original measurements. Notice the
zig-zagging in the loss function when using non-centred measurement data. Loss functions are visualized on the
log scale.

final image reconstruction, the mean value for each image block is restored by adding y1

to each block.
Training the neural network on non-mean-centred data has undesirable conse-

quences. If the data coming into a neuron is always positive (e.q. x > 0 element-
wise in f = wT x + b), then the gradient on the weights w becomes either all-positive,
or all-negative (depending on the gradient of the whole expression f ) during the back-
propagation step. In return, this could introduce the undesirable zig-zagging dynamics in
the gradient updates of the weights (Karpathy, 2017). As shown in Fig. 4, zig-zagging is
also manifested in the loss function. The training loss function for the unnormalized mea-
surements (red dashed line) and normalized measurements (blue solid line) are shown in
the log scale simultaneously. Notice that the loss function for the proposed network that
is trained on mean-centred data converges significantly faster than the network trained on
non-centred measurements.

3.4. Efficient Method for Network Initialization

In Lohit et al. (2018) and Du et al. (2019), the authors optimize the linear encoder in order
to infer the optimal measurement matrix for each measurement rate r . In Baldi and Hornik
(1989), it has been shown that the linear autoencoder with the mean squared error (MSE)
loss converges to a unique minimum corresponding to the projection onto the subspace
generated by the first principal component vectors of the covariance matrix obtained using
the principal component analysis (PCA). Thus, it is sub-optimal to retrain the model for
each measurement rate r .

Instead, we propose an efficient initialization method for the deep learning CS models
based on the observation from Baldi and Hornik (1989). Principal component analysis
(PCA) is an analytic method that has a widespread use in dimensionality reduction. The
PCA is performed on the covariance matrix of the data vector x:

C(x) = E
[
xxT

] − E[x]E[
xT

]
, (8)

where E denotes the expectation operator. In the case when images are the signals of
interest, PCA is performed by calculating an unbiased estimate of the covariance matrix
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C(x) for the vectorized images, where x is a flattened image vector, and x̄ is its mean
value:

C(x) = 1

N−1

N∑

i=1

(xn − x̄)(xn − x̄)T . (9)

After applying the eigendecomposition (Eq. (10)) to the estimate of the covariance matrix
C(x) for the observed images, an eigenvalue matrix � contains positive eigenvalues λ

sorted in a descending order. The eigenvalues explain the variance in the direction of
corresponding eigenvector in the orthonormal matrix U . Under the assumption that the
variance reflects the informational content, a subset of M eigenvectors with the largest
eigenvalues (i.e. principal components) optimally describes the observed signal in terms
of the mean squared error:

C(x) = U�UT ≈ U1:M�1:M(U1:M)T . (10)

If the training dataset is formed to faithfully represent the image statistics, the reduced
eigenvector matrix UT

1:M optimally preserves the informational content of the observed
image blocks.

Thus, we propose to use the reduced eigenvector matrix UT
1:M to initialize the weights

of the encoding part of the CS model:

� = UT
1:M. (11)

Furthermore, we propose to initialize the reconstruction part of the network using the
PCA as well. The eigenvector matrix U is a unitary matrix. If the measurement matrix �

is equal to the reduced eigenvector matrix UT
1:M as in our proposal, we can write:

y = �x = UT
1:Mx. (12)

The original image x can be reconstructed using the pseudo-inverse of the measurement
matrix:

x = �+y

= (
��T

)−1
�y

= [
(U1:M)T U1:M

]−1
(U1:M)T y

= U1:My. (13)

Since UT is a unitary matrix, the pseudo-inverse matrix �+ for the CS reconstruction
becomes just a transposition of the measurement matrix. This results in an efficient method
for initialization of neural network weights for both the encoding and decoding part of the
learning based CS models.
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Fig. 5. Contrast-adjusted visualization of the learned residual for several test images and for the measurement
ratio r = 0.25: 1) Barbara, 2) Parrot, 3) Peppers. Notice that the residual network improves the preliminary
reconstructions in aspects of blocking artifacts, high frequency content restoration and edge preservation.

The proposed initialization method for the network weights has several advantages.
While a neural network has to be retrained in order to obtain the measurement matrix �

for a different sub-rate r , the PCA approach outputs the whole eigenvector matrix U . Thus,
for any measurement rate the initial measurement matrix � can be formed by selecting
a subset of M largest eigenvectors and one can use them in order to initialize the model.
The learning based approach is significantly slower since it is extremely hard to learn
the optimal measurement operator and the network might not fully converge. Contrary, in
the case of linear autoencoder, we obtain the exact solution for optimal measurement and
reconstruction operator in a fraction of time needed to train the neural network. Using the
PCA initialization for the autoencoder might be beneficial even when the loss function in
the training procedure is not pixel-wise Euclidean and when additional regularization is
introduced in the training procedure.

3.5. Residual Network

As previously mentioned, the first part of the proposed network consists of a linear autoen-
coder. Non-linearities can be easily introduced into the measurement and reconstruction
part of the network to further improve the initial reconstruction obtained by the autoen-
coder. In our proposal, non-linearities are only introduced into the decoding part of the
network. Although there are some methods that learn a non-linear measurement operator
from the data (Mousavi et al., 2017), linearity is an important property of measurement
systems and we want our CS model to be realizable in real physical measurement setups
like Takhar et al. (2006) and Ralašić et al. (2018).

The output of the proposed convolutional autoencoder represents a preliminary recon-
struction of the input image from its low-dimensional measurements. We feed the prelim-
inary reconstruction to a residual network (He et al., 2015) that induces non-linearity and
reduces potential reconstruction and blocking artifacts, and eliminates the need for an off-
the-shelf denoiser such as BM3D (Dabov et al., 2009) used in the competitive methods.
Figure 5 shows several examples of the estimated residual. Residual learning compensates
for some of the high-frequency loss and improves the initial image reconstruction.

Figure 6 shows the architecture of the residual learning block used in our proposal.
The residual network consists of two residual learning blocks and each residual learning
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Fig. 6. Residual learning block. The residual learning block consists of 3 convolutional layers.

block has three layers. The first layer consists of 16 convolutional filters of size 3 × 3 with
stride 1, followed by a ReLU non-linearity. The second layer has 3 × 3 × 32 filters with
stride 1, also followed by a ReLU non-linearity. The final layer consists of a single filter of
size 3 × 3, which outputs the inferred residual image. Image dimensions are preserved in
each layer by the appropriate zero-padding. Identity shortcuts are added to each residual
block and are used to propagate the intermediate image reconstructions.

3.6. Choice of the Loss Function

Reconstructing the high-frequency content in the original image (i.e. edges, texture) is
problematic for the linear autoencoder, and the residual network helps to alleviate this
problem. Problems occur partly due to the fact that the lower frequency content is dom-
inant in natural images and the learned measurement filters have a low-pass character,
and partly due to the choice of the loss function used for training the network. It is known
that the MSE loss function yields blurry images (Kristiadi, 2019). Thus, some papers sug-
gest using a different loss function for the network training. As an example, Lohit et al.
(2018) uses the adversarial loss function in addition to Euclidean loss to obtain better and
sharper reconstructions. Furthermore, Du et al. (2018) uses perceptual loss in order to
achieve better reconstruction results. The authors train their model using the Euclidean
loss in the latent space of the VGG19 neural network (Simonyan and Zisserman, 2014).

In this paper, we fuse the per-pixel reconstruction loss in the autoencoder with the per-
ceptual loss in latent space in the residual network. This is in contrast with Du et al. (2018),
where the authors optimize the whole network using the Euclidean loss in the latent space.
As a consequence, their method results in semantically informative reconstructions, but
with low per-pixel accuracy. By using a combination of Euclidean and perceptual loss,
we obtain semantically informative reconstructions that have high accuracy of per-pixel
reconstruction resulting in higher PSNR compared to Du et al. (2018).

Pixel-wise Euclidean loss function for the autoencoder is defined as:

L1
({

�,�+}) = ∥∥x − f
{
x,

{
�,�+}}∥∥2

2, (14)

where � denotes the weights of the measurement operator, �+ are the weights of the
reconstruction operator, x is the original image and f {x, {�,�+}} is the image recon-
struction obtained by the autoencoder.

The residual part of the proposed network is trained separately from the autoencoder
part using perceptual loss function L2 (Eq. (15)) in the latent space of the VGG19 network
similarly to Du et al. (2018). In contrast with Du et al. (2018), we use a linear combination
of Euclidean losses defined on the features of second and third max-pooling layer of the
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VGG19 network instead of the Euclidean loss on individual feature map. The motivation
for this is to simultaneously reconstruct both the low-level information contained in the
bottom layers, as well as the high-level semantic features contained in the top layers of the
VGG19 network.

L2
({W }) = 1

2

3∑

j=2

∥∥φj (x) − φj

(
f {x,W })∥∥2

2. (15)

In Eq. (15), φj denotes the feature map of the j -th layer of the VGG19 with input x.
Furthermore, W denotes filter weights in the residual network and f {x,W } is the final
image reconstruction.

4. Experiments

4.1. Network Training

In this section, we discuss the details of our network training procedure. We use tensor-
flow (Abadi et al., 2015) deep learning framework for training and testing purposes. The
training dataset is formed using uncalibrated JPEG images from the publicly available
Barcelona Calibrated Images Database (Párraga et al., 2010). Our training dataset is cre-
ated by extracting 1676 image patches of size 256 × 256, taken from different parts of the
original high-resolution (2268×1512) images. This corresponds to 107264 unique image
blocks for training.

Adam optimizer (Kingma and Ba, 2015) (β1 = 0.9, β2 = 0.999, ε = 1e−8) is used
for the network training. The learning rate for the loss function L1 is set to 0.001 and the
learning rate for the loss function L2 is set to 0.0001. The number of epochs in the training
stage is set to 256. The training was performed on an Intel i7-4770K@3.50 GHz computer
with NVIDIA GeForce GTX780 (GK110) graphic card.

We perform series of experiments to corroborate previous discussions and observa-
tions. In order to achieve a fair comparison framework, a set of 11 images (Monarch,
Fingerprint, Flintstones, House, Parrot, Barbara, Boats, Cameraman, Foreman, Lena,
Peppers – see TestDataset), which were used in the evaluation of the competitive methods
are used for testing purposes with four different measurement sub-rates r = M

N
, where

r ∈ {0.25, 0.1, 0.04, 0.01}. In our experiments, block size of 32 × 32 is used.

4.2. Measurement Matrix

In Section 3, we have discussed the connection between the measurement matrix learned
by the linear encoder and the one obtained by performing the PCA analysis. In addition,
we proposed an efficient initialization method for the network weights. In this section, we
perform an experiment to show that the performance of the trained linear autoencoder is
limited by the performance of the PCA method network in terms of image reconstruction
quality.
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Table 1
Comparison of linear autoencoder and PCA in terms of reconstruction PSNR [dB].

PSNR [dB] r = 0.25 r = 0.10 r = 0.04 r = 0.01

PCA 31.45 27.11 23.95 20.56
Linear autoencoder 31.39 27.06 23.92 20.55

Fig. 7. Reconstruction results obtained using linear autoencoder for “Parrot” test image (1) and for two measure-
ment ratios r = 0.01 (2, 3) and r = 0.25 (4, 5). Reconstructions labelled with (2) and (4) are obtained using the
random Gaussian measurement matrix, while (3) and (5) are obtained using the adaptive measurement matrix.

Table 1 shows the mean reconstruction results in terms of PSNR for the standard test
images. Notice that the reconstruction results are comparable. The slightly lower recon-
struction performance of the linear encoder is due to the network not fully converging to
the global minimum. Reconstruction results obtained by using the PCA method represent
an upper boundary for the performance of the linear autoencoder network for CS image
reconstruction.

In Fig. 7, reconstruction results obtained using random Gaussian and adaptive mea-
surement matrix for Parrot test image are shown. The reconstructions are presented for
measurement rates r = {0.01, 0.25}. Notice that the adaptive measurement matrix pre-
serves more information compared to the random Gaussian matrix.

4.3. Comparison to Other Methods

In this section, we compare the proposed CS model to other state-of-the-art learning-
based CS methods. To provide a fair comparison, we compare our method only to similar
methods which use an adaptive linear encoding part.

We compare our method to the ImpReconNet (Lohit et al., 2018), Adp-Rec (Xie et
al., 2017), FCMN (Du et al., 2019) and two variants of PCS (Du et al., 2018), namely
PCSconv22 and PCSconv34. In Table 2, mean PSNR reconstruction results (on the same
test dataset) for the proposed method and for the competitive methods are shown. ImpRe-
conNet (Euc) denotes a variant of a ReconNet model that uses Euclidean loss function
for the network training, while the ImpReconNet (Euc+Adv) denotes a variant which
uses a combination of Euclidean and adversarial loss. The competitive PNSR values are
shown as reported in the original papers or reproduced using the available algorithms and
models. In Fig. 8, “Fingerprint” test image reconstructions are shown compared to the
ground-truth.

On one hand, FCMN and ImpReconNet yield similar results in terms of PSNR com-
pared to our method (see Table 2), while on the other hand the aforementioned methods
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Table 2
Reconstruction results obtained using the learned measurement matrix. Table contains mean PSNR

reconstruction results for the standard test images at different measurement rates r . Although, FCMN achieves
better results in terms of PSNR, it is clearly visible from Fig. 8 that it does not preserve structural information.
This is due to the fact that PSNR measures image quality on per pixel basis, which is not a relevant measure for

the preservation of high-level image features.

Mean PSNR [dB] for different methods r = 0.25 r = 0.10 r = 0.04 r = 0.01

ImpReconNet (Euc) (Lohit et al., 2018) 26.59 25.51 23.14 19.44
ImpReconNet (Euc + Adv) (Lohit et al., 2018) 30.53 26.47 22.98 19.06
Adp-Rec (Xie et al., 2017) 30.80 27.53 – 20.33
FCMN (Du et al., 2019) 32.67 28.30 23.87 21.27
PCSconv22 (Du et al., 2018) – – 19.38 18.30
PCSconv34 (Du et al., 2018) – – 16.72 16.80
Proposed method 32.00 26.36 23.67 20.51

Fig. 8. Reconstruction results for “Fingerprint” test image and for measurement rate r = 0.04: (1) original,
(2) ImpReconNet (Euc + Adv), PSNR = 16.97 dB, (3) FCMN, PSNR = 19.05 dB, (4) PCSconv22, PSNR =
14.83 dB, (5) PCSconv34, PSNR = 14.35 dB, (6) proposed method, PSNR = 20.31 dB. Our method results in
better structure preservation compared to the ImpReconNet and FCMN methods, while we achieve significantly
higher PSNR compared to the PCS methods by a margin of around 5 dB in PSNR.

do not preserve structural and high level semantic information. The two PCS methods
preserve structural information, but yield images that contain significant amount of noise
when observed on pixel-wise level. Our method benefits from the combination of pixel-
wise Euclidean loss in image space and the Euclidean loss in the latent space of the VGG19

network resulting in high pixel-wise accuracy as well as good preservation of structural
information. Similar observation holds for the “Monarch” reconstructions in Fig. 9 where
a comparison between the competitive perceptual CS methods and the proposed method
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Fig. 9. Reconstruction results for “Monarch” test image and for measurement rate r = 0.01: (1) original,
(2) PCSconv22, PSNR = 16.28 dB, (3) PCSconv34, PSNR = 14.87 dB, (4) proposed method, PSNR = 18.04 dB.
Although PCS method successfully reconstructs higher semantic information, it suffers from significant amount
of noise. Contrary, our method reconstructs the same amount of information with less noise and visual artifacts.

at extremely low measurement rate r = 0.01 is presented. Notice the high level of noise
in the PCS reconstructions compared to the reconstruction obtained using the proposed
method.

5. Discussion

Iterative nature and high computational complexity present the main drawbacks of the
traditional CS reconstruction algorithms. Learning based methods for the CS image re-
construction present an efficient alternative to the traditional approach. Average per-image
reconstruction time for a set of images with size 512×512 using traditional l1 reconstruc-
tion method from the Sparse Modelling Software (SPAMS, 2010) optimization toolbox
and a block-based approach with a subsampling rate of r = 0.04 is around 0.6 s, while
the learning based method reduces the reconstruction time to around 0.025 s. An example
of a real-world application of the learning-based approach is (Ralašić and Seršić, 2019),
where the authors propose a real-time motion detection system in CS video which operates
at extremely low measurement rates.

Better performance of the learning based methods in the reconstruction phase comes
at an increased cost in the training phase. In order to learn the optimal measurement and
reconstruction operators, learning based methods require an offline training procedure
with a relatively large training dataset. Since learning based methods are data driven, they
are also data dependent. Thus, if the statistical distribution of the training dataset signif-
icantly differs from the testing data, the performance of the learning based methods will
be influenced. Finally, convolutional block image processing is not applicable in imaging
modalities where the measurements correspond to the whole signal, and one cannot divide
the signal into smaller blocks.
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6. Conclusion

In this paper, we proposed a convolutional autoencoder architecture for the image com-
pressive sensing reconstruction, which represents a non-iterative and extremely fast al-
ternative to the traditional sparse optimization algorithms. In contrast with other learning
based methods, we designed a measurement process which enables the model to be trained
on normalized, mean-centred measurements which results in a significant speedup of the
neural network convergence. Moreover, we proposed an efficient initialization method for
the autoencoder network weights based on the connection between the learning-based CS
approach and the principal component analysis. The residual learning network was used
to further improve the initial reconstruction obtained by the autoencoder.

A combination of a pixel-wise Euclidean loss function for the autoencoder network
training along with a Euclidean loss function in the latent space of the VGG19 network
for the residual network training was proposed. It results in image reconstructions with
higher pixel-wise reconstruction accuracy and more semantic information preserved at
low measurement rates. In our future work, we will explore different loss functions that
correspond to the notion of the perceptual loss.
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