
INFORMATICA, 2020, Vol. 31, No. 2, 359–397 359
© 2020 Vilnius University
DOI: https://doi.org/10.15388/20-INFOR401

Public-Private Partnership Decision Making Based
on Correlation Coefficients of Single-Valued
Neutrosophic Hesitant Fuzzy Sets

Fanyong MENG1,2, Jie TANG2, Shaolin ZHANG2, Yanwei XU2,∗
1 Beijing Wuzi University, Beijing 101149, China
2 Central South University, Changsha 410083, China
e-mail: mengfanyongtjie@163.com, tjie411@126.com, zhangshaolin2018@163.com,
xyw161611117@163.com

Received: December 2018; accepted: February 2020

Abstract. Public-private partnership (PPP) is regarded as an innovative way to the procurement
of public projects. Models vary with PPP projects due to their differences. The evaluation criteria
are usually complex and the judgments offered by decision makers (DMs) show the characteristics
of fuzziness and uncertainty. Considering these cases, this paper first analyses the risk factors for
PPP models and then proposes a new method for selecting them in the setting of single-valued
neutrosophic hesitant fuzzy environment. To achieve these purposes, two single-valued neutrosophic
hesitant fuzzy correlation coefficients are defined to measure evaluated PPP models. Considering
the weights of the risk factors and their interactions, two single-valued neutrosophic hesitant fuzzy
2-additive Shapley weighted correlation coefficients are defined. When the 2-additive measure on
the risk factor set is not exactly known, several distance measure-based programming models are
constructed to determine it. Based on these results, an algorithm for evaluating PPP models with
single-valued neutrosophic hesitant fuzzy information is developed. Finally, a practical numerical
example is provided to verify the validity and feasibility of the new method.
Key words: public-private partnership, decision making, single-valued neutrosophic hesitant fuzzy
set, correlation coefficient, the Shapley function.

1. Introduction

Public-private partnership (PPP) is a holistic concept of project construction that is used in
all aspects of the project life cycle including design, management, construction, financing,
operation and management, maintenance, service, and marketing. With the rapid growth
of China’s economy, PPP has been widely adopted by government in many infrastructure
projects, such as flood disaster management (Yang et al., 2018), PPP housing project (Liu
et al., 2018a), construction of rental retirement village (Liu et al., 2018b), water sector
(Bao et al., 2018), selection of social capital partner (Liu et al., 2018c), expressway (Song
et al., 2018), and evaluation of delay causes for build-operate-transfer (BOT) projects (Bu-
dayan, 2018). PPP can be defined as a long-term contract based on service outputs where
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significant risk transfers to the private sector. Generally speaking, this long-term contract
involves design, major procurement, operation and maintenance of a facility. Yan et al.
(2020) developed a decision-making model of concession period for constructing the PPP
project in view of fairness preference using the Nash bargaining game solution and con-
cluded that the developed decision-making model is helpful for infrastructure projects. Jin
et al. (2019) discussed the properly designed length of concession period for PPP projects
in view of fair risk allocation between governments and private investors via Monte Carlo
simulation. Furthermore, the authors employed a PPP transportation project to show the
concession period determination process. Kwofie et al. (2019) researched the nature of
communication performance challenges in PPP projects. Using the deductive research
design, the authors analysed the communication network of PPP projects in Ghana and
South Africa and concluded that the communication challenges and information asym-
metries are notable challenges. Shalaby and Hassanein (2019) discussed the renegotiation
process of PPP contracts and designed an automated system to select the optimum rene-
gotiation scenario.

The role of PPP is to reduce the risk of a project in the whole life cycle for achieving the
highest benefits (Akintoye et al., 2003; Zhang, 2005). Although there are many advantages
of PPP, various types of risk and uncertain factors restrict its application (Ke et al., 2010;
Ogunlana, 1997), which usually has a significant impact for accomplishing a PPP project
(Delmon, 2000). Osei-Kyei et al. (2017) researched seven important criteria for the suc-
cess of PPP projects, including effective risk management, meeting output specification,
reliable and quality service operation, adherence to time, meeting the need of public facil-
ity, long-term relationship and partnership, and profitability. Osei-Kyei and Chan (2018a)
explored the perceptual differences of PPP stakeholders for the success criteria for PPP
projects. Ahmadabadi and Heravi (2019) used the structural equation modelling to assess
the risk in PPP-megaprojects by considering risk interaction and stakeholders’ expecta-
tions. Then, the authors studied the application of their model in Khoramabad–Polezal
project. The results show that each stakeholder group considers effective risk manage-
ment as the most critical success criterion.

The motivation of this paper is to develop a new method for PPP selection based
on correlation coefficient in the setting of single-valued neutrosophic hesitant fuzzy sets
(SVNHFSs), which is more powerful and flexible than that of the previous research. Com-
pared with the previous research, the main advantages of the new method include: (1) The
new method is based on SVNHFSs that can express the hesitancy, preferred, indetermi-
nacy and non-preferred information simultaneously. Therefore, the new method is more
flexible; (2) New single-valued neutrosophic correlation coefficients are defined that do
not require compared SVNHFSs to have the same length, namely, new correlation co-
efficients do not change the original information offered by the decision makers (DMs);
(3) The 2-additive Shapley weighted single-valued neutrosophic correlation coefficients
are proposed that can deal with the situation where the weights of risk factors are inter-
active and can synchronously reflect the complementary, mutual, and independent inter-
actions; (4) New correlation coefficients do not restrict to define the correlation between
SVNHFSs on the ordered elements of the hesitant preferred, hesitant indeterminacy and
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hesitant non-preferred degree sets; (5) When the weighting information is incompletely
known, models for determining the optimal 2-additive measure are built. This allows the
new method to deal with the situation where the weighting information with interactions
is incompletely known.

All in all, this is the first method for evaluating PPP models that considers the interac-
tions between risk factors and can deal with the case where fuzzy measure is incompletely
known. Furthermore, it overcomes the limitations of research about decision making with
single-valued neutrosophic hesitant fuzzy information.

The rest of this paper is organized as follows: Section 2 briefly reviews decision mak-
ing methods for PPP selection, decision making methods with SVNHFSs and correlation
coefficient; Section 3 briefly reviews several basic notations and concepts that are related
to the following discussion. Section 4 first defines two single-valued neutrosophic hesi-
tant fuzzy correlation coefficients. Then, two single-valued neutrosophic hesitant fuzzy
2-additive Shapley weighted correlation coefficients are presented to reflect the interac-
tions among the weights of risk factors. Section 5 first constructs several distance measure-
based programming models for determining the fuzzy measure on the risk factor set. Then,
a new algorithm for evaluating PPP models is developed. Section 6 provides a case study
about evaluating PPP models for the high-speed rail to illustrate the concrete application
of this new algorithm and compares it with Şahin and Liu’s method (Şahin and Liu, 2017).
Conclusions are shown in Section 7.

2. Literature Review

This section contains four subsections. The first section reviews decision making methods
for PPP selection and lists their restrictions to show the necessity to further study PPP se-
lection; the second section reviews the risk factors for evaluating PPP models and three
PPP models; the third part introduces decision making methods with SVNHFSs and shows
their limitations; the fourth part reviews decision making based on correlation coefficients
and points out the limitations of previous single-valued neutrosophic hesitant fuzzy cor-
relation coefficients.

2.1. Decision Making Methods for PPP Selection

As shown in Table 2, there are many PPP models, and the final implementation effect of
the project is largely dependent on the selected one. A wide range of studies has been con-
ducted to assist decision making in PPP selection. John and Isr (2003) analysed thirteen
PPP projects in North America and Asia and suggested that the project risks, project condi-
tions, and availability of financing are the critical factors in PPP selection. Considering the
reference function of similar past projects, Luu et al. (2005) proposed a conceptual frame-
work for case-based PPP selection by integrating the client’s needs, the project character-
istics, and external environment. To quantitatively depict the evaluation and selection of
PPP projects, Mahdi and Alreshaid (2005) first constructed the index system for evaluating
PPP models. Then, the authors proposed a multi-criteria decision-making methodology
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using the analytic hierarchy process (AHP) to assist the selection of PPP models. Accord-
ing to the degree of legal authorization given by the government to the project company,
Ghavamifar and Touran (2008) discussed the selection of PPP, construction management
(CM) and design-build (DB) models in transportation projects of all the 50 states in the
United States. By taking schedule, cost, owners, project and external environment as input
variables and taking cost, schedule, safety, quality and contract as output variables, Chen
et al. (2010) constructed the data envelopment analysis (DEA) model to assist owners in
selecting PPP models. Combined with modern portfolio theory (MPT) and multi-objective
optimization, Weissenböck and Girmscheid (2013) introduced a method for PPP selection
for construction firms in selecting highly suitable PPP projects. Dai and Molenaar (2015)
presented a risk-based modelling approach to quantify the potential differences in project
cost due to the selection of PPP models for highway design and construction. Feng et al.
(2018) developed a multi-objective optimization model for balancing public and private
interests for PPP models. Furthermore, the authors took Beijing No. 4 Metro Line to show
the application of the offered model. Osei-Kyei and Chan (2018b) investigated the differ-
ences and similarities on the reasons for implementing PPP in developing and developed
economies/countries through Ghana and Hong Kong. Pellegrino et al. (2019) adopted the
Monte Carlo simulation as the option-pricing method to test how to ensure the maximum
interest rate of private investors in PPP projects.

To deal with the uncertainty in the process of evaluating PPP models, Yuan et al.
(2010) researched performance objective attributes in the perspective of different stake-
holder groups and combined fuzzy entropy method and fuzzy TOPSIS method to develop
an approach for selecting the performance objective levels for PPP models. Shakeri et al.
(2015) combined Elimination et Choice Translating Reality (ELECTRE) and Strength,
Weakness, Opportunity, Threat (SWOT) methods in fuzzy environment for evaluating
private sector for water treatment PPP models in Iran. Valipour et al. (2016) presented
a hybrid fuzzy method and a cybernetic analytic network process (CANP) model for iden-
tifying sharing risks. Its main principle is to transform linguistic information and exper-
tise into systematic quantitative analysis and use CANP model to address the problems
of dependency and feedback between criteria and barriers, as well as the choice of shar-
ing risks. Combining with the local situation, Zhang et al. (2019) developed an indicator
system. Then, the authors established an integrated decision-making framework using tri-
angular fuzzy AHP analysis for selecting the suitable PPP model. Based on the theory of
intuitionistic fuzzy sets, Wang and Qin (2015) provided an evaluation method to work out
the score functions of intuitionistic fuzzy numbers with uncertain weights, which is then
used to select appropriate PPP models. On the basis of interval-valued intuitionistic fuzzy
set (IVIFS) theory, An et al. (2018) proposed a group decision making method for PPP
model selection. Su et al. (2019) introduced the similarity measure with interval neutro-
sophic information, by which a PPP model selection method with interval neutrosophic
set is proposed.

Based on the above literature review, one can verify that although they can deal with
the problem of selecting PPP models with fuzzy information, there are some limitations
in applications. For example, due to the complexity of PPP model selection, the hesitancy,
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preferred, indeterminacy and non-preferred information may simultaneously exist. How-
ever, none of the previous methods can deal with this case; (2) none of them can cope with
the situation where the weights of risk factors are interactive.

2.2. Risk Factors and PPP Models

The government and the private sector should assess all potential risk factors throughout
the whole life cycle of the project. To show the potential risk factors in the procedure of
evaluating PPP models, Jang (2011) offered four primary risk factors and twelve secondary
risk factors as shown in Table 1.

On the other hand, since PPP was first introduced by the British government in 1952,
various types of PPP models have been proposed. According to the PPP style, Huang
(2007) summarized thirteen main PPP models as shown in Table 2.

To indicate their differences clearly, Table 3 shows the features of these thirteen types
of PPP models. From the top to the bottom, the degree of privatization is deepening while
the private risks are increasing (Huang, 2007).

2.3. Decision Making Methods with SVNHFSs

With the development of fuzzy decision-making theory, many types of generalized fuzzy
sets are proposed, such as intuitionistic fuzzy sets (IFSs) (Atanassov, 1986), hesitant fuzzy
sets (HFSs) (Torra, 2010), and neutrosophic sets (NSs) (Smarandache, 1999). It is notice-
able that NSs are more flexible than IFSs and the latter can be seen as a special case of
the former. Considering the advantages of NSs as well as their application in decision
making, Wang et al. (2005) introduced the concept of single-valued neutrosophic sets
(SVNSs) to express the preferred, indeterminacy and non-preferred information by us-
ing three independent variables in [0,1]. However, SVNSs still cannot denote the hesitant
information. To denote the hesitancy, preferred, indeterminacy and non-preferred infor-
mation simultaneously, Ye (2015) further presented SVNHFSs that permit the DMs to
employ several values in [0,1] to separately denote the hesitant preferred, hesitant inde-
terminacy and hesitant non-preferred information. All of the above mentioned fuzzy sets
can be seen as a special case of SVNHFSs, respectively. Considering its application in de-
cision making, the author defined several basic operations and offered a cosine measure.
Then, two single-valued neutrosophic hesitant fuzzy aggregation operators are defined to
calculate the comprehensive evaluation values. To show the application of these results,
the author studied the selection of the best investment objects. Following the pioneer work
of Ye (2015), several aggregation operator based decision making methods with single-
valued neutrosophic hesitant fuzzy information are presented. For instance, Liu and Luo
(2019) introduced the single-valued neutrosophic hesitant fuzzy ordered weighted aver-
aging (SVNHFOWA) operator and the single-valued neutrosophic hesitant fuzzy hybrid
weighted averaging (SVNHFHWA) operator and studied its utilization in software eval-
uation. However, Akansha and Amit (2019) pointed out that the SVNHFOWA operator
does not satisfy monotonicity property and this aggregation operator is unreasonable. Li
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Table 1
Risk factors for evaluating PPP models (Jang, 2011).

The first-level
risk factors

The second-level
risk factors

Descriptions

Constructive risk c1 Construction cost
overrun c11

The term ‘construction cost overrun’ refers to the possibility
that the infrastructure is incapable of delivering within the
budget.

Construction
delay c21

The term ‘construction delay’ refers to the possibility that the
officials of the facility are incapable of delivering on time.

Defective
construction c31

The term ‘defective construction’ refers to the situation in which
the equipment, system or facility cannot meet the construction
standards and requirements.

Construction
changes c41

The term ‘construction changes’ refers to the equipment,
system or infrastructure that need to be remedied or reworked
due to construction defects or design changes.

Economical risk c2 Higher level of
inflation risk c12

The term ‘higher level of inflation risk’ refers to the possibility
that the actual inflation rate will exceed the projected inflation
rate.

Higher levels of
interest rate c22

The term ‘higher levels of interest rate’ refers to the possibility
that the actual interest rate will exceed the projected interest
rate, which would lead to the increase of costs required for the
construction or operations phase of the project, and would affect
the availability and cost of funds.

Higher levels of
exchange rate c32

The term ‘higher levels of exchange rate’ refers to the
possibility that the actual exchange rate will exceed the
projected exchange rate, which will lead to the increase of costs
required for the construction or operations phase of the project.

Political interference c3 Political
interference c3

The term ‘political interference’ refers to the possibility of
unforeseeable conduct by the political parties that materially
and adversely affect the public decision-making process or
project implementation.

Financial risk c4 Insurance
increase c14

The term ‘insurance increase’ refers to the possibility that the
agreed project insurances become insurable or substantially
increase in the rates at which insurance premiums are
calculated.

Ownership
change c24

The term ‘ownership change’ refers to the risk that a change in
ownership would result in a weakening in its financial standing
or support or other detriment to the project.

Refinancing
liabilities c34

The term ‘refinancing liabilities’ is a post-contracting issue that
we cannot model and assess if it would become ‘liability’ risk
of the public sector when there is no information on real
refinancing structure at the pre-contracting stage.

Finance
unavailable c44

The term “finance unavailable” refers to the risk that when debt
and/or equity required by the project is not available on the
amounts and on the conditions anticipated to perform the
project.

and Zhang (2018) defined two lamda-fuzzy measure based Choquet integral single-valued
neutrosophic hesitant fuzzy aggregation operators to cope with the situation where there
are interactive characteristics. Then, the authors discussed its application to the evalua-
tion of emerging technology commercialization. Meanwhile, Pang et al. (2018) proposed
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Table 2
Thirteen types of PPP models and their descriptions (Huang, 2007).

PPP models Descriptions

Service Contract (SC) The government outsources several service items of public facilities such as road
tolls and cleaning services. However, the government still needs to be responsible for
the operation and maintenance of facilities and undertakes the risks of project
financing, construction, and operation. Such agreements are usually shorter than five
years.

Management Contract
(MC)

The government and the private sector sign an agreement on the operation and
maintenance of facilities. Under the agreement, the private sector takes full
responsibility for the operation and maintenance, but does not undertake the capital
risks. The purpose of this model is to improve the operational efficiency and quality
of service of facilities.

Design-Build (DB) The government and the private sector sign an agreement. The private sector is
responsible for designing and building the facilities according to the government’s
standards and performance requirements. Once the facilities are completed, the
government has the ownership and takes charge of the operation and management.
Most non-operating municipal projects, including roads, highways, sewage
treatment plants, and other government facilities, can take this model.

Turnkey Operation
(TO)

The government and the private sector sign a turnkey agreement. Under government
investment, the private sector is responsible for the design, construction, and
operation of the projects for a period of time. The government sets the performance
targets and has the ownership of the projects. In this model, the government not only
owns the project, but also benefits from private construction and operation. This
model is also suitable for the construction and operation of most non-operating
municipal projects.

Lease-Development-
Operation (LDO)

The government and the private sector sign a long-term lease agreement. The private
sector leases existing municipal facilities and pays rental fees to the government. The
private sector expands existing facilities based on its capital or financing capacity
and is responsible for operation and maintenance of the extended municipal facilities
for commercial profits.

Build-Transfer-
Operation (BTO)

The government and the private sector sign an agreement. The construction of the
facility is financed by the private sector. When the facility is completed, the private
sector transfers the ownership of the facility to the government. Then, the
government and the private sector sign a franchise agreement to lease the facilities to
partners in the form of long-term leases. During the lease period, the private partner
has the opportunity to recover their investments and obtain a reasonable return.

Transfer-Operation-
Transfer (TOT)

The government and the private sector sign a franchise agreement to transfer the
completed infrastructure to the franchisor. Based on the future benefits of the
project, the government provides one-time funding for the private sector to develop
new infrastructure. During the franchise period, the private sector operates projects
independently in accordance with state laws, relevant policies and regulations, and
government supervision. The private sector recovers cash inflows from projects as a
return on investment. At the end of the franchise period, the government withdraws
the franchise of projects. In general, the transfer involves only the operation of the
project.

Build-Operation-
Transfer (BOT)

The government and the private sector sign a franchise agreement that authorizes the
private sector to undertake investment, financing, construction, operation, and
maintenance of the projects during the franchise period. At the end of the concession
period, the government or its affiliates will pay a certain amount of capital (or free of
charge) in accordance with the agreement.

(continued on next page)
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Table 2
(continued)

PPP models Descriptions

Concession Operation
(CO)

The government and the private sector sign a franchise agreement. The private
sector has the government franchise and is responsible for financing, construction,
operation, maintenance and management of public facilities. Profits are obtained
by charging users under the government supervision in a certain period of time.
After the expiration of the franchise period, the franchise will be transferred to the
government.

Joint Venture (JV) The government and the private sector set up a project company to design,
finance, build and manage projects jointly. The government and the private sector
enjoy rights and responsibilities according to the proportion of equity.

Equity Transfer (ET) The government transfers part of the ownership of municipal facilities to the
private sector and closely links the interests of the government and the private
sector. It not only guarantees the government’s control over municipal facilities,
but also acquires the private sector’s technical and managerial experience to a
large extent.

Build-Operation (BBO) The government sells the original rebuilt and expended municipal infrastructures
to the private sector. The private sector is responsible for reconstruction,
expansion and permanent ownership of infrastructure. In this model, the
government translates all risk into the private sector and only has the regulatory
function.

Build-Own-Operation
(BOO)

In this model, there is no need to transfer the ownership of the project to the
government. The private sector is responsible for financing, building and
ownership of municipal facilities, as well as owning the permanent operation of
facilities. The government translates all risk into the private sector and only has
the regulatory function.

Table 3
The features of thirteen types of PPP models (Huang, 2007).

Contracting out Component outsourcing
Turnkey
Lease

Service Contract
Management Contract
Design-Build Turnkey Operation
Lease-Development-Operation
Build-Transfer-Operation

High public ownership ↓

Types of franchise Partial license
(state fee model)

Transfer-Operation-Transfer
Build-Operation-Transfer

Concession
(private fee model)

Concession Operation

Types of privatization Partial privatization Joint-Venture Equity Transfer
Entire privatization Buy-Build-Operation

Build-Own-Operation
High privatization

a lamda-fuzzy measure based Choquet integral single-valued neutrosophic hesitant fuzzy
Heronian mean operator and discussed how to select the best investment country for a Chi-
nese company.

Besides the above aggregation operator based decision making methods, Biswas et al.
(2016a) and Şahin and Liu (2016) separately defined two generalized single-valued neu-
trosophic hesitant weighted distance measure and offered the associated decision making
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methods. Şahin and Liu (2017) further presented two similarity measures and showed their
application in decision making. Ye (2018) used the weighted distance measure offered by
Biswas et al. (2016a) and Şahin and Liu (2016) to give a weighted similarity measure.
Then, the authors proposed a decision making method. Şahin and Liu (2017) researched
correlation and correlation coefficient of SVNHFSs. It is notable that all of these stud-
ies employ the example offered by Ye (2015) to show the application of associated mea-
sures. Biswas et al. (2016b) offered a grey relational analysis method for decision making
with single-valued neutrosophic hesitant fuzzy information based on the offered distance
measure and discussed its application in selecting cars. Xu et al. (2019) developed the
single-valued neutrosophic hesitant fuzzy TODIM method and discussed its application
in venture capital.

Although there are many studies about decision making with single-valued neutro-
sophic hesitant fuzzy information, there are still several restrictions.

(1) All of these methods are based on the assumption that the weighting information is
completely known. Thus, none of them can deal with the case where the weighting
information is incompletely known.

(2) Although two references discussed the case where there are interactions among the
weights of criteria, they employed the lamda-fuzzy measure based Choquet integral.
There are two drawbacks of such type of aggregation operators:
(i) The lamda-fuzzy measure can only reflect the complementary, mutual, or inde-

pendent interactions among the weights of criteria. However, when there are in-
teractions, these three cases may exist simultaneously (Meng and Chen, 2015a);

(ii) The Choquet integral only considers the interactions between two adjacent coali-
tions (Meng and Tang, 2013) that cannot globally show the interactions among
criteria coalitions.

(3) The previous distance measures, similarity measures, correlation coefficient of SVN-
HFSs (Biswas et al., 2016a, Şahin and Liu, 2016, 2017) all need the compared SVN-
HFSs to have the same length. Otherwise, we need to add extra values into SVNHFSs
with the less numbers of elements the hesitant preferred, hesitant indeterminacy and
hesitant non-preferred degree sets. This procedure in fact changes the original infor-
mation offered by DMs;

(4) The grey relational analysis method (Biswas et al., 2016b) is based on the offered
distance measure that cannot ensure the distance measure between two SVNHFSs to
be equal to zero if and only if they are identical.

From the above analysis for the new method, one can verify that it avoids all of the
above listed limitations.

2.4. Correlation Coefficient

Correlation coefficient is an important measure for decision making, which has been
widely researched and used in decision making with different types of fuzzy sets. For ex-
ample, fuzzy correlation coefficient (Murthy et al., 1985), intuitionistic fuzzy correlation
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coefficients (Szmidt and Kacprzyk, 2010), hesitant fuzzy correlation coefficients (Meng
and Chen, 2015a), and neutrosophic correlation coefficients (Ye, 2013, 2014b). As for
correlation coefficient of SVNHFSs, we only find one reference (Şahin and Liu, 2017).
However, the rationality of this correlation coefficient needs to be further discussed. For
example, it can only deal with the situation where the compared SVNHFSs have the same
length. Otherwise, we need to add extra values into the shorter SVNHFSs. However, this
process in fact distorts the original information. Furthermore, Şahin and Liu’s method
assumes that the criteria are independent and the weights are completely known. All of
these aspects restrict its application.

Considering the limitations of previous research about selecting PPP models, decision
making methods with single-valued neutrosophic hesitant fuzzy information and single-
valued neutrosophic hesitant fuzzy correlation coefficient, this paper introduces a new
correlation coefficient based method for selecting PPP models in the setting of SVNHFSs.

3. Basic Concepts

This section briefly introduces several basic concepts and definitions to simplify the fol-
lowing analysis.

NS is a general type of fuzzy sets that generalizes fuzzy sets (FSs) (Zadeh, 1965),
interval-valued fuzzy sets (IVFSs) (Zadeh, 1975), and IFSs (Atanassov, 1986). However,
NS is proposed from a philosophical point of view, which makes it unapplicable in prac-
tical decision-making problems directly. Therefore, Wang et al. (2010) proposed the con-
cept of SVNSs as follows:

Definition 1 (See Wang et al., 2010). Let X be a space of points (objects) with generic el-
ements in X denoted by x. A SVNS A on X is characterized by the truth-membership func-
tion TA(x), the indeterminacy-membership function IA(x), and the falsity-membership
function FA(x), expressed as:

A = {〈
x,TA(x), IA(x),FA(x)

〉 ∣∣x ∈ X
}
, (1)

where TA(x), IA(x) and FA(x) are real subsets of [0,1] such that TA(x) : X → [0.1],
IA(x) : X → [0.1] and FA(x) : X → [0.1]. Therefore, the SVNS satisfies the condition
0 � TA(x) + IA(x) + FA(x) � 3.

From Definition 1, one can verify that SVNSs can express the preferred, indetermi-
nacy and non-preferred information simultaneously. However, in some cases, there may
be more than one value for a judgment, in other words, there are several possible values
for a judgment. To address the hesitancy of the DMs, Torra (2010) introduced the below
concept of HFSs.

Definition 2 (See Torra, 2010). Let X = {x1, x2, . . . , xn} be a finite set, a hesitant fuzzy
set (HFS) E on X is expressed as:

E = (〈
xi, hE(xi)

〉 ∣∣xi ∈ X
)
, (2)
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where hE(xi) is a set of several values in [0,1] that represents the possible membership
degrees of the element xi ∈ X to E.

Taking the advantages of SVNSs and HFSs, Ye (2015) proposed the below concept of
SVNHFSs:

Definition 3 (See Ye, 2015). Let X = {x1, x2, . . . , xn} be a fixed set. A SVNHFS S on
X is defined as:

S = {〈
xi, hS(xi), ιS(xi), gS(xi)

〉 ∣∣xi ∈ X
}
, (3)

where hS(xi), ιS(xi) and gS(xi) are three discrete subsets of [0,1], denoted by hS(xi) =
{γS1(xi), γS2(xi), . . . , γSlh

(xi)}, ιS(xi) = {δS1(xi), δS2(xi), . . . , δSl ι
(xi)} and gS(xi) =

{ηS1(xi), ηS2(xi), . . . , ηSlg
(xi)}, that represent the hesitant truth-membership degree set,

the hesitant indeterminacy-membership degree set, and the hesitant falsity-membership
degree set of the element x ∈ X to S, respectively. Furthermore, it satisfies the conditions
0 � δ, γ, η � 1 and 0 � γ + + δ+ + η+ � 3, where γ ∈ hS(xi), δ ∈ ιS(xi), η ∈ gS(xi),
γ + ∈ h+

S (xi) = ⋃
γ∈hS(xi )

max{γ }, δ+ ∈ ι+S (xi) = ⋃
δ∈ιS (xi )

max{δ} and η+ ∈ g+
S (xi) =⋃

η∈gS(xi )
max{η} for each xi ∈ X.

For convenience, p(xi) = {h(xi), ι(xi), g(xi)} is called a single-valued neutrosophic
hesitant fuzzy element (SVNHFE) or a triple hesitant fuzzy element (Ye, 2015), expressed
by the simple symbol p = {h, ι, g}, such that h = {γ1, γ2, . . . , γlh}, ι = {δ1, δ2, . . . , δl ι}
and g = {η1, η2, . . . , ηlg }, where lh, lι and lg are the numbers of the values of h, ι and g,
respectively.

From Definition 3, one can see that SVNHFSs consist of three parts: the hesitant truth-
membership degree set, the hesitant indeterminacy-membership degree set, and the hes-
itant falsity-membership degree set. Therefore, SVNHFSs support a more effective and
flexible access to determine the judgments of the DMs.

Considering the application of SVNHFSs, based on Chen et al.’s hesitant fuzzy cor-
relation coefficients (Chen et al., 2013), Şahin and Liu (2017) presented a correlation
coefficient of SVNHFSs as follows:

Definition 4 (See Şahin and Liu, 2017). Let A = {xi, hA(xi), ιA(xi), gA(xi) : x ∈ X}
and B = {xi, hB(xi), ιB(xi), gB(xi) : x ∈ X} be any two SVNHFSs with hB(xi) =
{γB1(xi), γB2(xi), . . . , γBki

(xi)}, ιA(xi) = {δA1(xi), δA2(xi), . . . , δApi
(xi)}, gA(xi) =

{ηA1(xi), ηA2(xi), . . . , ηAli
(xi)}, hB(xi) = {γB1(xi), γB2(xi), . . . , γBki

(xi)}, ιB(xi) =
{δB1(xi), δB2(xi), . . . , δBpi

(xi)} and gB(xi) = {ηB1(xi), ηB2(xi), . . . , ηBli
(xi)} on the fi-

nite set X = {x1, x2, . . . , xn}. Then, correlation coefficient between A and B is defined
as:

ρSVNHFSs(A,B) = CSVNHFSs(A,B)√
CSVNHFSs(A,A)

√
CSVNHFSs(B,B)



370 F. Meng et al.

=
n∑

i=1
( 1

ki

ki∑
s=1

γAσ(s)
(xi )γBσ(s)

(xi ) + 1
pi

pi∑
z=1

δAσ(Z)
(xi )δBσ(Z)

(xi ) + 1
li

li∑
t=1

ηAσ(t)
(xi )ηBσ(t)

(xi ))√
n∑

i=1
( 1

ki

ki∑
s=1

γ 2
Aσ(s)

(xi ) + 1
pi

pi∑
z=1

δ2
Aσ(Z)

(xi ) + 1
li

li∑
t=1

η2
Aσ(t)

(xi ) ×
√

n∑
i=1

( 1
ki

ki∑
s=1

γ 2
Bσ(s)

(xi ) + 1
pi

pi∑
z=1

δ2
Bσ(Z)

(xi ) + 1
li

li∑
t=1

η2
Bσ(t)

(xi )

,

(4)

where ki = max{l(hA(xi)), l(hB(xi))}, pi = max{l(ιA(xi)), l(ιB(xi))} and li =
max{l(gA(xi)), (gB(xi))}, and γAσ(s)(xi), δAσ(z)(xi) and ηAσ(t)(xi) are the sth, zth, and
t th values in hA(xi), ιA(xi) and gA(xi), respectively.

For any two SVNHFSs A and B , if the numbers of the values of their hesitant
truth-membership degree sets, hesitant indeterminacy-membership degree sets, and hes-
itant falsity-membership degree sets are separately different, i.e. l(hA(xi)) �= l(hB(xi)),
l(ιA(xi)) �= l(ιB(xi)), or l(gA(xi)) �= l(gB(xi)). To calculate the correlation coefficient,
Şahin and Liu (2017) applied the method by adding the smallest or the largest ele-
ment in the associated shorter sets to extend their lengths until their hesitant truth-
membership degree sets, hesitant indeterminacy-membership degree sets, and hesitant
falsity-membership degree sets separately have the same numbers. The chosen value de-
pends on the risk attitudes of the DMs. Although this procedure permits us to use (1) to cal-
culate the correlation coefficient, it changes the original information offered by the DMs.
For example, let A = {{0.2,0.3}, {0.5}, {0.6}} and B = {{0.5,0.6,0.7}, {0.2}, {0.1}} be
two SVNHFEs. According to Şahin and Liu’s method, we have ρSVNHFSs(A,B) = 0.576
by adding the value 0.2 for the hesitant truth-membership degree set {0.2,0.3}, and we
obtain ρSVNHFSs(A,B) = 0.605 by adding the value 0.3 for the hesitant truth-membership
degree set. In fact, different SVNHFEs are obtained by adding different values.

4. New Single-Valued Neutrosophic Hesitant Fuzzy Correlation Coefficients

Correlation coefficient is an effective tool for examining the relationship between two
fuzzy sets, which has been widely applied in practical decision making problems including
pattern recognition, supply chain management, and market prediction. In this section, sev-
eral new single-valued neutrosophic hesitant fuzzy correlation coefficients (SVNHFCCs)
are defined that avoid the limitations of previous correlation coefficients.

4.1. Two New SVNHFCCs in View of Geometric Mean and Maximum

Based on Meng and Chen’s hesitant fuzzy correlation coefficients (Meng and Chen,
2015b), this subsection proposes two new correlation coefficients of SVNHFSs, which
have two advantages: (i) the lengths of compared SVNHFEs can be different; (ii) they
are not limited to the ordered elements to define the correlation between SVNHFSs. Be-
fore offering the definition of new correlation coefficients, we first propose the following
distances.
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Definition 5. Let A = {xi, hA(xi), ιA(xi), gA(xi) : x ∈ X} and B = {xi, hB(xi),

ιB(xi), gB(xi) : x ∈ X} be any two SVNHFSs defined on the finite set X = {x1, x2, . . . , xn}
with γi ∈ hA, δi ∈ ιA and ηi ∈ gA. Then,

d(γi, hB) = min
γj ∈hB

|γi − γj |, (5)

d(δi, ιB) = min
δj ∈ιB

|δi − δj |, (6)

d(ηi, gB) = min
ηj ∈gB

|ηi − ηj | (7)

are called the distances between γi and hB , δi and ιB , and ηi and gB , respectively.

If there is more than one value in hB , ιB , and gB that satisfy (5)–(7), respectively, let

γ i
j = min

{
γj |γj ∈ hB, |γi − γj | = d(γi, hB)

}
, (8)

γ i
j = min

{
γj |γj ∈ hB, |γi − γj | = d(γi, hB)

}
, (9)

ηi
j = min

{
ηj |ηj ∈ gB, |ηi − ηj | = d(ηi, gB)

}
. (10)

Based on the above defined distance measures, we next consider the correlation be-
tween SVNHFSs.

Definition 6. Let A = {xi, hA(xi), ιA(xi), gA(xi) : x ∈ X} and B = {xi, hB(xi),

ιB(xi), gB(xi) : x ∈ X} be any two SVNHFSs defined on the finite set X = {x1, x2, . . . , xn}.
Then, their correlation is defined as follows:

C(A,B) =
n∑

k=1

((
1

l(hA(xk))

∑
γi (xk)∈hA(xk)

γi(xk)γ
i
j (xk)

+ 1

l(hB(xk))

∑
γj (xk)∈hB(xk)

γj (xk)γ
j
i (xk)

)

+
(

1

l(ιA(xk))

∑
δi (xk)∈ιA(xk)

δi(xk)δ
i
j

+ 1

l(ιB(xk))

∑
δj (xk)∈ιB (xk)

δj (xk)δ
j
i (xk)

)

+
(

1

l(gA(xk))

∑
ηi(xk)∈gA(xk)

ηi(xk)η
i
j (xk)

+ 1

l(gB(xk))

∑
ηj (xk)∈gB(xk)

ηj (xk)η
j
i (xk)

))
, (11)
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where l(hA(xk)), l(hB(xk)), l(ιA(xk)), l(ιB(xk)), l(gA(xk)) and l(gB(xk)) denote the
numbers of the values of hA(xk), hB(xk), ιA(xk), ιB(xk), gA(xk) and gB(xk), respectively.

Proposition 1. Let A = {xi, hA(xi), ιA(xi), gA(xi) : x ∈ X} and B = {xi, hB(xi), ιB(xi),

gB(xi) : x ∈ X} be any two SVNHFSs. Then, the following conclusions are true:

(i) C(A,B) = C(B,A);
(ii) C(A,A) = 2E(A), where

E(A) =
n∑

k=1

(
1

l(hA(xk))

∑
γ (xk)∈hA(xk)

γ (xk)
2 + 1

l(ιA(xk))

∑
δ(xk)∈ιA(xk)

δ(xk)
2

+ 1

l(gA(xk))

∑
η(xk)∈gA(xk)

η(xk)
2
)

.

Proof. From (5), one can easily derive the conclusions. �

On the basis of the defined correlation between SVNHFSs, we further define correla-
tion coefficients of SVNHFSs as follows:

Definition 7. Let A = {xi, hA(xi), ιA(xi), gA(xi) : x ∈ X} and B = {xi, hB(xi), ιB(xi),

gB(xi) : x ∈ X} be any two SVNHFSs defined on the finite set X = {x1, x2, . . . , xn}. Then,
their geometric mean based SVNHFCC is defined as:

CC1(A,B) = C(A,B)√
E(A)E(BA) + √

E(B)E(AB)
(12)

their maximum based SVNHFCC is defined as:

CC2(A,B) = C(A,B)

max{E(A),E(BA)} + max{E(B),E(AB)} , (13)

where

E(A) =
n∑

k=1

(
1

l(hA(xk))

∑
γ (xk)∈hA(xk)

γ (xk)
2 + 1

l(ιA(xk))

∑
δ(xk)∈ιA(xk)

δ(xk)
2

+ 1

l(gA(xk))

∑
η(xk)∈gA(xk)

η(xk)
2
)

,

E(B) =
n∑

k=1

(
1

l(hB(xk))

∑
γ (xk)∈hB(xk)

γ (xk)
2 + 1

l(ιB(xk))

∑
δ(xk)∈ιB (xk)

δ(xk)
2

+ 1

l(gB(xk))

∑
η(xk)∈gB(xk)

η(xk)
2
)

,



Public-Private Partnership Decision Making Based on Correlation Coefficients SVNHFS 373

E
(
BA

) =
n∑

k=1

(
1

l(hA(xk))

∑
γ i
j (xk)∈hB(xk):γi(xk)∈hA(xk)

γ i
j (xk)

2

+ 1

l(ιA(xk))

∑
δi
j (xk)∈ιB (xk):δi (xk)∈ιA(xk)

δi
j (xk)

2

+ 1

l(gA(xk))

∑
ηi
j (xk)∈gB(xk):ηi(xk)∈gA(xk)

ηi
j (xk)

2
)

,

E
(
AB

) =
n∑

k=1

(
1

l(hB(xk))

∑
γ

j
i (xk)∈hA(xk):γj (xk)∈hB(xk)

γ
j
i (xk)

2

+ 1

l(ιB(xk))

∑
δ
j
i (xk)∈ιA(xk):δj (xk)∈ιB (xk)

δ
j
i (xk)

2

+ 1

l(gB(xk))

∑
η

j
i (xk)∈gA(xk):ηj (xk)∈gB(xk)

η
j
i (xk)

2
)

,

and other notations are as shown in Definition 6.

Correlation coefficients (12) and (13) neither consider the lengths of SVNHFEs nor
arrange their possible values in an increasing order. Generally speaking, the optimistic
DMs can apply correlation coefficient (12), while the pessimistic DMs could employ (13).

When correlation coefficients in Definition 7 are used to calculate the example in Sec-
tion 3, one can obtain that CC1(A,B) = 0.631 and CC2(A,B) = 0.377.

To show the rationality of correlation coefficients offered in Definition 7, we consider
the following several desirable properties:

Proposition 2. Let A = {xi, hA(xi), ιA(xi), gA(xi) : x ∈ X} and B = {xi, hB(xi),

ιB(xi), gB(xi) : x ∈ X} be any two SVNHFSs. Then, correlation coefficients (12) and (13)
satisfy

(i) CCq(A,A) = 1;
(ii) CCq(A,B) = CCq(B,A);

(iii) 0 � CCq(A,B) � 1, where q = 1,2.

Proof. For (i) and (ii), it is straightforward based on Definition 7. For (iii), it is obvious
that CCq(A,B) � 0, q = 1,2. For CCq(A,B) � 1, according to the Cauchy-Schwarz
inequality (x1y1 + x2y2 + · · · + xnyn)

2 � (x2
1 + x2

2 + · · · + x2
n)(y2

1 + y2
2 + · · · + y2

n), one
can easily derive the conclusion. �

For the geometric mean based SVNHFCC and the maximum based SVNHFCC shown
in Definition 7, we have the following relationship:
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Proposition 3. Let A = {xi, hA(xi), ιA(xi), gA(xi) : x ∈ X} and B = {xi, hB(xi), ιB(xi),

gB(xi) : x ∈ X} be any two SVNHFSs. Then, CC1(A,B) � CC2(A,B).

4.2. Two Single-Valued Neutrosophic Hesitant Fuzzy 2-Additive Shapley Weighted
Correlation Coefficients

Correlation coefficients offered in Section 4.1 are based on the assumption that all SVN-
HFEs have the same importance. When the finite set X = {x1, x2, . . . , xn} denotes criteria
in decision making, this hypothesis is unreasonable. To indicate their differences in im-
portance, this section further introduces two weighted correlation coefficients.

Some scholars noted that the weights of elements in a set may be interactive (Meng
et al., 2018; Xu, 2010). To cope with the situation, fuzzy measure (Sugeno, 1974) is an
effective tool.

Definition 8 (See Sugeno, 1974). A fuzzy measure on the finite set N = {1,2, . . . , n} is
a set function μ : P(N) → [0,1] satisfying (i) μ(∅) = 0, μ(N) = 1; (ii) If A,B ∈ P(N)

and μ(A) ⊆ μ(B), then, where P(N) is the power set of N .

In multi-criteria decision making, μ(A) can be viewed as the importance of the criteria
set A. In addition to the usual weights of the criteria set taken separately, the weight of
any combination of criteria is also defined.

Considering the fact that fuzzy measures are too complex in practical application,
2-additive measures introduced by Grabisch (1997) are a good choice that can reduce
the complexity of fuzzy measures.

Definition 9 (See Grabisch, 1997). The fuzzy measure μ on the finite set N =
{1,2, . . . , n} is called a 2-additive measure, if, for any S ⊆ N with s � 2, we have

μ(S) =
∑

{i,j}⊆S

μ(i, j) − (s − 2)
∑
i∈S

μ(i), (14)

where s is the cardinality of S.

Based on Definition 9, Grabisch (1997) proposed the following theorem to determine
a 2-additive measure.

Theorem 1 (See Grabisch, 1997). Let μ be a fuzzy measure on N = {1,2, . . . , n}. Then,
μ is a 2-additive measure if and only if

(i) μ(i) � 0, ∀i ∈ N ;
(ii)

∑
{i,j}⊆N μ(i, j) − (n − 2)

∑
_i ∈ Nμ(i) = 1;

(iii)
∑

i⊆S\j (μ(i, j) − μ(i)) � (s − 2)μ(j), ∀j ∈ S ⊆ N and s � 2.

Although 2-additive measure is powerful to reflect the interactions among the weights
of criteria, it cannot be used as the weights directly. Considering this issue, the Shapley
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function (Shapley, 1953) is a useful tool. With respect to the 2-additive measure μ, the
Shapley function can be expressed as in Meng and Tang (2013):

φi(μ,N) = 3 − n

2
μ(i) + 1

2

∑
j∈N\i

(
μ(i, j) − μ(j)

)
(15)

for any i ∈ N .
Based on the 2-additive Shapley function and correlation coefficients offered in Sec-

tion 4.1, single-valued neutrosophic hesitant fuzzy 2-additive Shapley weighted correla-
tion coefficients (SVNHF-2ASWCCs) are defined as follows:

Definition 10. Let A = {xi, hA(xi), ιA(xi), gA(xi) : x ∈ X} and B = {xi, hB(xi), ιB(xi),

gB(xi) : x ∈ X} be any two SVNHFSs on the finite set X = {x1, x2, . . . , xn}. Then, the
geometric mean based SVNHF-2ASWCC between A and B is defined as follows:

CC
φ
1 = Cφ(A,B)√

Eφ(A)Eφ(BA) +
√

Eφ(B)Eφ(AB)

. (16)

The maximum based SVNHF-2ASWCC is defined as follows:

CC
φ
2 = Cφ(A,B)

max{Eφ(A),Eφ(BA)} + max{Eφ(B),Eφ(AB)} , (17)

where

Cφ(A,B) =
n∑

k=1

φxk
(μ,X)

((
1

l(hA(xk))

∑
γi (xk)∈hA(xk)

γi(xk)γ
i
j (xk)

+ 1

l(hB(xk))

∑
γj (xk)∈hB(xk)

γj (xk)γ
j
i (xk)

)

+
(

1

l(ιA(xk))

∑
δi (xk)∈ιA(xk)

δi(xk)δ
i
j (xk)

+ 1

l(ιB(xk))

∑
δj (xk)∈ιB (xk)

δj (xk)δ
j
i (xk)

)

+
(

1

l(gA(xk))

∑
ηi (xk)∈gA(xk)

ηi(xk)η
i
j (xk)

+ 1

l(gB(xk))

∑
ηj (xk)∈gB(xk)

ηj (xk)η
j
i (xk)

))
,
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Eφ(A) =
n∑

k=1

φxk
(μ,X)

(
1

l(hA(xk))

∑
γ (xk)∈hA(xk)

γ (xk)
2 + 1

l(ιA(xk))

∑
δ(xk)∈ιA(xk)

δ(xk)
2

+ 1

l(gA(xk))

∑
η(xk)∈gA(xk)

η(xk)
2
)

,

Eφ(B) =
n∑

k=1

φxk
(μ,X)

(
1

l(hB(xk))

∑
γ (xk)∈hB(xk)

γ (xk)
2 + 1

l(ιB(xk))

∑
δ(xk)∈ιB (xk)

δ(xk)
2

+ 1

l(gB(xk))

∑
η(xk)∈gB(xk)

η(xk)
2
)

,

Eφ

(
BA

) =
n∑

k=1

φxk
(μ,X)

(
1

l(hA(xk))

∑
γ i
j (xk)∈hB(xk):γi (xk)∈hA(xk)

γ i
j (xk)

2

+ 1

l(ιA(xk))

∑
δi
j (xk)∈ιB (xk):δi (xk)∈ιA(xk)

δi
j (xk)

2

+ 1

l(gA(xk))

∑
ηi
j (xk)∈gB(xk):ηi (xk)∈gA(xk)

ηi
j (xk)

2
)

,

Eφ(AB) =
n∑

k=1

φxk
(μ,X)(

1

l(hB(xk))

∑
γ

j
i (xk)∈hA(xk):γj (xk)∈hB(xk)

γ
j
i (xk)

2

+ 1

l(ιB(xk))

∑
δ
j
i (xk)∈ιA(xk):δj (xk)∈ιB (xk)

δ
j
i (xk)

2

+ 1

l(gB(xk))

∑
η

j
i (xk)∈gA(xk):ηj (xk)∈gB(xk)

η
j
i (xk)

2),

φxk
(μ,X) is the Shapley value of xk with respect to the 2-additive measure μ on the set

X = {x1, x2, . . . , xn}, k = 1,2, . . . , n.
Note that correlation coefficients in Definition 10 have the properties for SVNHFCCs

offered in Section 4.1.

Proposition 4. Let A = {xi, hA(xi), ιA(xi), gA(xi) : x ∈ X} and B = {xi, hB(xi), ιB(xi),

gB(xi) : x ∈ X} be any two SVNHFSs on the finite set X = {x1, x2, . . . , xn}. Then, corre-
lation coefficients between A and B satisfy:

(i) CC
φ
q (A,A) = 1;

(ii) CC
φ
q (A,B) = CC

φ
q (B,A);

(iii) 0 � CC
φ
q (A,B) � 1,

where q = 1,2.
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Remark 1. When there are no interactions between the SVNHFSs A and B , correlation
coefficients in Definition 10 degenerate to the corresponding weighted correlation coeffi-
cients as follows:

(i) The geometric mean based weighted SVNHFCC:

CCω
1 = Cω(A,B)√

Eω(A)Eω(BA) + √
Eω(B)Eω(AB)

; (18)

(ii) The maximum based weighted SVNHFCC:

CCω
2 = Cω(A,B)

max{Eω(A),Eω(BA)} + max{Eω(B),Eω(AB)} , (19)

where

Cω(A,B) =
n∑

k=1

ωxk

((
1

l(hA(xk))

∑
γi (xk)∈hA(xk)

γi(xk)γ
i
j (xk)

+ 1

l(hB(xk))

∑
γj (xk)∈hB(xk)

γj (xk)γ
j
i (xk)

)

+
(

1

l(ιA(xk))

∑
δi (xk)∈ιA(xk)

δi(xk)δ
i
j (xk)

+ 1

l(ιB(xk))

∑
δj (xk)∈ιB (xk)

δj (xk)δ
j
i (xk)

)

+
(

1

l(gA(xk))

∑
ηi (xk)∈gA(xk)

ηi(xk)η
i
j (xk)

+ 1

l(gB(xk))

∑
ηj (xk)∈gB(xk)

ηj (xk)η
j
i (xk)

))
,

Eω(A) =
n∑

k=1

ωxk

(
1

l(hA(xk))

∑
γ (xk)∈hA(xk)

γ (xk)
2 + 1

l(ιA(xk))

∑
δ(xk)∈ιA(xk)

δ(xk)
2

+ 1

l(gA(xk))

∑
η(xk)∈gA(xk)

η(xk)
2
)

,

Eω(B) =
n∑

k=1

ωxk

(
1

l(hB(xk))

∑
γ (xk)∈hB(xk)

γ (xk)
2 + 1

l(ιB(xk))

∑
δ(xk)∈ιB (xk)

δ(xk)
2

+ 1

l(gB(xk))

∑
η(xk)∈gB(xk)

η(xk)
2
)

,
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Eω

(
BA

) =
n∑

k=1

ωxk

(
1

l(hA(xk))

∑
γ i
j (xk)∈hB(xk):γi(xk)∈hA(xk)

γ i
j (xk)

2

+ 1

l(ιA(xk))

∑
δi
j (xk)∈ιB (xk):δi (xk)∈ιA(xk)

δi
j (xk)

2

+ 1

l(gA(xk))

∑
ηi
j (xk)∈gB(xk):ηi(xk)∈gA(xk)

ηi
j (xk)

2
)

,

Eω

(
AB

) =
n∑

k=1

ωxk

(
1

l(hB(xk))

∑
γ

j
i (xk)∈hA(xk):γj (xk)∈hB(xk)

γ
j
i (xk)

2

+ 1

l(ιB(xk))

∑
δ
j
i (xk)∈ιA(xk):δj (xk)∈ιB (xk)

δ
j
i (xk)

2

+ 1

l(gB(xk))

∑
η

j
i (xk)∈gA(xk):ηj (xk)∈gB(xk)

η
j
i (xk)

2
)

and ωxk
is the weight of the element xk , k = 1,2, . . . , n.

Furthermore, when we have ωxk
= 1/n for all k = 1,2, . . . , n, correlation coefficients

in Definition 10 reduce to those in Definition 7.
Similar to correlation coefficients offered in Section 4.1, we obtain the following prop-

erty:

Proposition 5. Let A = {xi, hA(xi), ιA(xi), gA(xi) : x ∈ X} and B = {xi, hB(xi), ιB(xi),

gB(xi) : x ∈ X} be any two SVNHFSs on the finite set X = {x1, x2, . . . , xn}. Then, corre-
lation coefficients between A and B satisfy:

(i) CC
φ
1 (A,B) � CC

φ
2 (A,B);

(ii) CCω
1 (A,B) � CCω

2 (A,B).

Noticeably, the pessimists can choose (12) or (14), while the optimists could adopt
(11) and (13).

5. An Approach to Evaluating PPP Models

To verify the practical application of new SVNHFCCs, this section presents an approach
for single-valued neutrosophic hesitant fuzzy multi-attribute decision making, which con-
siders the interactive characteristics between elements. When fuzzy measure is incom-
pletely known, we need to determine the weighting information on the attribute set firstly.
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5.1. Models for Determining the Optimal Fuzzy Measure

Before introducing models for determining the optimal fuzzy measure on the attribute
set, we define the following improvement normalized Hamming distance measure for
SVNHFSs:

Definition 11. Let A = {xi, hA(xi), ιA(xi), gA(xi) : x ∈ X} and B = {xi, hB(xi), ιB(xi),

gB(xi) : x ∈ X} be any two SVNHFSs on the finite set X = {x1, x2, . . . , xn}. Then, their
improvement normalized Hamming distance measure is defined as follows:

dINH (A,B)

= 1

3n

n∑
i=1

(
1

lhA(xi) + lhB(xi)

( ∑
γhA(xi )

∈hA(xi )

min
γhB (xi )

∈hB(xi )
|γhA(xi ) − γhB(xi )|

+
∑

γhB (xi )
∈hB(xi )

min
γhA(xi )

∈hA(xi )
|γhB(xi ) − γhA(xi )|

)

+ 1

lιA(xi) + lιB(xi)

( ∑
δhA(xi )

∈ιA(xi )

min
δhB (xi )

∈ιB (xi )
|διA(xi ) − διB(xi )|

+
∑

δhB (xi )
∈ιB (xi )

min
δhA(xi )

∈ιA(xi )
|διB(xi ) − διA(xi )|

)

+ 1

lgA(xi) + lgB(xi)

( ∑
ηhA(xi )

∈gA(xi )

min
ηhB(xi )

∈gB(xi )
|ηhA(xi ) − ηhB(xi )|

+
∑

ηhB (xi )
∈gB(xi )

min
ηhA(xi )

∈gA(xi )
|ηgB(xi ) − ηgA(xi )|

))
, (20)

where the notations are as shown in Definition 5.

To show the rationality of the Hamming distance measure listed in Definition 11, we
offer the following property:

Proposition 6. Let A = {xi, hA(xi), ιA(xi), gA(xi) : x ∈ X} and B = {xi, hB(xi), ιB(xi),

gB(xi) : x ∈ X} be any two SVNHFSs on the finite set X = {x1, x2, . . . , xn}. Then, the
distance measure between A and B defined in (20) satisfies the following properties:

(i) 0 � dINH (A,B) � 1;
(ii) dINH (A,B) = 0 if and only if A = B;

(iii) dINH (A,B) = dINH (B,A);
(iv) dINH (A,C) � dINH (A,B) + dINH (B,C), where C = {< xi,hC(xi), ιC(xi),

gC(xi)|xi ∈ X >}.
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Proof. For (i): Since 0 � γhA(xi ) − γhB(xi ) � 1 for all γhA(xi ) ∈ hA(xi) and all γhB(xi ) ∈
hB(xi), we have

0 �
∑

γhA(xi )
∈hA(xi )

min
γhB (xi )

∈hB(xi )
|γhA(xi ) − γhB(xi )|

+
∑

γhB (xi )
∈hB(xi )

min
γhA(xi )

∈hA(xi )
|γhB(xi ) − γhA(xi )|� lhA(xi) +hB (xi). (21)

Thus, 0 � dINH (A,B) � 1.
For (ii) and (iii): From (20), it is easy to get the conclusions.
For (iv): When we only consider the truth-membership hesitant degree. According to

the triangle inequality |a − c| � |a − b| + |b − c|, we have

1

lhA(xi) + lhB(xi)

( ∑
γhA(xi )

∈hA(xi )

min
γhB (xi )

∈hB(xi )
|γhA(xi ) − γhB(xi )|

+
∑

γhB (xi )
∈hB(xi )

min
γhA(xi )

∈hA(xi )
|γhB(xi ) − γhA(xi )|

)

+ 1

lhB(xi) + lhC(xi)

( ∑
γhB (xi )

∈hB(xi )

min
γhC(xi )

∈hC(xi )
|γhB(xi ) − γhC(xi )|

+
∑

γhC(xi )
∈hC(xi )

min
γhB (xi )

∈hB(xi )
|γhC(xi ) − γhB(xi )|

)

− 1

lhA(xi) + lhC(xi)

( ∑
γhA(xi )

∈hA(xi )

min
γhC(xi )

∈hC(xi )
|γhA(xi ) − γhC(xi )|

+
∑

γhC(xi )
∈hC(xi )

min
γhA(xi )

∈hA(xi )
|γhC(xi ) − γhA(xi )|

)
� 0. (22)

Thus, one can easily derive that dINH (A,B) + dINH (B,C) − dINH (A,C) � 0, namely,
dINH (A,C) � dINH (A,B) + dINH (B,C). �

Considering a decision-making problem, let A = {a1, a2, . . . , am} be a set of alterna-
tives, and C = {c1, c2, . . . , ck} be a set of criteria. Suppose that pij = (hij , ιij , gij ) is the
SVNHFE of the alternative ai for the criterion cj , i = 1,2, . . . ,m; j = 1,2, . . . , k. By
D = (pij )m×k , we denote the associated single-valued neutrosophic hesitant fuzzy deci-
sion matrix. Let pj be the j th column of D, and let
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p+
j =

m⋃
i=1

pij

=
{

m
max
i=1

{γij },
m

min
i=1

{δij },
m

min
i=1

{ηij }
∣∣γij ∈ hij , δij ∈ ιij , ηij ∈ gij , i = 1,2, . . . ,m

}
,

(23)

p−
j =

m⋃
i=1

pij

=
{ m

min
i=1

{γij }, m
max
i=1

{δij }, m
max
i=1

{ηij }
∣∣γij ∈ hij , δij ∈ ιij , ηij ∈ gij , i = 1,2, . . . ,m

}
(24)

for each j = 1,2, . . . , k.
Let p+ = {p+

1 ,p+
2 , . . . , p+

k } and p− = {p−
1 ,p−

2 , . . . , p−
k }. When the fuzzy measure

μ on the criteria set C is completely unknown, we establish the following model:

min
k∑

j=1

m∑
i=1

φcj
(μ,C)

d(pij ,p
+
j )

d(pij ,p
+
j ) + d(pij ,p

−
j )

s.t.

⎧⎪⎨
⎪⎩

μ(C) = 1,

μ(S) � μ(T ), ∀S,T ⊆ C s.t. S ⊆ T ,

μ(cj )� 0, j = 1,2, . . . , n,

(25)

where φcj
(μ,C) is the Shapley value of the criterion cj with respect to the fuzzy mea-

sure μ, d(pij ,p
+
j ) is the improvement normalized Hamming distance measure between

pij and p+
j , and d(pij ,p

−
j ) is the improvement normalized Hamming distance measure

between pij and p−
j .

When μ is a 2-additive measure, we get

min
3 − n

2

k∑
j=1

m∑
i=1

d(pij ,p
+
j )

d(pij ,p
+
j ) + d(pij ,p

−
j )

μ(cj )

+ 1

2

k∑
j=1

m∑
i=1

d(pij ,p
+
j )

d(pij ,p
+
j ) + d(pij ,p

−
j )

(μ(cj , ci) − μ(ci))

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
ci⊆S\cj

(μ(cj , ci) − μ(ci)) � (s − 2)μ(cj ), ∀cj ∈ S ⊆ C, s � 2,

∑
{cj ,ci }⊆C

μ(cj , ci) − (c − 2)
∑

cj ∈C

μ(cj ) = 1,

μ(cj ) � 0, j = 1,2, . . . , k,

(26)

where the notations are as shown in model (25).
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When the fuzzy measure μ on the criteria set C is incompletely known, model for
ascertaining the optimal fuzzy measure μ is built as follows:

min
k∑

j=1

m∑
i=1

φcj
(μ,C)

d(pij ,p
+
j )

d(pij ,p
+
j ) + d(pij ,p

−
j )

s.t.

⎧⎪⎨
⎪⎩

μ(C) = 1,

μ(S) � μ(T ), ∀S,T ⊆ C s.t. S ⊆ T ,

μ(cj ) ∈ Wj,μ(cj )� 0, j = 1,2, . . . , k,

(27)

where Wj is the known weight information, and other notations are as shown in model
(25).

Similarly, we derive the following model for the optimal 2-additive measure μ on C:

min
3 − n

2

k∑
j=1

m∑
i=1

d(pij ,p
+
j )

d(pij ,p
+
j ) + d(pij ,p

−
j )

μ(cj )

+ 1

2

k∑
j=1

m∑
i=1

d(pij ,p
+
j )

d(pij ,p
+
j ) + d(pij ,p

−
j )

(μ(cj , ci) − μ(ci))

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
ci⊆S\cj

(μ(cj , ci) − μ(ci))� (s − 2)μ(cj ), ∀cj ∈ S ⊆ C, s � 2,

∑
{cj ,ci }⊆C

μ(cj , ci) − (c − 2)
∑

cj ∈C

μ(cj ) = 1,

μ(cj ) ∈ Wj,μ(cj )� 0, j = 1,2, . . . , k,

(28)

where other notations are as shown in models (26) and (27).
Models (25) to (28) degenerate to corresponding models for the optimal additive mea-

sure on the criteria set C if there are no interactions.

5.2. An Algorithm for Evaluating PPP Models

This subsection introduces an algorithm for evaluating PPP models under single-valued
neutrosophic hesitant fuzzy environment, which can deal with the situation where the
weighting information with interactive characteristics is incompletely known. Based on
the established models and the defined correlation coefficients, the main procedure is given
as follows:

Step 1: With respect to a PPP decision-making problem, DMs evaluate the PPP model ai

with respect to the risk factor clj , which is denoted by the SVNHFE pilj = (hilj , ιilj , gilj )

for all i = 1,2, . . . ,m, where j is the first-level risk factor, j = 1,2, . . . , k, and lj is the
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second-level risk factor, lj = 1j ,2j , . . . , qj . The associated single-valued neutrosophic
hesitant fuzzy matrices are defined as P j = (pilj )m×qj

, j = 1,2, . . . , k;

Step 2: Model (26) or (28) is used to determine the optimal 2-additive measure μj on the
second-level risk factor set Cj = {c1j

, c2j
, . . . , cqj

}, j = 1,2, . . . , k. Then, (15) is adopted
to calculate the Shapley values φclj

(μj ,Cj ), lj = 1j ,2j , . . . , qj , and j = 1,2, . . . , k;

Step 3: Using the single-valued neutrosophic hesitant fuzzy 2-additive Shapley weighted
aggregation (SVNHF-2ASWA) operator to calculate the comprehensive SVNHFEs for
first-level risk factor cj , where

pij = SVNHF-2ASWA(pi1j
, pi2j

, . . . , piqj
) =

qj⊕
l=1

pilj φclj

(
μj ,Cj

)

=
{{ ⋃

γi1j
∈hi1j

,γi2j
∈hi2j

,...,γiqj
∈hiqj

qj∏
l=1

γilj φclj

(
μj ,Cj

)}
,

{ ⋃
δi1j

∈ιi1j
,δi2j

∈ιi2j
,...,δiqj

∈ιiqj

qj∏
l=1

δilj φclj

(
μj ,Cj

)}
,

{ ⋃
ηi1j

∈gi1j
,ηi2j

∈gi2j
,...,ηiqj

∈giqj

qj∏
l=1

ηilj φclj

(
μj ,Cj

)}}
(29)

for all i = 1,2, . . . ,m and all j = 1,2, . . . , k;

Step 4: Again using model (26) or (28) to obtain the optimal 2-additive measure μ on the
first-level risk factor set C = {c1, c2, . . . , ck}. Meanwhile, (15) is adopted to calculate the
Shapley values φcj

(μ,C), j = 1,2, . . . , k;

Step 5: Let pi = (pi1,pi2, . . . , pik) with pij = {hij , ιij , gij } for all i = 1,2, . . . ,m, and
all j = 1,2, . . . , k. Using the SVNHF-2ASWCCs shown in Definition 10 to calculate

the correlation coefficients

{
CC

φ
1 (pi,p

+)

CC
φ
1 (pi,p

−)
or

{
CC

φ
2 (pi,p

+)

CC
φ
2 (pi,p

−)
, where p+ = ⋃k

j=1 pj =
{maxm

i=1{γi},minm
i=1{δi},minm

i=1{ηi}|γi ∈ hi, δi ∈ ιi , ηi ∈ gi, i = 1,2, . . . ,m}, p− =⋃k
j=1 pj = {minm

i=1{γi}, maxm
i=1{δi},maxm

i=1{ηi}|γi ∈ hi, δi ∈ ιi , ηi ∈ gi, i = 1,2, . . . ,m};

Step 6: Based on the SVNHF-2ASWCCs, we employ the following equation to calculate
the final ranking values

r
CC

φ
1

i = CC
φ
1 (pi,p

+)

CC
φ
1 (pi,p+) + CC

φ
1 (pi,p−)

(30)
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Fig. 1. The procedure of the new method.

or

r
CC

φ
2

i = CC
φ
2 (pi,p

+)

CC
φ
2 (pi,p+) + CC

φ
2 (pi,p−)

, (31)

where i = 1,2, . . . ,m;

Step 7: According to the final ranking values r
CC

φ
1

i or r
CC

φ
2

i , i = 1,2, . . . ,m, we can obtain
the ranking of PPP models and then select the best one;

Step 8: End.
To show the procedure of the above algorithm clearly, please see Fig. 1.
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6. A Case Study

To show the concrete application of the offered algorithm in Section 5.2, this part offers a
practical example for evaluating PPP models for the high-speed rail.

Example 1. To promote the traffic condition, the Chinese government intends to build a
high-speed railway, which spans two provinces of China with a total length of more than
600 kilometers and a planned total investment of 2 billion US dollars. Its design speed is
300 kilometers per hour. Due to the complexity of the project, the government needs to
select the most suitable PPP model to complete the project according to the risk analysis.
First, it needs to form an evaluation team, which includes 15 members composed by gov-
ernor, mayor, railway minister, manager, sector managers, experts and scholars. To avoid
interaction, they are required to provide their preferences anonymously. Because of the
difference of their expertise and the complexity of the project, different preferred, inde-
terminacy and non-preferred judgments may be offered by different persons. To deal with
this situation, SVNHFE is a good choice that can denote these three aspects using several
values in [0,1], respectively. Suppose that the thirteen PPP models offered in Section 2.1
are the alternatives and the four types of risk factors shown in Table 1 are criteria. Fur-
thermore, single-valued neutrosophic hesitant fuzzy decision matrices are shown in Ta-
bles 4–7. Taking the judgment p111 of a1 (SC) for the first criterion c11 for example, there
are two truth-membership degrees 0.3 and 0.5 which are offered by these 15 members.
Furthermore, they provided two values for the indeterminacy-membership degree and the
falsity-membership degree, respectively, which are denoted by {0.1,0.2} and {0.3,0.4}.
These judgments are expressed by the SVNHFE p111 = {{0.3,0.5}, {0.1,0.2}, {0.3,0.4}}.
Similarly, we can obtain other judgments shown in Tables 4–7. Moreover, Table 8 offers
the weighting information of the first-level evaluation factors and the second-level eval-
uation factors which are derived following the influence of risk factors for chosen PPP
models in this project.

To select the most suitable PPP model, the following procedure is needed:

Step 1: Model (28) is employed to determine the 2-additive measure on the second-level
risk factor set for each first-level risk factor. Taking the second-level risk factor set for c1

as an example, the following model for determining the optimal 2-additive measure μ is
built:

min−8.443(μ(c11) + μ(c21) + μ(c31) + μ(c41)) + 4.327μ(c11, c21)

+ 4.116μ(c31, c41)) + 4.633μ(c11, c31) + 3.81μ(c21, c41)

+ 3.773μ(c11, c41) + 4.67μ(c21, c31)
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Table 4
The single-valued neutrosophic hesitant fuzzy decision matrix P 1 = (pil1 )13×3 for the first-level factor c1.

c11: Construction cost overrun c21: Construction delay c31: Defective construction c41: Construction changes
a1 (SC) {{0.3,0.5}, {0.1,0.2}, {0.3,0.4}} {{0.5,0.6}, {0.2,0.3}, {0.3,0.4}} {{0.2,0.3}, {0.1,0.2}, {0.5,0.6}} {{0.6,0.7}, {0.1,0.2}, {0.2,0.3}}
a2 (MC) {{0.6,0.7}, {0.1}, {0.2}} {{0.6,0.7}, {0.1,0.2}, {0.1,0.2}} {{0.5,0.6}, {0.4}, {0.2,0.3}} {{0.5,0.7}, {0.2}, {0.3}}
a3 (DB) {{0.4,0.6}, {0.1}, {0.3}} {{0.7,0.8}, {0.1}, {0.2}} {{0.4,0.6}, {0.2,0.3}, {0.4}} {{0.3,0.5}, {0.2}, {0.1,0.2,0.3}}
a4 (TO) {{0.1,0.4}, {0.5}, {0.6}} {{0.8}, {0.1}, {0.2}} {{0.4,0.5}, {0.2,0.3}, {0.1}} {{0.4,0.6}, {0.2}, {0.3}}
a5 (LDO) {{0.7}, {0.2,0.3}, {0.1}} {{0.5,0.6}, {0.3,0.4}, {0.2}} {{0.7,0.8}, {0.1,0.2}, {0.1}} {{0.3,0.5}, {0.2,0.3}, {0.1}}
a6 (BTO) {{0.6}, {0.3,0.4}, {0.1}} {{0.8}, {0.2}, {0.1}} {{0.5,0.7}, {0.3}, {0.1,0.2}} {{0.4,0.6}, {0.2,0.4}, {0.1}}
a7 (TDT) {{0.4,0.7}, {0.3}, {0.1}} {{0.6}, {0.4}, {0.1,0.3}} {{0.5}, {0.3,0.4}, {0.1,0.2}} {{0.1}, {0.2}, {0.6,0.8}}
a8 (BOT) {{0.5,0.8}, {0.1,0.2}, {0.1}} {{0.4,0.7}, {0.3}, {0.1}} {{0.2,0.3}, {0.4}, {0.5,0.6}} {{0.7}, {0.2,0.3}, {0.1,0.2}}
a9 (CO) {{0.4,0.5,0.7}, {0.2,0.3}, {0.1}} {{0.4,0.5}, {0.3,0.4}, {0.1}} {{0.6,0.8}, {0.1,0.2}, {0.1}} {{0.5,0.8}, {0.2}, {0.1,0.2}}
a10 (JV) {{0.6}, {0.4}, {0.1,0.3}} {{0.3,0.5}, {0.4}, {0.1,0.2}} {{0.7}, {0.3}, {0.1}} {{0.5}, {0.3,0.5}, {0.2}}
a11 (ET) {{0.4}, {0.2,0.3}, {0.1,0.2}} {{0.1,0.2}, {0.2,0.3,0.4}, {0.6}} {{0.5}, {0.2}, {0.1}} {{0.4,0.7}, {0.3}, {0.1}}
a12 (BBO) {{0.1}, {0.1,0.2}, {0.6,0.8}} {{0.7}, {0.1,0.2,0.3}, {0.1}} {{0.6}, {0.2,0.4}, {0.1}} {{0.3,0.5}, {0.2}, {0.1}}
a13 (BOO) {{0.4}, {0.3}, {0.2,0.1}} {{0.6}, {0.2,0.4}, {0.1,0.2}} {{0.1,0.2}, {0.2,0.3}, {0.5,0.7}} {{0.7}, {0.1,0.3}, {0.2}}

Table 5
The single-valued neutrosophic hesitant fuzzy decision matrix P 2 = (pil2 )13×3 for the first-level factor c2.

c12: Higher level of inflation rate c22: Higher level of interest rate c32: Volatility of exchange rate
a1 (SC) {{0.4,0.7}, {0.2,0.3}, {0.1,0.3}} {{0.1,0.3}, {0.2}, {0.6,0.7}} {{0.5,0.7}, {0.3}, {0.1,0.3}}
a2 (MC) {{0.4,0.6}, {0.2,0.3,0.4}, {0.1,0.2}} {{0.4,0.6}, {0.3}, {0.1,0.2}} {{0.6,0.7}, {0.3}, {0.1}}
a3 (DB) {{0.1}, {0.1}, {0.7,0.8,0.9}} {{0.4,0.7}, {0.2}, {0.1,0.3}} {{0.3,0.5}, {0.4}, {0.2,0.3}}
a4 (TO) {{0.5,0.7,0.8}, {0.1}, {0.2}} {{0.4,0.6}, {0.2,0.4}, {0.1}} {{0.6}, {0.3,0.4}, {0.1}}
a5 (LDO) {{0.5}, {0.1,0.4}, {0.3}} {{0.1}, {0.1,0.3}, {0.5,0.7}} {{0.4,0.7}, {0.1,0.3}, {0.2}}
a6 (BTO) {{0.8}, {0.1,0.2}, {0.1}} {{0.6,0.7}, {0.3}, {0.1,0.2}} {{0.4,0.6}, {0.3,0.4}, {0.1,0.2}}
a7 (TDT) {{0.3,0.6}, {0.4}, {0.2,0.3}} {{0.5,0.6}, {0.3,0.4}, {0.1,0.2}} {{0.6,0.8}, {0.1,0.2}, {0.1}}
a8 (BOT) {{0.1}, {0.3}, {0.4,0.7}} {{0.2,0.3}, {0.4}, {0.4,0.5}} {{0.4,0.7}, {0.3}, {0.2}}
a9 (CO) {{0.4,0.5}, {0.3,0.5}, {0.2}} {{0.5,0.6}, {0.1,0.3}, {0.2}} {{0.6}, {0.3,0.4}, {0.1,0.2}}
a10 (JV) {{0.3,0.6}, {0.4}, {0.2,0.4}} {{0.6,0.7}, {0.2,0.3}, {0.1}} {{0.5}, {0.3,0.4}, {0.1,0.3}}
a11 (ET) {{0.5}, {0.3,0.4}, {0.2}} {{0.4,0.6}, {0.3,0.4}, {0.1,0.3}} {{0.3,0.6}, {0.4,0.5}, {0.2}}
a12 (BBO) {{0.1}, {0.1,0.2}, {0.7,0.8}} {{0.1}, {0.2,0.4}, {0.4,0.6}} {{0.1,0.5}, {0.2,0.4}, {0.3,0.5}}
a13 (BOO) {{0.3}, {0.2,0.4}, {0.3,0.5}} {{0.1,0.3}, {0.2,0.4}, {0.6,0.7}} {{0.5,0.6}, {0.1,0.4}, {0.2}}
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Table 6
The single-valued neutrosophic hesitant fuzzy decision matrix P 3 = (pil3 )1×13 for the first-level factor c3.

a1 (SC) a2 (MC) a3 (DB) a4 (TO) a5 (LDO) a6 (BTO) a7 (TDT)
c3: Politics risk {{0.2,0.4}, {0.6}, {0.5}} {{0.6,0.7}, {0.3}, {0.1,0.2}} {{0.6}, {0.3,0.4}, {0.2}} {{0.1,0.2}, {0.7}, {0.3}} {{0.5,0.7}, {0.3}, {0.1,0.2}} {{0.2,0.3}, {0.5}, {0.7}} {{0.3}, {0.5,0.6}, {0.4}}

a8 (BOT) a9 (CO) a10 (JV) a11 (ET) a12 (BBO) a13 (BOO)
c3: Politics risk {{0.7}, {0.3}, {0.1,0.2}} {{0.6,0.8}, {0.2}, {0.1}} {{0.3}, {0.5,0.6}, {0.4}} {{0.2}, {0.5,0.6}, {0.4}} {{0.1}, {0.4}, {0.5,0.6}} {{0.8}, {0.1,0.2}, {0.2}}

Table 7
The single-valued neutrosophic hesitant fuzzy decision matrix P 4 = (pil4 )13×4 for the first-level factor c4.

c14: Construction cost overrun c24: Construction delay c34: Defective construction c44: Construction changes

a1 (SC) {{0.1,0.2}, {0.4}, {0.2,0.6}} {{0.5,0.7}, {0.2,0.3}, {0.1}} {{0.1}, {0.2,0.3}, {0.5,0.7}} {{0.7}, {0.1,0.2}, {0.2,0.3}}
a2 (MC) {{0.5,0.7}, {0.1}, {0.3}} {{0.4,0.7}, {0.2,0.3}, {0.1,0.2}} {{0.5,0.6}, {0.4}, {0.2}} {{0.5,0.7}, {0.2,0.3}, {0.1}}
a3 (DB) {{0.4,0.6}, {0.1,0.3}, {0.2}} {{0.1}, {0.3}, {0.7,0.9}} {{0.4,0.5}, {0.4}, {0.1,0.3}} {{0.3,0.5}, {0.1}, {0.2,0.3}}
a4 (TO) {{0.1,0.4}, {0.5}, {0.6}} {{0.7,0.8}, {0.1}, {0.2}} {{0.4,0.6}, {0.2,0.3}, {0.1,0.2}} {{0.6}, {0.2,0.4}, {0.3}}
a5 (LDO) {{0.7}, {0.1,0.3}, {0.1}} {{0.5}, {0.3,0.5}, {0.2}} {{0.1}, {0.1,0.2}, {0.5,0.8}} {{0.3,0.4}, {0.2,0.3}, {0.1}}
a6 (BTO) {{0.6}, {0.3,0.4}, {0.1,0.2}} {{0.9}, {0.1}, {0.4}} {{0.1}, {0.3}, {0.5,0.6}} {{0.4,0.6}, {0.2,0.3}, {0.1}}
a7 (TDT) {{0.4,0.7}, {0.2,0.3}, {0.1}} {{0.4,0.6}, {0.3}, {0.1,0.2}} {{0.5}, {0.3,0.5}, {0.1,0.2}} {{0.6,0.8}, {0.2}, {0.1}}
a8 (BOT) {{0.1}, {0.1,0.2}, {0.6,0.8}} {{0.4,0.7}, {0.2,0.3}, {0.1}} {{0.5,0.6}, {0.4}, {0.2,0.3}} {{0.4,0.7}, {0.3}, {0.1,0.2}}
a9 (CO) {{0.6,0.7}, {0.1,0.3}, {0.1}} {{0.4,0.5}, {0.3}, {0.1,0.2}} {{0.1}, {0.1,0.2}, {0.5,0.8}} {{0.1,0.2}, {0.3}, {0.4,0.6}}
a10 (JV) {{0.6}, {0.3,0.4}, {0.1,0.3}} {{0.3,0.6}, {0.4}, {0.2,0.3}} {{0.7}, {0.2,0.3}, {0.1}} {{0.5}, {0.3,0.4}, {0.1}}
a11 (ET) {{0.4,0.7}, {0.2,0.3}, {0.1,0.2}} {{0.1,0.2}, {0.2,0.4}, {0.6}} {{0.5}, {0.2,0.4}, {0.1}} {{0.1}, {0.4}, {0.3,0.6}}
a12 (BBO) {{0.1}, {0.1,0.2}, {0.7,0.8}} {{0.7}, {0.2,0.3}, {0.1,0.2}} {{0.5,0.6}, {0.2,0.4}, {0.1}} {{0.3,0.5}, {0.2,0.4}, {0.1}}
a13 (BOO) {{0.5}, {0.3}, {0.1,0.2}} {{0.6}, {0.2,0.4}, {0.1,0.3}} {{0.1,0.2}, {0.2,0.4}, {0.6,0.7}} {{0.5}, {0.1,0.4}, {0.2}}
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Table 8
The range of known weighting information.

The first-level
risk factor

The range of known
weighting information

The second-level risk factor The range of known
weighting information

c1: Construction risk [0.1,0.2] c11 : Construction cost overrun [0.1,0.2]
c21 : Construction delay [0.4,0.45]
c31 : Defective construction [0.2,0.3]
c41 : Construction changes [0.3,0.4]

c2: Economy risk [0.25,0.4] c12 : Higher level of inflation rate [0.15,0.4]
c22 : Higher level of interest rate [0.25,0.4]
c32 : Volatility of exchange rate [0.3,0.5]

c3: Politics risk [0.35,0.45] c3: Politics risk [0.35,0.5]
c4: Finance risk [0.15,0.3] c14 : Insurance increases [0.1,0.25]

c24 : Ownership change [0.3,0.45]
c34 : Refinancing liabilities [0.2,0.3]
c44 : Finance unavailable [0.4,0.6]

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ(c11) + μ(c21) − μ(c11, c21)� 0,μ(c11) + μ(c31) − μ(c11, c31)� 0

μ(c11) + μ(c14) − μ(c11 , c14) � 0,μ(c21) + μ(c31) − μ(c21, c31) � 0

μ(c21) + μ(c41) − μ(c21, c41)� 0,μ(c31) + μ(c41) − μ(c31, c41)� 0

μ(c11) + μ(c21) + μ(c31) − μ(c11 , c21) − μ(c11, c31) � 0

μ(c11) + μ(c21) + μ(c31) − μ(c11 , c21) − μ(c21, c31) � 0

μ(c11) + μ(c21) + μ(c31) − μ(c11 , c31) − μ(c21, c31) � 0

μ(c11) + μ(c21) + μ(c41) − μ(c11 , c21) − μ(c11, c41) � 0

μ(c11) + μ(c21) + μ(c41) − μ(c11 , c21) − μ(c21, c41) � 0

μ(c11) + μ(c21) + μ(c41) − μ(c11 , c41) − μ(c21, c41) � 0

μ(c11) + μ(c31) + μ(c41) − μ(c11 , c31) − μ(c11, c41) � 0

μ(c11) + μ(c31) + μ(c41) − μ(c11 , c31) − μ(c31, c41) � 0

μ(c11) + μ(c31) + μ(c41) − μ(c11 , c41) − μ(c31, c41) � 0

μ(c21) + μ(c31) + μ(c41) − μ(c21 , c31) − μ(c21, c41) � 0

μ(c21) + μ(c31) + μ(c41) − μ(c21 , c31) − μ(c31, c41) � 0

μ(c21) + μ(c31) + μ(c41) − μ(c21 , c41) − μ(c31, c41) � 0

μ(c11, c21) + μ(c11 , c31) + μ(c11, c41) + μ(c21 , c31) + μ(c21 , c41)

+ μ(c31 , c41) − 2(μ(c11) + μ(c21) + μ(c31) + μ(c41)) = 1

μ(c11) ∈ [0.1,0.2], μ(c21) ∈ [0.4,0.45],
μ(c31) ∈ [0.2,0.3], μ(c41) ∈ [0.3,0.4].

(32)

Solving model (32) using LINGO, we obtain μ(c11) = 0.1, μ(c21) = 0.4, μ(c31) =
0.2, μ(c41) = 0.3, μ(c11 , c21) = 0.5, μ(c11 , c31) = 0.3, μ(c21, c31) = 0.6, μ(c11, c41) =
0.4, μ(c21, c41) = 0.7 and μ(c31, c41) = 0.5.

Furthermore, the Shapley values are φc11
(μ,C1) = 0.1, φc21

(μ,C1) = 0.4,
φc31

(μ,C1) = 0.2 and φc41
(μ,C1) = 0.3, where C1 = {c11, c21, c31 , c41}.
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Similarly, the Shapley values of the second-level risk factors for the first-level risk
factor c2 are φc12

(μ,C2) = 0.23, φc22
(μ,C2) = 0.47 and φc32

(μ,C2) = 0.3, where C2 =
{c12, c22, c32}. Furthermore, the Shapley values of the second-level risk factors for the
first-level risk factor c4 are φc14

(μ,C4) = 0.1, φc24
(μ,C4) = 0.3, φc34

(μ,C4) = 0.2 and
φc44

(μ,C4) = 0.4, where C4 = {c14, c24 , c34, c44}.

Step 2: The SVNHF-2ASWA operator is used to aggregate SVNHFEs on the second-level
evaluation risk factors, by which the comprehensive SVNHFEs of the thirteen PPP models
for each first-level risk factor are obtained. Taking the first PPP model for c1 for example,
the comprehensive SVNHFE is

p11 = {{0.47,0.51,0.48,0.53,0.51,0.55,0.53,0.57,0.49,0.53,0.5,0.54,0.53,

0.57,0.54,0.58}, {0.13,0.16,0.15,0.19,0.18,0.17,0.14,0.17,0.16,0.2,

0.17,0.21,0.19,0.19}, {0.3,0.33,0.31,0.35,0.33,0.34,0.39,0.3,0.34,

0.31,0.31,0.36,0.34,0.38,0.35,0.4}}.
Step 3: Model (28) is again adopted to determine the optimal 2-additive measure μ on
the first-level risk factor set, where the following is obtained:

min−8.443(μ(c1) + μ(c2) + μ(c3) + μ(c4)) + 4.327μ(c1, c2)

+ 4.116μ(c3, c4)) + 4.633μ(c1, c3) + 3.81μ(c2, c4) + 3.773μ(c1, c4)

+ 4.67μ(c2, c3)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ(c1) + μ(c2) − μ(c1, c2) � 0,μ(c1) + μ(c3) − μ(c1, c3) � 0
μ(c1) + μ(c4) − μ(c1, c4) � 0,μ(c2) + μ(c3) − μ(c2, c3) � 0
μ(c2) + μ(c4) − μ(c2, c4) � 0,μ(c3) + μ(c4) − μ(c3, c4) � 0
μ(c1) + μ(c2) + μ(c3) − μ(c1, c2) − μ(c1, c3) � 0
μ(c1) + μ(c2) + μ(c3) − μ(c1, c2) − μ(c2, c3) � 0
μ(c1) + μ(c2) + μ(c3) − μ(c1, c3) − μ(c2, c3) � 0
μ(c1) + μ(c2) + μ(c4) − μ(c1, c2) − μ(c1, c4) � 0
μ(c1) + μ(c2) + μ(c4) − μ(c1, c2) − μ(c2, c4) � 0
μ(c1) + μ(c2) + μ(c4) − μ(c1, c4) − μ(c2, c4) � 0
μ(c1) + μ(c3) + μ(c4) − μ(c1, c3) − μ(c1, c4) � 0
μ(c1) + μ(c3) + μ(c4) − μ(c1, c3) − μ(c3, c4) � 0
μ(c1) + μ(c3) + μ(c4) − μ(c1, c4) − μ(c3, c4) � 0
μ(c2) + μ(c3) + μ(c4) − μ(c2, c3) − μ(c2, c4) � 0
μ(c2) + μ(c3) + μ(c4) − μ(c2, c3) − μ(c3, c4) � 0
μ(c2) + μ(c3) + μ(c4) − μ(c2, c4) − μ(c3, c4) � 0
μ(c1, c2) + μ(c1, c3) + μ(c1, c4) + μ(c2, c3) + μ(c2, c4)

+ μ(c3, c4) − 2(μ(c1) + μ(c2) + μ(c3) + μ(c4)) = 1
μ(c1) ∈ [0.1,0.2], μ(c2) ∈ [0.4,0.45],
μ(c3) ∈ [0.2,0.3], μ(c4) ∈ [0.3,0.4].

(33)
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Table 9
SVNHF-2ASWCCs obtained from (16) and (17).

CC
φ
1 (pi ,p

+) CC
φ
1 (pi ,p

−) CC
φ
2 (pi ,p

+) CC
φ
2 (pi ,p

−)

a1 0.77 0.9 0.74 0.80
a2 0.96 0.66 0.86 0.53
a3 0.91 0.74 0.77 0.59
a4 0.71 0.82 0.67 0.69
a5 0.94 0.71 0.79 0.55
a6 0.76 0.81 0.72 0.80
a7 0.78 0.86 0.67 0.70
a8 0.93 0.65 0.85 0.58
a9 0.97 0.57 0.94 0.49
a10 0.79 0.83 0.72 0.73
a11 0.68 0.88 0.54 0.69
a12 0.63 0.92 0.52 0.76
a13 0.94 0.63 0.85 0.57

Solving model (33) using LINGO, we have μ(c1) = 0.1, μ(c2) = 0.4, μ(c3) =
0.2, μ(c4) = 0.3, μ(c1, c2) = 0.5, μ(c1, c3) = 0.4, μ(c2, c3) = 0.6, μ(c1, c4) = 0.4,
μ(c2, c4) = 0.7 and μ(c3, c4) = 0.5, and the Shapley values are φc1(μ,C) = 0.1,
φc2(μ,C) = 0.4, φc3(μ,C) = 0.2 and φc4(μ,C) = 0.3.

Step 4: Using SVNHF-2ASWCCs to calculate correlation coefficient, which are shown
in Table 9.

Step 5: According to Table 9, (30) and (31), the ranking values are obtained as follows:

r
CC

φ
1

1 = 0.461, r
CC

φ
1

2 = 0.593, r
CC

φ
1

3 = 0.553,

r
CC

φ
1

4 = 0.464, r
CC

φ
1

5 = 0.57, r
CC

φ
1

6 = 0.484,

r
CC

φ
1

7 = 0.476, r
CC

φ
1

8 = 0.59, r
CC

φ
1

9 = 0.63,

r10CC
φ
1 = 0.488, r11CC

φ
1 = 0.436, r12CC

φ
1 = 0.408,

r
CC13φ

1 = 0.6, r
CC

φ
2

1 = 0.481, r
CC

φ
2

2 = 0.619,

r
CC

φ
2

3 = 0.567, r
CC

φ
2

4 = 0.493, r
CC

φ
2

5 = 0.59,

r
CC

φ
2

6 = 0.475, r
CC

φ
2

7 = 0.489, r
CC

φ
2

8 = 0.496,

r
CC

φ
2

9 = 0.657, r10CC
φ
2 = 0.494, r11CC

φ
2 = 0.439,

r12CC
φ
2 = 0.407, r13CC

φ
2 = 0.6.
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Table 10
Ranking results based on different methods.

Geometric mean based
SVNHF-2ASWCC

Maximum based
SVNHF-2ASWCC

Şahin and Liu’s
correlation coefficient
(Şahin and Liu, 2017)

Ranking values of a1 0.461 0.481 0.617
Ranking values of a2 0.593 0.619 0.875
Ranking values of a3 0.553 0.567 0.736
Ranking values of a4 0.464 0.493 0.594
Ranking values of a5 0.57 0.59 0.826
Ranking values of a6 0.484 0.475 0.651
Ranking values of a7 0.476 0.489 0.639
Ranking values of a8 0.59 0.596 0.804
Ranking values of a9 0.63 0.657 0.892
Ranking values of a10 0.488 0.494 0.658
Ranking values of a11 0.436 0.439 0.509
Ranking values of a12 0.408 0.407 0.468
Ranking values of a13 0.6 0.6 0.834

Ranking using geometric mean
based SVNHF-2ASWCC

a9 � a13 � a2 � a8 � a5 � a3 � a10 � a6 � a7 � a4 � a1 � a11 � a12

Ranking using maximum based
SVNHF-2ASWCC

a9 � a2 � a13 � a8 � a5 � a3 � a10 � a4 � a1 � a7 � a6 � a11 � a12

Ranking using Şahin and Liu’s
correlation coefficient

a9 � a2 � a13 � a5 � a8 � a3 � a10 � a6 � a7 � a1 � a4 � a11 � a12

Step 6: According to the ranking values obtained in Step 5, we derive the below rankings

a9 � a13 � a2 � a8 � a5 � a3 � a10 � a6 � a7 � a4 � a1 � a11 � a12

and

a9 � a2 � a13 � a8 � a5 � a3 � a10 � a4 � a1 � a7 � a6 � a11 � a12.

In this example, when Şahin and Liu’s method (Şahin and Liu, 2017) is applied, the
final ranking values are obtained as follows:

ρSVNHFSw(a1, a
∗) = 0.617, ρSVNHFSw(a2, a

∗) = 0.875,

ρSVNHFSw(a3, a
∗) = 0.736, ρSVNHFSw(a4, a

∗) = 0.594,

ρSVNHFSw(a5, a
∗) = 0.826, ρSVNHFSw(a6, a

∗) = 0.651,

ρSVNHFSw(a7, a
∗) = 0.639, ρSVNHFSw(a8, a

∗) = 0.804,

ρSVNHFSw(a9, a
∗) = 0.892, ρSVNHFSw(a10, a∗) = 0.658,

ρSVNHFSw(a11, a∗) = 0.509, ρSVNHFSw(a12, a∗) = 0.468,

ρSVNHFSw(a13, a∗) = 0.834.

For simplicity, the ranking results based on different methods are presented in Table 10.
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Table 11
The comparison between two calculate correlation based decision making methods.

Methods Does it change the
original decision
making information?

Does it need the
length of the
compared SVNHFSs
to be equal?

Does it consider the
situation where the
weighting
information is
incompletely known?

Can it deal with the
case where there are
interactive
characteristics?

Şahin and Liu’s
method (Şahin and
Liu, 2017)

YES YES NO NO

New method NO NO YES YES

Table 10 shows that different rankings are obtained based on different correlation co-
efficients. However, all of them show that the PPP model a9 is the best choice.

This example shows that different rankings may be obtained using different correla-
tion coefficients. This is because their principles are different. The geometric mean based
SVNHF-2ASWCC adopts the geometric mean of associated items to calculate correla-
tion coefficient, and the maximum based SVNHF-2ASWCC uses the maximum of asso-
ciated items to calculate correlation coefficient. Just as the above analysis, we suggest the
pessimistic DMs to use maximum based SVNHF-2ASWCC and the optimistic DMs to
employ geometric mean based SVNHF-2ASWCC. As for Şahin and Liu’s correlation co-
efficient, it needs to add extra values into SVNHFEs and calculate correlation coefficient
based on the corresponding ordered values. Furthermore, new correlation coefficients em-
ploy the 2-additive Shapley values as the weights of risk factors that can reflect the interac-
tions among their importance. Meanwhile Şahin and Liu’s correlation coefficient is based
on the assumption that there is no interaction among the weights of risk factors and it uses
additive measures.

To show the differences between new method and Şahin and Liu’s method in view of
their principles intuitively, please see Table 11.

7. Conclusions

There is an increasing popularity of PPP applications in infrastructure development. When
PPP brings good opportunities for efficient public service and management, there are usu-
ally many types of risks due to different cultural, political, economic, and environmental
problems. To minimize the risk of PPP application, it is imperative to find a suitable and
comprehensive decision making method. To do this, this paper first analyses several types
of PPP models and constructs a decision making index system by considering the risk fac-
tors. Then, SVNHFSs are applied to deal with uncertainties in the evaluation of PPP mod-
els. After that, two new correlation coefficients of SVNHFSs based on 2-additive measure
and the Shapley function are introduced that can cope with the situation where elements
in a set are interactive. Furthermore, a new algorithm is provided to evaluate PPP models.
Finally, a case study is selected to demonstrate the feasibility and efficiency of this new
algorithm. Compared with other methods, the main drawback of the new method seems
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to be more complicated when calculating the 2-additive Shapley value. However, with
the help of software and the computer technology, this problem can be easily addressed.
It is worth noting that we can follow new correlation coefficients for SVNHFSs to simi-
larly study single-valued neutrosophic hesitant fuzzy distance measure and single-valued
neutrosophic hesitant fuzzy similarity measure.

In the future, we will continue to research the theory of decision making with single-
valued neutrosophic hesitant fuzzy information. In terms of application, we only research
the application of SVNHFSs in evaluating PPP models for the high-speed rail. Similarly,
we can apply the new method in some other fields, such as project management (Mohamed
and Mccoan, 2001), real estate investment (Ginevicius and Zubrecovas, 2009), ecological
environment management (Huang et al., 2003), information system (Gudas and Lopata,
2016; Ai et al., 2016), and supply chain management (Brandenburg et al., 2014). In some
cases, some judgments may be missing due to various reasons. Therefore, we shall explore
multi-attribute decision making with incomplete information (Ureña et al., 2015; Capuano
et al., 2018). Furthermore, we shall continue to research decision making methods with
other types of fuzzy sets such as interval neutrosophic hesitant fuzzy sets (Ye, 2016) and
interval neutrosophic linguistic sets (Ye, 2014a).
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