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Abstract. A large number of modern mobile devices, embedded devices and smart home devices
are equipped with a voice control. Automatic recognition of the entire audio stream, however, is un-
desirable for the reasons of the resource consumption and privacy. Therefore, most of these devices
use a voice activation system, whose task is to find the specified in advance word or phrase in the au-
dio stream (for example, Ok, Google) and to activate the voice request processing system when
it is found. The voice activation system must have the following properties: high accuracy, ability
to work entirely on the device (without using remote servers), consumption of a small amount of
resources (primarily CPU and RAM), noise resistance and variability of speech, as well as a small
delay between the pronunciation of the key phrase and the system activation. This work is a system-
atic literature review on voice activation systems that satisfy the above properties. We describe the
principle of various voice activation systems’ operation, the characteristic representation of sound
in such systems, consider in detail the acoustic modelling and, finally, describe the approaches used
to assess the models’ quality. In addition, we point to a number of open questions in this problem.
Key words: voice activation, keyword spotter, hidden markov models, acoustic model, neural
networks.

1. Introduction

The voice activation task has been attracting both research and industry for decades. Since
the task of formulating an algorithm to determine whether a code phrase has been uttered
in an audio stream is difficult, it is not surprising that heuristic algorithms and machine
learning methods have long been used for the voice activation problem.

The history of voice activation models has gone through several important stages in
parallel with solving a more general problem of automatic speech recognition. We would
like to highlight the following important moments: the beginning of the use of hidden
Markov models back in 1989 (Rohlicek et al., 1989), the use of neural networks since
1990 (Morgan et al., 1990, 1991; Naylor et al., 1992), the use of pattern matching ap-
proaches, in particular, dynamic time wrapping (Zeppenfeld and Waibel, 1992) optimiza-
tion of a loss functions specific to a voice activation (as opposed to the common metrics
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such as accuracy and similar; this enables the system to become more attractive in terms
of user experience) (Chang and Lippmann, 1994; Szöke et al., 2010), attempts to get rid
of a garbage model (Junkawitsch et al., 1997), building systems of voice activation for
non-English languages such as Chinese (Zheng et al., 1999; Hao and Li, 2002), Japanese
(Ida and Yamasaki, 1998), Persian (Shokri et al., 2011), construction of discriminative
systems (Keshet et al., 2009; Tabibian et al., 2011, 2013), publications describing voice
activation systems in mass products (Chen et al., 2014a; Gruenstein et al., 2017; Guo
et al., 2018; Wu et al., 2018), as well as publishing open datasets to compare different
approaches (Warden, 2018).

Voice activation systems can be applied in various areas: telephony (Shokri et al.,
2013; Szöke et al., 2010), crime analysis (Kavya and Karjigi, 2014), the assistance systems
in emergency situations (Zhu et al., 2013), automated management of airports (Tabibian,
2017) and, naturally, personal voice assistants, built-in mobile phones and home devices
(Gruenstein et al., 2017).

The problem of voice activation is closely related to the problems of automatic speech
recognition and spoken term detection. In ASR, the task is to find the most likely sequence
of words spoken in the audio recording, whereas in voice activation we need to find only
a predetermined set of words or to indicate that such a word/words was/were not spo-
ken. Of course, being able to solve the problem of ASR can easily solve the problem of
voice activation, but at the moment most of the speech recognition systems consume an
unacceptably large amount of resources for voice activation.

Spoken term detection is a search for a given phrase (and this phrase may vary depend-
ing on the request) in a static set of audio data. In voice activation, the phrase is fixed, but
the audio data is delivered in real time. Therefore, you can use offline methods in spoken
term detection, such as bidirectional neural networks or audio pre-indexing.

Despite the differences in these problems, approaches and ideas often overlap. For
example, audio data representation, decoding methods or architecture of acoustic models.
Additional requirements may apply for voice activation systems. For example, responding
only to a keyword that was addressed to the system, but not to the same keyword spoken
in the conversation (wake-up-word detection) (Këpuska and Klein, 2009; Zhang et al.,
2016); responding only to a keyword spoken by a registered user (Gruenstein et al., 2017;
Manor and Greenberg, 2017; Kurniawati et al., 2012).

In this paper, we will focus primarily on voice activation systems that can be used in
embedded systems, in particular, mobile phones. Such systems must satisfy the following
properties:

• high recall of finding the keyword (to build a voice interface, you need to be sure that
you can start the voice interaction; with a low recall, the user will have to start the
interaction in a different way),

• a small number of false positives (since the voice activation system is always on, a large
number of false positives is unacceptable: this causes a waste of device resources, dis-
tracts the user’s attention and potentially reduces security),

• the ability to work entirely on a limited resource device (firstly, continuous forwarding
of audio data to remote servers is impossible due to prohibitively high requirements for
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resources and communication coverage, and secondly, it is undesirable from the user
privacy’s point of view),

• consumption of a small amount of resources (due to the previous property, consuming
a large amount of resources will lead to rapid battery depletion and slow operation of
other processes),

• noise resistance and variability of speech,
• a small delay between the utterance of the keyword and system activation.

We will call systems that satisfy these properties small-footprint keyword activation
systems, similar to Chen et al. (2014a). Thus, some papers that suggest the operation of
the system in milder conditions (for example, not in real time) were omitted from the study.

Previously, there were reviews of voice activation systems (Bohac, 2012; Rohlicek et
al., 1993; Morgan and Scofield, 1991), but there is some outdated information (due to
rapid development in the area). Also, as far as we know, our work is the first systematic
literature review on the subject.

This work has the following structure. In Section 2, we describe the structure of a typ-
ical voice activation system, and will help to state the research questions which we aim to
answer in this work. Next, in Sections 3, 4, 5, 6, and 7, we provide the answers to these
questions. In Section 8 we describe approaches that are difficult to relate to the typical sys-
tem described in 2. Finally, in Section 9, we summarize the study and describe possible
areas for further work.

2. Structure of Voice Activation System

As described in Section 1, voice activation systems have come a long way. One way to
study and compare approaches is to provide the model of a system and to compare the
individual components of the model. Most voice activation systems (especially modern
ones) consist of the following parts:

• feature extraction from audio data (to represent audio data in format acceptable to
machine learning models and obtain input data that has enough information to solve
the problem),

• application of the acoustic model (a system that generally computes the probability of
acoustic observations, which often comes down to computing P(u|O), where u is an
acoustic unit and O are acoustic observations),

• decoding: the process of determining the state sequence with the reference to acous-
tic observation and acoustic model in order to determine whether a keyword has been
uttered or not.

For example, Chen et al. (2014a) describe voice activation systems that apply an acous-
tic model specified by deep neural network to extracted Log Mel-filterbank (feature ex-
traction) and decide whether the keyword was uttered by smoothing deep neural network
outputs and comparing them with a threshold (decoding).

Of course, not all the possible voice activation systems are well described by the
scheme. For instance, in pattern-matching approaches it is hard to separate acoustic model
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and feature extraction. Discriminative spotters would be another example. We will discuss
these and other systems in more detail in Section 8. Nevertheless, even in these systems it
is always possible to point out the feature representation of the audio or some kind of the
acoustic model.

This systematic literature review aims to summarize information available in studies
about voice activation systems for embedded devices by answering the following research
questions:

1. What acoustic features are used?
2. What types of acoustic model are used?
3. What acoustic units are used in acoustic modelling?
4. What types of decoder are used?
5. What metrics are used to evaluate systems’ quality?

3. Feature Representation

Sound is a continuous physical phenomenon of mechanical vibration transmission in the
form of an acoustic wave. However, most machine learning models do not accept contin-
uous data as input. Thus, the extraction of features from the audio recording has two main
goals:

• representing audio in a way that would be suitable to machine learning methods,
• the preservation of the largest possible amount of information needed to solve the prob-

lem (i.e. finding keywords) and the exclusion of the largest possible amount of infor-
mation irrelevant to the task (“noise” such as background sounds or the variability of
speech).

Most voice activation systems use an approach similar to speech recognition systems
(Hinton et al., 2012).

1. The original recording is segmented in possibly overlapping frames.
2. In each frame, a numerical vector that describes the behaviour of the sound at this

time interval is computed (usually, this vector is computed using the discrete Fourier
transform). Let’s say that this vector has dimension nf .

3. The resulting numerical matrix of the size T × nf is used as the result of feature ex-
traction (where T is the number of frames).

Thus the audio data can be viewed as a 2D-image or a time series. The specially se-
lected transformation used in the second step is responsible for extracting the most dis-
criminative features for the voice activation task.

Of course, not all the systems go this way. For example, Kumatani et al. (2017) use raw
waveform (without any selected transformations), and Lehtonen (2005) develops a specific
digital signal processing pipeline.

Sometimes, feature quantization is used to increase the speed of operation, reduce
consumption or for specific algorithms (Feng and Mazor, 1992).
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Mel Frequency Cepstral Coefficients (MFCC) is the most frequently used feature
type in the studied sources. It is calculated in the following way:

1. The audio is segmented into short frames (popular choice is to have 25 ms segments
with the overlap of 10 ms).

2. For each frame the periodogram estimate of the power spectrum is computed. This
is similar to the way human cochlea processes the information (different nerves fire
signals depending on the frequency of the audio). To get the estimate, first Discrete
Fourier Transform of each frame is computed via:

Sj (k) =
N∑

n=1

sj (n)h(n) exp

(−2iπ

N
kn

)
,

where j is the frame number, 1 � k � K , K is the DFT length, h(n) is an N sample
long analysis window (e.g. Hamming window), sj (n) is the n-th sample of the j -th
frame. After that, the periodogram estimate is computed by:

Pj (k) = 1

N

∣∣Sj (k)
∣∣2

.

3. Apply the Mel-filterbank to the power spectra summing the energy in each filter. The
Mel scale relates perceived frequency. Human ear is more sensitive to small changes
in low frequencies than in the higher spectra. In order to convert frequency f to Mel
scale, the following formula is used:

M(f ) = 1125 ln(1 + f/700).

4. The logarithm of filterbank energies is taken. This also relates to human perception:
the loudness does not change linearly with the energy. Logarithm is good approxima-
tion and also it allows to perform channel normalization with simple subtraction (e.g.
cepstral mean normalization).

5. Discrete cosine transform is applied. This is done to decorrelate the filterbank energies
which were computed with overlapping filters.

Although the vast majority of articles use Log Mel-filterbank (fbank) or Mel Fre-
quency Cepstral Coefficients or their derivatives, the question arises whether this ap-
proach is universal, i.e. suitable to all situations. It turns out that this is not the case, for
example, during the development of voice activation systems for the Japanese (Ida and Ya-
masaki, 1998), the prosodic information had to be used to achieve acceptable quality, as
MFCC did not give sufficient results. This situation happens with some other languages,
too (Zheng et al., 1999).

Among the common techniques, one can use stacking (concatenation of feature vec-
tors from the current and neighbouring frames) and the calculation of delta or deriva-
tives (i.e. the calculation of a discrete time derivative using features from neighbouring
frames). Also, a mean normalization or a variance normalization is often used. In the
cepstral range, this transformation is usually abbreviated as cmvn.
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Fig. 1. Feature visualization for audio file with “Hello, world!” pronunciation.

Table 1
The umber of times acoustic features and transformations were used in studied sources.

Acoustic features and transformations Number of sources

Mel Frequency Cepstral Coefficients 25
Derivatives or deltas 24
Log Mel-filterbank 9
Mean/variance normalization 8
Linear predictive coding 6
Energy or log-energy 5
Fourier transform 4
Stacking, perceptual linear prediction 3
Gain normalization, prosodic information, linear discriminant analysis over
MFCC autoregressive moving average, spectral entropy, spectral flatness burst
degree, bisector frequency, formant frequencies, feature space Maximum
Likelihood Linear Regression, raw waveform

1

For a detailed description of the mentioned features, you can refer to the relevant arti-
cles or reviews (Giannakopoulos, 2015). The visualization of some of the features for the
phrase “Hello, world!” is shown in Fig. 1 and is computed using the framework for speech
recognition kaldi (Povey et al., 2011).

The acoustic features used in studied sources are presented in Table 7, in Appendix A.
The number of times these features were used in the sources is presented in Table 1.

4. Acoustic Model

The task of the acoustic model is to model acoustic properties of the selected acoustic unit.
For example, an acoustic model can provide a probability distribution over the vectors of
MFCC-features when a certain word is pronounced. Practically, the acoustic model is used
to compute P(S|u), where S – sound and u is some acoustic unit.
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Fig. 2. Hidden Markov model example for Amazon’s keyword spotter (Guo et al., 2018).

Often it is more natural or easier to compute P(u|S), and then get P(S|u) via Bayes
theorem. Especially often this technique is used in conjunction with Hidden Markov Mod-
els (HMM).

The most common acoustic model for voice activation is built as follows. The set of
HMM states is logically divided into two parts: a part that represents audio event of key-
word pronunciation and a garbage model (a model of the rest of the sound: noise, back-
ground speech, actual voice request). Figure 2 shows a typical HMM used in Amazon’s
spotter for the keyword “Alexa”.

Each state of the model represents an acoustic unit (see Section 5 for details), for exam-
ple, a phoneme. Model “says” that at each frame (see Section 3) the acoustic environment
is in one of the states of the HMM and generates a visible variable, for example, the vector
of the MFCC-features (or more generally, sound). Each state has a distribution of proba-
bilities over the sound. Thus, when we receive an audio file, we know the sound and the
probability distributions, but we do not know in what state the model was in each of the
frames. However, for each possible sequence of states, we can calculate the probability
of this sequence. By decoding (Section 6), we can find the most probable sequence. If
this sequence generated a keyword, then we can say that the activation occurred (there are
other options for decoding and determining the activation).

It is necessary to be able to calculate P(S|s) (s is an HMM state) to find the keyword.
Such calculation is called acoustic modelling. Gaussian mixture model (GMM) or neural
networks are the most frequent choices for acoustic model. Note that these choices coin-
cide with the choices for acoustic models in automatic speech recognition systems. Before
(Hinton et al., 2012) GMM acoustic models were considered state-of-the-art, and after the
publication they were almost completely replaced by neural networks.

Note that it is the question of definitions what to consider an acoustic model in the
HMM-GMM setup. You can either consider GMM (so the part which actually computes
P(S|s), recall that the HMM state often represents some acoustic unit) or the whole HMM,
because it expresses P(S|w) like in Zheng et al. (1999) (w is a keyword).

Good acoustic model is the key for a high quality voice activation system. Therefore, it
is not surprising that the calculations associated with the acoustic model usually take the
biggest part of the voice activation system runtime. This is why in many studies this part
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Table 2
The number of times a specific acoustic model was used in studied sources.

Acoustic model Number of sources

GMM 18
Neural network 10
Time-delayed neural network 4
RNN, gated RNN, LSTM, bidirectional LSTM 2
Polynomial model, continous density neural tree, mixture of central distance
normal distributions, support vector machine, deep neural network with
highway blocks, binary deep neural network, convolutional neural network

1

is speeded up. For example, Fernández-Marqués et al. (2018) apply the binary arithmetic
(instead of floating arithmetic) in the model, Sun et al. (2017), Szöke et al. (2010) represent
the architecture of a neural network where each layer of the matrix multiplication of N ×
M is replaced by the product of two matrices with sizes N × K and K × M , where K is
much smaller than N and M . Thus, a big number of operations is saved, and not a lot of
expressive power of the model is lost (with the appropriate method of training).

Another way to build a speech recognition system is not to use HMM, but to calcu-
late some (heuristically selected) value based on the outputs of the acoustic model. For a
successful use of this approach, see Chen et al. (2014a).

The acoustic models used in studied sources are presented in Table 8, in Appendix A.
The number of times these models were used in the sources is presented in Table 2.

5. Acoustic Units

The choice of an elementary unit for acoustic modelling (acoustic unit) affects the resulting
quality. A system developer is faced with the following tradeoff: the larger the unit is (e.g. a
word), the more stable it is (meaning, that produced acoustic features have less variability)
and accordingly, it is easier to find such a pattern in audio stream. However, such a system
is not flexible.

If a smaller unit has been chosen, for example, phoneme, then we are faced with a
more difficult task of finding a pattern, but on the other hand we can build a system that
finds an arbitrary word from a system that finds phonemes.

Sometimes the solution for this tradeoff is to choose syllables or part of the words if
it is difficult to define syllables.

Also, one can choose not a whole phoneme as a unit, but a part of the phoneme
(for example, the beginning of the phoneme A or the middle of the
phoneme B) or context-dependent phoneme (for example, phoneme A, going
after phoneme B). A phoneme without context is often called monophone, and a
context-dependent is called biphone (if the dependency is only on one side) or triphone
(if the dependency is on both the left and the right). There is also a possibility to com-
bine these approaches and use part of the context-dependent phoneme. In this case,
the system will probably have impractically many units, so they are often clustered (by
pronunciation) into clusters called senones.
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Table 3
Number of times specific acoustic unit was used in studied sources.

Acoustic unit Number of sources

Monophone 19
Whole word 13
Syllable 5
Letter, part of the word, part of the phoneme 3
Triphone 2
State unit (learnt “phoneme”), senone 1

We must note that the term senone does not have a strict definition. Some authors like
Yu and Deng (2014) define senone as a tied (clustered) triphone state. Some, like authors
of Janus Toolkit, call all acoustic units senones (Janus Toolkit Documentation, 2019).

The solution of this tradeoff depends on the size of the training data (at a small size it
is much more difficult to build a whole word model than a phoneme model), the choice of
the acoustic model, the key phrase, and the language. As far as we know, at the moment
there is no algorithm or rules, under what conditions which acoustic unit to choose.

The acoustic units used in studied sources are presented in Table 6 in Appendix A.
Number of times these units were used in the sources are presented in Table 3.

6. Decoding

As a result of the acoustic model application to an audio stream we receive the values char-
acterizing probability that at a certain moment this or that acoustic unit was pronounced.
Voice activation system needs to make a decision whether the keyword was uttered in an
audio stream or not according to the obtained one or more numeric series. To do this,
different approaches of decoding are used.

In the simplest case, it is only necessary to compare the obtained number with the
threshold value to make a decision. E.g. when the acoustic unit is the whole keyword the
decision is made by comparing the computed probability with 0.5.

Smoothing is usually used to improve the recognition quality in the case of comparison
with the threshold (Chen et al., 2014a; Lehtonen, 2005). The motivation for this technique
is that the keyword is an acoustic event that has a certain duration in the time dimension.
Thus, the actual keyword utterance should generate a high probability of multiple counts
in a row. Thus, when applying the smoothing function to the time series, we avoid false
positives caused by fluctuations of the acoustic model. Silaghi and Vargiya (2005) sug-
gested an interesting variant of smoothing. In the case of acoustic units, the probabilities
of each phoneme are normalized to the probability of the least probable phoneme.

In systems that use a comparison with a template utterance, Dynamic Time Warping
(DTW) is often used. DTW is an analogue of the Levenshtein distance for numerical se-
ries. The motivation of this method is that the duration of the recorded pattern is likely
to differ from the pronunciation in real conditions. Thus, we cannot compare two au-
dio fragment directly, namely, one needs “to strech” or “to squeeze” certain intervals of
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the template over time. DTW distance is usually computed with dynamic programming.
For a more detailed description and various modifications, please refer to Zehetner et al.
(2014).

Decoding becomes more meaningful in the case of HMM. Indeed, in this formulation,
we need to solve a typical problem for HMM: find the most probable sequence of hidden
states (if this sequence corresponds to a keyphrase, then, in some approaches, it means
activation) or find the total probability of passing through some sequences of states (for
example, we can say that we do not care how many frames in a row the first phrase phoneme
was pronounced, how many, the second and so on; only the order is important).

The Viterby algorithm uses dynamic programming to find the most likely sequence of
hidden states in hidden Markov model given the observations. Naturally, this algorithm
is widely used in works about HMM-voice activation systems. Many authors explore a
variety of approaches and heuristics to speed up the algorithm, adapt it to find sequences
satisfying some additional properties, and so on. For example, Liu et al. (2000) use var-
ious techniques of hypotheses pruning and rescoring probabilities using a bi-gram lan-
guage model. In Zhu et al. (2013), the possibility of using the Viterbi algorithm on sliding
windows of the audio stream is considered. Junkawitsch et al. (1997) consider a modifica-
tion of the Viterbi algorithm that approximates finding the optimal sequence that has the
highest probability normalized by the utterance length. Several additional modifications
of the Viterbi algorithm are considered in Wilcox and Bush (1992).

In addition, Wilcox and Bush (1992) discuss how to use the forward–backward algo-
rithm for quick estimation of probabilities needed in decoding.

We would also like to mention the standard technique of using HMM-derived proba-
balities and deriving decoding to comparing to the threshold. This approach is convention-
ally called likelihood ratio. Often, two HMM are used: the speech model representing all
the keyword pronunciations, and the garbage model representing all other audio events.
In such systems, one can find the probability of passing through the garbage model and
the probability of passing through the part with the keyword. Then the ratio of these two
probabilities shows confidence in the presence of a key phrase in the audio stream. This
ratio is compared with the threshold in many voice activation systems. It is worth noting
that finding the balance of coefficients in such models is a difficult task, which is usually
solved by optimizing the parameters on the held-out data set.

Some authors use completely different approaches to decode. For example, Manor and
Greenberg (2017) describe an application of fuzzy logic to decoding.

The approaches to decode used in studied sources are presented in Table 9 in Ap-
pendix A. The numbers of times the specific approach was used in studied sources are
presented in Table 4.

7. Quality Assessment

A large number of metrics can be used to compare different approaches of voice activation
systems. These metrics can be grouped by the aspect of the system they measure:
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Table 4
Number of times the specific approach to decoding was used in studied sources.

Decoding approach Number of sources

Viterby 15
Comparing to threshold 11
DTW 5
Forward–Backward algorithm, likelihood ratio 2
Fuzzy logic 1

• classification quality,
• operation speed,
• amount of used RAM and CPU.

Metrics for speed measurement are standard and non-specific for voice activation sys-
tems. The most commonly used are real time factor (RTF) – total processing time of the
audio stream divided by the length of the stream, latency (average delay of the response
signal from pronouncing) and total processing time (this metric is less indicative than
RTF).

For resource usage, it is the most popular to measure the amount of RAM used and
CPU load (as a percentage of the compute core). To improve both parameters, different
approaches to quantize the parameters of the acoustic model are often used (Fernández-
Marqués et al., 2018).

But at the moment there are no standard metrics to measure the quality of classification.
Moreover, similar metrics, unfortunately, are called differently in different sources. We
think it would be profitable to have standartized set of metrics in that area.

The main problem is that the voice activation system must satisfy two opposite prop-
erties to work well: it must be sensitive enough to react to the keyword utterances, and
it must be robust enough not to react to sound events similar to the keywords, but that
are not actual keywords. Any system can be made arbitrarily sensitive, reacting to each
event, and arbitrarily robust, not reacting to any events. The challenge is to choose the
right balance between these two operating points. Therefore, one must either use at least
two metrics (for example, precision and recall), or use one common metric (for example,
f1-score) to measure the quality of a classification,. In the second case, an unsuccessful
choice of metrics can lead to false conclusions, since there is no single correct balance
between the importance of sensitivity and robustness.

The following metrics are often used to measure classification quality:

• detection rate (precision) is the number of correctly recognized keywords relative to the
total number of accepted keywords,

• substitution rate is the number of mis-recognized keywrods relative to the total number
of accepted keywords,

• deletion rate (false reject rate, opposite to recall, miss rate) is the number of un-detected
keywords relative to the total number of keywords,

• rejection rate is the number of keywords which are rejected relative to the total number
of keywords (false reject rate – FRR),



76 A. Kolesau, D. Šešok

• false alarm rate (FAR) is the number of false alarms (relative to the number of utterances
without keyword; sometimes per keyword or per hour of speech),

• accuracy (recognition rate) is the number of correctly classified utterances relative to
the total number of utterances,

• true positive rate (same as recall),
• true negative rate (opposite to FAR).

As you can see, there is no accepted pair of metrics, moreover, often the same metrics
are not called the same in different sources.

Figure of merit is one of the most used metrics in voice activation system research.
FOM is the average of correct detections per k false positive activations per hour for each
natural number k from 1 to 10. This metric was especially often used until the 2010s.
Recently, such high rates of false positives per hour are unreasonably high, so FOM does
not reflect the relevant modes of operation of the modern voice activation system. Other
common metrics are equal error rate (the smallest value that can take both FAR and FRR
at the same time), ROC-AUC (the area under the precision-recall curve).

Some papers suggest more complex ways of measuring classification quality. For ex-
ample, disriminative error rate is introduced in Cuayáhuitl and Serridge (2002). In this
metric different errors (when the system asked the user for confirmation, or rejected the
operation without confirmation) have different penalties. In our opinion, this approach is
more suitable for quality assesment for real product use of systems.

It is hard to compare results from different works not only because different metrics
are used, but also because the choice of the dataset and the keyword deeply affects the
results. If two works use false alarms per hour to describe their system quality, but one
uses a dataset of speech recordings and the other uses a dataset from real user devices
(where speech may take 3–6 hours for each 24 hour recording), then these works would
have completely different metrics even with the same voice activation system.

We think it is safe to assume that industry research provides the best or close to the
best voice activation systems today because of big amount of audio data and computa-
tion resources. Shan et al. (2018) reports system with 1.02% FRR with 1 false alarm per
hour. This model has 84,000 parameters. Raziel and Hyun-Jin (2018) claims that their
“Ok Google” voice activation systems has FRR from 0.87% (clean non-accented utter-
ances) to 8.90% (real user query logs) with 0.1 false alarm per hour with 700,000 pa-
rameters. Fernández-Marqués et al. (2018) tell that it’s possible to create a competitive
voice activation system that would use 15.8 kB of memory and would perform 2 million
operations per inference pass.

The metrics used in studied sources are presented in Table 10 in Appendix A. The
numbers of times these metrics were used in studied sources are presented in Table 5.

8. Unconventional Approaches

Some approaches to the construction of voice activation systems are difficult to describe
according to the classification proposed in Section 2.
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Table 5
Number of times the specific metric was used in studied sources.

Metrics Number of sources

FOM 20
False alarm rate 12
ROC 8
False reject rate, accuracy 6
False alarm per kw per hour 5
Detection rate, recall 4
Custom, recognition rate, real time factor 3
Equal error rate, deletion rate, rejection rate, precision 2
Insertion rate, discriminative error rate, substitution rate, true positive rate, false
positive rate, miss rate, F1, latency, mean time between false alarms, processing
time, misses, hits, RAM usage, flops, accuracy to size, accuracy to ops

1

First of all it worth to mention approaches of comparison with a template, for example
using DTW. In such systems, the user first records one or several keywords pronunciations,
and then the necessary sound fragments are compared with the recordings and the trigger-
ing is announced if the selected similarity measure exceeds some prespecified threshold.
The advantages of this approach include the simplicity of both learning (memorization)
and operation. In addition, in this approach, it is natural to use personalization: indeed,
one can argue that recorded patterns reflect the specific features of the user pronunciation,
which allow to distinguish it from other users if appropriate similarity metric is used.
However, in practice this approach is not very robust. The quality of its operation depends
on how well the similarity measure is chosen and what features are used. The task to elim-
inate all the noise and disimilarity in environments by appropriate choice of features and
similarity measure has proven to be difficult. DTW is one way to calculate the measure of
similarity of two time series, possibly of different length. Systems using such approaches
are described in Morgan et al. (1991), Naylor et al. (1992), Zeppenfeld and Waibel (1992),
Kosonocky and Mammone (1995), Kurniawati et al. (2012). Zehetner et al. (2014) discuss
the different underlying metrics of the similarity to use in DTW framework. Szöke et al.
(2015) discuss the possibility of using DTW even for the case where a keyword can be
subjected to declensions, conjugations, or even word order permutations.

Another interesting approach is to model the appearance (or absence) of keywords
with the help of point processes and, in particular, Poisson processes. In such systems,
the parameters of two process families are evaluated: for each selected feature for sound
with (1) and without a keyword (2). An interesting feature of such systems is the ability to
select these parameters during operation, thereby adapting to the channel, user and usage
scenarios. For more information on the proposed see Jansen and Niyogi (2009c), Jansen
and Niyogi (2009b). Sadhu and Ghosh (2017) describe how to apply this approach in
systems with limited resources using unsupervised online learning.

Finally we would like to mention the discriminative keyword spotting, an approach
that was introduced in Keshet et al. (2009). In this approach, instead of using an HMM
or a similar model, the audio track is embedded in the feature space. Then, a linear (or
more complex) model in this space is trained to distinguish positive (with a keyword) and
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negative (without a keyword) examples. This allows the use of support vector machine-
like (SVM) approaches to maximize the margin from separating hyperplane. In addition,
the task of training in such a system can be set as the task of maximizing the area under
the ROC-curve, which is one of the common metrics for assessing the quality of the voice
activation system. In such systems, it is necessary to use feature engineering, which can
be both a advantage (one can easily embed prior knowledge) and a disadvantage (incor-
rect prior knowledge leads to poor quality of work; in addition, feature engineering is a
complex manual process). In subsequent works, this approach is developed. Wöllmer et
al. (2009b) add a hidden layer of bidirectional LSTM network as features, Tabibian et al.
(2011) use a genetic algorithm instead of a linear classifier, and Tabibian et al. (2014)
describe the use of kernel trick within the framework of discriminative keyword spot-
ting. A very detailed explanation of disriminative keyword spotting can also be found in
Tabibian et al. (2013; 2016).

9. Conclusion

In this research, we have made a systematic literature review of voice activation systems.
We proposed the structure of a typical voice activation system and considered main ap-
proaches described in the literature for each of the modules of such a system.

Regarding the feature representation, most of the techniques are shared with auto-
matic speech recognition. The majority of cited works use MFCC or Log Mel-filterbank
features. In this area, we see the reduction of the inductive bias over the time: more and
more recent papers like (Raziel and Hyun-Jin, 2018) or (Myer and Tomar, 2018) don not
use DCT-step, probably because deep neural networks work reasonably well even with
correlated features. We expect further simplification: using raw waveform or some unsu-
pervised approach like contrastive predictive coding in Oord et al. (2018).

GMM, widely used in acoustic modelling, are replaced with different types of neural
networks. We are not aware of any state-of-the-art solutions that do not use deep learning
in the voice activation problem. One of the main questions in that area is how to apply neu-
ral networks having limited resources. Some possible answers are: to apply quantization,
to use a special network topology like time-delayed neural network or to use a cascade of
the models waking up the more powerful and consuming model only if the smaller model
is activated.

At the moment, the most widely used systems use phonemes as acoustic units.
Phonemes are stable enough to be reliably found in audio stream and flexible enough
to be used for the majority (if not all) keywords.

We believe that voice activation research could greatly benefit from creating open
datasets in order to compare different systems. Today it is complicated to compare dif-
ferent works because of different train and test data, different keywords, and sometimes
different target metrics.

As a result of the literature review, we noticed that there are some questions to which
there are no clear answers in the published sources. So we would like to focus on them
and conduct research in these areas:
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• Are there common acoustic features suitable for all languages? How do we under-
stand what features does it need for a given language? Indeed, most of the works
are building voice activation systems for the English language, for which the MFCC
and Log Mel-filterbank have proven themselves well. Researchers who used systems
for other languages faced the necessity to use other features (Ida and Yamasaki, 1998;
Zheng et al., 1999).

• Does the quality of activation depend on which acoustic unit is used for the lan-
guage? A similar question was investigated for Spanish in Cuayáhuitl and Serridge
(2002) and for Chinese in Liu et al. (2000), but the problem of determining the most
appropriate acoustic unit for an arbitrary language was not investigated.

• Are there any criteria on how to choose keywords to activate? This question is im-
portant both for the practical application of the voice activation system and for an ob-
jective comparison of systems with each other. We noticed that the acoustic features
and the length of the keyword have a significant impact on the quality of activation.
For example, in Jansen and Niyogi (2009a) it is shown that there is a strong correlation
between the quality of work and the length of the keyword. However, an open question
as to what other properties of the key phrase are important for the good operation of
the system remains. Also it would be interesting to investigate whether are there any
general rules for choosing a good keyword.

A. Appendix

Table 6
Acoustic units used in studied sources.

Acoustic unit Sources

Whole word (Morgan et al., 1990; Rose and Paul, 1990; Morgan et al., 1991; Naylor et al., 1992;
Rohlicek et al., 1993; Cuayáhuitl and Serridge, 2002; Baljekar et al., 2014; Chen
et al., 2014a; Zehetner et al., 2014; Hou et al., 2016; Manor and Greenberg, 2017;
Fernández-Marqués et al., 2018; Myer and Tomar, 2018)

Monophone (Rose and Paul, 1990; Rohlicek et al., 1993; Cuayáhuitl and Serridge, 2002; Hera-
cleous and Shimizu, 2003; Szöke et al., 2005; Lehtonen, 2005; Silaghi and Vargiya,
2005; Wöllmer et al., 2009b; Jansen and Niyogi, 2009a,c; Wöllmer et al., 2009a;
Szöke et al., 2010; Shokri et al., 2011; Tabibian et al., 2011; Hou et al., 2016; Ku-
matani et al., 2017; Gruenstein et al., 2017; Tabibian et al., 2018; Myer and Tomar,
2018)

Triphone (Rose and Paul, 1990; Szöke et al., 2005)
Part of the word (Naylor et al., 1992; Li and Wang, 2014; Chen et al., 2014a)
State unit (Zeppenfeld and Waibel, 1992)
Part of the phoneme (Rohlicek et al., 1989; Kosonocky and Mammone, 1995; Leow et al., 2012)
Syllable (Klemm et al., 1995; Zheng et al., 1999; Liu et al., 2000; Cuayáhuitl and Serridge,

2002; Hou et al., 2016)
Letter (Hwang et al., 2015; Hou et al., 2016; Lengerich and Hannun, 2016)
Senone (Ge and Yan, 2017)
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Table 7
Acoustic features used in studied sources.

Acoustic features and
transformations

Sources

MFCC (Rose and Paul, 1990; Vroomen and Normandin, 1992; Junkawitsch et
al., 1997; Liu et al., 2000; Heracleous and Shimizu, 2003; Khne et al.,
2004; Szöke et al., 2005; Keshet et al., 2009; Wöllmer et al., 2009b; Bahi
and Benati, 2009; Jansen and Niyogi, 2009c; Vasilache and Vasilache,
2009; Wöllmer et al., 2009a; Tabibian et al., 2011; Leow et al., 2012;
Wöllmer et al., 2013; Shokri et al., 2013; Zhu et al., 2013; Baljekar et
al., 2014; Sangeetha and Jothilakshmi, 2014; Shokri et al., 2014; Zehet-
ner et al., 2014; Laszko, 2016; Manor and Greenberg, 2017; Fernández-
Marqués et al., 2018)

Log Mel-filterbank (Morgan et al., 1990, 1991; Zeppenfeld and Waibel, 1992; Chen et al.,
2014a; Hwang et al., 2015; Hou et al., 2016; Gruenstein et al., 2017;
Sun et al., 2017; Myer and Tomar, 2018)

Fourier transform (Morgan et al., 1990, 1991; Zeppenfeld and Waibel, 1992; Guo et al.,
2018)

LPC (Gish et al., 1990, 1992; Gish and Ng, 1993; Rohlicek et al., 1993; Zheng
et al., 1999; Rohlicek et al., 1989)

Derivatives or deltas (Gish et al., 1990; Rose and Paul, 1990; Vroomen and Normandin, 1992;
Gish and Ng, 1993; Junkawitsch et al., 1997; Liu et al., 2000; Hera-
cleous and Shimizu, 2003; Khne et al., 2004; Szöke et al., 2005; Keshet
et al., 2009; Wöllmer et al., 2009b; Jansen and Niyogi, 2009c; Vasilache
and Vasilache, 2009; Wöllmer et al., 2009a; Tabibian et al., 2011; Leow
et al., 2012; Wöllmer et al., 2013; Shokri et al., 2013; Baljekar et al.,
2014; Chen et al., 2014a; Sangeetha and Jothilakshmi, 2014; Shokri et
al., 2014; Hwang et al., 2015; Ge and Yan, 2017)

Energy or log-energy (Vroomen and Normandin, 1992; Heracleous and Shimizu, 2003; Khne
et al., 2004; Wöllmer et al., 2013; Hwang et al., 2015)

Mean/variance normalization (Gish et al., 1992; Gish and Ng, 1993; Rohlicek et al., 1993; Jansen and
Niyogi, 2009c; Wöllmer et al., 2009a; Shokri et al., 2011; Sangeetha and
Jothilakshmi, 2014; Myer and Tomar, 2018)

Gain normalization (Shokri et al., 2011)
Stacking (Junkawitsch et al., 1997; Chen et al., 2014a; Fernández-Marqués et al.,

2018)
LDA over MFCC (Junkawitsch et al., 1997)
Prosodic information (Ida and Yamasaki, 1998)
PCP (Szöke et al., 2005; Chen et al., 2014a; Ge and Yan, 2017)
AMA (Shokri et al., 2011)
Spectral entropy, spectral flatness,
burst degree, bisector frequency

(Tabibian et al., 2011)

Formant frequencies (Laszko, 2016)
f-MLLR (Sadhu and Ghosh, 2017)
Raw waveform (Kumatani et al., 2017)
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Table 8
Acoustic models used in studied resources.

Acoustic model Sources

NN (Morgan et al., 1990; Szöke et al., 2005; Lehtonen, 2005; Szöke et al., 2010;
Chen et al., 2014b; Hou et al., 2016; Gruenstein et al., 2017; Ge and Yan, 2017;
Wu et al., 2018; Myer and Tomar, 2018)

GMM (Rohlicek et al., 1989; Rose and Paul, 1990; Vroomen and Normandin, 1992;
Junkawitsch et al., 1997; Liu et al., 2000; Heracleous and Shimizu, 2003; Khne
et al., 2004; Szöke et al., 2005; Jansen and Niyogi, 2009a,c; Vasilache and Vasi-
lache, 2009; Shokri et al., 2011; Leow et al., 2012; Zhu et al., 2013; Baljekar et
al., 2014; Li and Wang, 2014; Chen et al., 2014a; Benisty et al., 2018)

RNN (Naylor et al., 1992; Baljekar et al., 2014)
Gated RNN (Baljekar et al., 2014; Hou et al., 2016)
TDNN (Zeppenfeld and Waibel, 1992; Kumatani et al., 2017; Sun et al., 2017; Myer and

Tomar, 2018)
Polynomial model (Gish and Ng, 1993)
Continous density neural
tree

(Kosonocky and Mammone, 1995)

Mixture of central distance
normal distributions

(Zheng et al., 1999)

LSTM (Hwang et al., 2015; Hou et al., 2016)
Bi-LSTM (Wöllmer et al., 2009a; Zhang et al., 2016)
SVM (Tabibian et al., 2011)
DNN with highway blocks (Guo et al., 2018)
Binary DNN (Fernández-Marqués et al., 2018)
CNN (Myer and Tomar, 2018)

Table 9
The approaches to decoding used in studied sources.

Decoding approach Sources

Comparing to threshold (Morgan et al., 1990; Naylor et al., 1992; Junkawitsch et al., 1997; Keshet et al.,
2009; Wöllmer et al., 2009b,a; Li and Wang, 2014; Chen et al., 2014a; Gruenstein
et al., 2017; Benisty et al., 2018; Myer and Tomar, 2018)

Viterby (Rose and Paul, 1990; Feng and Mazor, 1992; Wilcox and Bush, 1992; Rohlicek
et al., 1993; Knill and Young, 1996; Junkawitsch et al., 1997; Zheng et al., 1999;
Liu et al., 2000; Vasilache and Vasilache, 2009; Tabibian et al., 2011; Leow et
al., 2012; Zhu et al., 2013; Kumatani et al., 2017; Ge and Yan, 2017; Sun et al.,
2017)

Forward–Backward
algorithm

(Wilcox and Bush, 1992; Rohlicek et al., 1993)

DTW (Zeppenfeld and Waibel, 1992; Kosonocky and Mammone, 1995; Kurniawati et
al., 2012; Zehetner et al., 2014; Hou et al., 2016)

Likelihood ratio (Jansen and Niyogi, 2009c; Szöke et al., 2010)
Fuzzy logic (Manor and Greenberg, 2017)
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Table 10
The metrics used in studied sources.

Metrics Sources

FOM (Gish et al., 1990; Rose and Paul, 1990; Naylor et al., 1992; Zeppenfeld and
Waibel, 1992; Chang and Lippmann, 1994; Gish and Ng, 1993; Rohlicek et al.,
1993; Knill and Young, 1996; Junkawitsch et al., 1997; Zheng et al., 1999; Szöke
et al., 2005; Lehtonen, 2005; Jansen and Niyogi, 2009a,c; Szöke et al., 2010;
Tabibian et al., 2011; Bohac, 2012; Sangeetha and Jothilakshmi, 2014; Sadhu
and Ghosh, 2017; Tabibian et al., 2018)

EER (Szöke et al., 2010; Bohac, 2012)
Accuracy (Morgan et al., 1990, 1991; Ida and Yamasaki, 1998; Ge and Yan, 2017; Benisty

et al., 2018; Fernández-Marqués et al., 2018)
FA/kw/h (Rohlicek et al., 1989; Vroomen and Normandin, 1992; Feng and Mazor, 1992;

Leow et al., 2012; Kavya and Karjigi, 2014)
ROC (Marcus, 1992; Siu et al., 1994; Keshet et al., 2009; Wöllmer et al., 2009b, 2013;

Shokri et al., 2013; Sadhu and Ghosh, 2017; Kumatani et al., 2017)
Detection rate (Feng and Mazor, 1992; Khne et al., 2004; Shokri et al., 2011; Leow et al., 2012)
Substitution rate (Feng and Mazor, 1992)
Deletion rate (Feng and Mazor, 1992; Kavya and Karjigi, 2014)
Rejection rate (Feng and Mazor, 1992; Heracleous and Shimizu, 2003)
Insertion rate (Klemm et al., 1995)
Recognition rate (Liu et al., 2000; Heracleous and Shimizu, 2003; Zhu et al., 2013)
Discriminative error rate (Cuayáhuitl and Serridge, 2002)
FAR (Khne et al., 2004; Shokri et al., 2011; Chen et al., 2014a; Hou et al., 2016;

Gruenstein et al., 2017; Ge and Yan, 2017; Sun et al., 2017; Tabibian et al., 2018;
Benisty et al., 2018; Guo et al., 2018; Wu et al., 2018; Myer and Tomar, 2018)

FRR (Chen et al., 2014a; Gruenstein et al., 2017; Sun et al., 2017; Guo et al., 2018;
Wu et al., 2018; Myer and Tomar, 2018)

RTF (Szöke et al., 2005; Bohac, 2012; Tabibian et al., 2018)
TPR, FPR (Wöllmer et al., 2009a)
Miss rate (Hou et al., 2016)
Recall (Baljekar et al., 2014; Li and Wang, 2014; Zehetner et al., 2014; Hwang et al.,

2015)
Precision (Zehetner et al., 2014; Hwang et al., 2015)
F1, latency (Hwang et al., 2015)
Mean time between false
alarms

(Baljekar et al., 2014)

Processing time (Li and Wang, 2014)
Misses, hits (Li and Wang, 2014)
RAM usage, flops, accu-
racy to size, accuracy to
ops

(Fernández-Marqués et al., 2018)

Custom (Marcus, 1992; Silaghi and Vargiya, 2005; Szöke et al., 2010)
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