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Abstract. The crosstalk error is widely used to evaluate the performance of blind source separation.
However, it needs to know the global separation matrix in advance, and it is not robust. In order to
solve these problems, a new adaptive algorithm for calculating crosstalk error is presented, which
calculates the crosstalk error by a cost function of least squares criterion, and the robustness of the
crosstalk error is improved by introducing the position information of the maximum value in the
global separation matrix. Finally, the method is compared with the conventional RLS algorithms
in terms of performance, robustness and convergence rate. Furthermore, its validity is verified by
simulation experiments and real world signals experiments.
Key words: blind source separation, crosstalk error, global separation matrix, robustness.

1. Introduction

Blind signal separation (BSS) technology originated from the famous “cocktail party”
problem (Choi and Cichocki, 1997) and has been a key research issue since then (Brid-
well et al., 2018; Yatabe and Kitamura, 2018). It attempts to separate the unknown original
signals only by using the observations of their mixture without having any prior informa-
tion of the source signals and channels. It is important to measure the effectiveness of
the blind separation algorithms, since it affects not only the effect of the algorithms, but
also the iterative process of the algorithms. Evaluating the quality of the waveforms of
the signals and the similarity of the waveforms is the most straightforward way to judge
the effectiveness of algorithm. However, this method can only be regarded as a qualitative
analysis, which cannot quantitatively reflect the stability and convergence rate of the algo-
rithm. Therefore, researchers have proposed some performance indexes, such as crosstalk
error (Cichocki and Amari, 2002; Parra and Sajda, 2003; El-Sankary et al., 2015), corre-
lation coefficient (Li et al., 2012) and signal-to-noise ratio (Laheld and Cardoso, 1993; Li
and Sejnowski, 1995; Grellier and Comon, 1998; Nandakumar and Bijoy, 2014; Aroudi et
al., 2016; Mirzal, 2017) etc. The consistence between the order of the source signals and
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the separated signals is needed for calculating most of the performance indexes, but the
order of the separated signals is uncertain. The crosstalk error does not need to consider
the correspondence, and it can reflect the separation effect directly.

The crosstalk error represents the approximate degree between the global separation
matrix C and a diagonal matrix. When C is closer to a diagonal matrix or its permuta-
tion matrix, the smaller the crosstalk error, the more similar the separated signals are to
the source signals. Theoretically, the crosstalk error should be a good performance index
in the field of BSS (Macchi, 1993; Moreau and Macchi, 1996; Amari, 1997; Yang and
Amari, 1997; Moreau and Macchi, 1998; Macchi and Moreau, 1999; Yang, 1999; Basak
and Amari, 1999). However, it is very sensitive to numerical errors and can not be directly
used to evaluate separation effects in many practical situations. On one hand, in order to
calculate the crosstalk error, it needs to know C in advance, which means that it cannot
directly be applied to real-world experiments. On the other hand, if the maximum value of
each row of C is in the same column, the crosstalk error usually does not correctly evaluate
the separation effect. In this case, small crosstalk errors do not indicate that the separation
effect is good. Since each component of the separated signal is an approximate estimation
of the same source signal component, the actual separation effect is poor. The above two
shortcomings affect its practical application. In order to overcome the above problems,
Li Zong have proposed a method to improve crosstalk error evaluation criterion by intro-
ducing correlation coefficients to measure the degree of correlation between the separated
signal components and adding them to the calculation formula of crosstalk error (Li et al.,
2012). Although this method improves the accuracy of the evaluation when the maximum
values of two rows of C are in the same column, C is still unknown when calculating
crosstalk error in the practical application. Zhang used the Least Mean Square (LMS) al-
gorithm to estimate C in real time (Zhang et al., 2011). However, the convergence rate
of the method is limited by the convergence step size of the algorithm, and once the step
size is inappropriate, the algorithm will fail. At the same time, when the value changes
subtly in C (Mansour et al., 2002), the crosstalk error may vary greatly. In other words,
the crosstalk error is not robust.

In response to the above problems, a fully adaptive crosstalk error estimation model
based on the recursive least square (RLS) algorithm is presented in this paper. This new
approach consists of sifting the impact of step size on the estimation of crosstalk error.
Furthermore, the robustness of the crosstalk error is improved by introducing the position
information of the maximum value of each row in the global separation matrix C in the
process of calculating the crosstalk error.

The paper is organized as follows. In Section 2, the shortcomings of the original perfor-
mance index are analysed. The main contributions of the paper can be found in Section 3,
where the fully adaptive crosstalk error estimation model is presented firstly, and then the
position information of the maximum value of each row is introduced to improve the ro-
bustness of the crosstalk error. Finally, the whole process of the algorithm is explained.
The validity of the proposed algorithm is verified by experimental analysis in Section 4.
Finally, Section 5 contains some conclusions.
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2. Problem Formulation

Suppose that an antenna array is made up of M units, therefore the instantaneous linear
mixing model can be expressed as

xt = ASt + Nt , (1)

where xt ∈ Rm stands for the observation vector and St = [s1(t), s2(t), . . . , sn(t)]T is the
source signal vector. Nt = [n1(t), n2(t), . . . , nm(t)]T is the additive observation noise vec-
tor. The subscript in xt , St and Nt stands for the vectors at the moment t . A ∈ Rm×n is
named as mixed matrix. In general, the noise signal ni(t), i = 1,2, . . . ,m satisfies Gaus-
sian distribution, and the literature (Qian et al., 2006) pointed out that the separated signal
after the blind source separation is only the superposition of source signal and Gaussian
noise.

In order to simplify the problem of BSS and reduce the computational complexity, it is
generally necessary to pre-whiten the signal, and the signal after whitening is

zt = Vxt , (2)

where V is a n×m whitening matrix. After whitening, the problem of BSS changes from
seeking for the mixed matrix A to seeking an n × n orthogonal decomposition matrix W
(Jiang, 2014). Supposing yt is the estimated vector of St = [s1(t), s2(t), . . . , sn(t)]T and
yt can be modelled as

yt = Wzt = WVASt + WVNt . (3)

The global separation matrix C is defined as

C = WVA, (4)

C is a generalized permutation matrix (Cichocki and Amari, 2002), which is equal to the
product of a permutation matrix and a full rank diagonal matrix:

C = P�, (5)

where P is a permutation matrix, which represents the uncertainty of the order of the blind
separation results. � is a full rank diagonal matrix, which represents the uncertainty of
the amplitude of the blind separation results. It can be seen that the waveforms of signal
can be completely recovered except for the real amplitude and order of the source signals.

In practice, the blind source separation algorithms can only make C as close as possible
to a generalized permutation matrix. Based on this, in order to evaluate the performance of
the separation algorithms, the literature (Cichocki and Amari, 2002) gave a measurement



302 R. Lang et al.

method by using the difference between C and a generalized permutation matrix, which
is named as crosstalk error and expressed as

PI(C) = 1

n(n − 1)

{
n∑

i=1

(
n∑

j=1

|cij |
maxk |cik| − 1

)
+

n∑
j=1

(
n∑

i=1

|cij |
maxk |ckj | − 1

)}
, (6)

where cij stands for the element in row i and column j . The smaller the value of PI , the
better the separation effect of the algorithm. If and only if C is a generalized permuta-
tion matrix, PI = 0. According to formula (6), it can be seen that the key to compute the
crosstalk error is to obtain the matrix C. Another shortcoming of the crosstalk error is that
it is not robust. As an example, the following two global separation matrices are presented:

C1 =

⎡
⎢⎢⎢⎢⎢⎣

100000 10 1 2 4
1 0 0 0 0

10 0 0 0 0
1 0 0 0 0
8 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ ; C2 =

⎡
⎢⎢⎢⎢⎢⎣

100000 10 1 2 4
1 0 0 0 0
10 0 0.01 0 0
1 0 0 0 0
8 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ . (7)

In matrices C1 and C2, the maximum value of every row is in the first column, so the
isolated signal is only the same signal. The corresponding separation effect of C1 and C2 is
very poor, and the value of PI(C1) and PI(C2) should be very big. However, the crosstalk
errors of them are PI(C1) = 0.00002 and PI(C2) = 0.00057, which are very small. At the
same time, from matrices PI(C1) and PI(C2), we can also see that the crosstalk error will
change greatly even though there is a minor change in C.

Therefore, the maximum value of all the rows in the C should be in different columns.
However, from the definition of formula (6), this restriction is not considered. Therefore,
in this paper, we add the position information of the maximum value of each row in the C
to the definition of the crosstalk error to improve the robustness of the crosstalk error.

3. A New Algorithm for Calculating the Crosstalk Error

For overcoming the shortcomings of the original crosstalk error, firstly a model for esti-
mating the mixed matrix A is established and the corresponding analytic solution is given
in this section. Then, the position information constraint is introduced into the definition
of crosstalk error to improve its robustness. Finally, the whole process of the algorithm
for calculating the crosstalk error is given.

3.1. Modelling and Model Solving

In this subsection, an estimation method based on recursive least-squares (RLS) is pro-
posed to estimate the global separation matrix in real time. According to formula (4), if we
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get matrix A, then C can be calculated by using C = WVA. Since yt = WVxt , so we can
get that xt can also be regarded as a mixture of yt . Suppose

xt = Âyt , (8)

where Â ∈ Rm×n. According to formulas (3), (5) and (8), we can get

A = ÂP�, (9)

C = WVA = WV(ÂP�) = (WVÂ)(P�). (10)

It can be seen that there are differences in amplitude and order between the mixed matrix A
and its estimated value Â, which do not affect the result of the crosstalk error defined by
formula (6). The following cost function for calculating Â is established by using the least
squares criterion, which is

min
Ât

J (Ât ) = min
Ât

t∑
i=1

λt−i‖Âtyt − xt‖2, (11)

where λ is the forgetting factor subjecting to 0 < λ < 1 and close to 1, Ât is the estimated
value of A at moment t .

The gradient of J (Ât ) in (11) is

∂J

∂Ât

= −2
t∑

i=1

λt−i
{−xtyT

t + ÂtytyT
t

}
. (12)

The zero point of formula (12) is the optimum solution of formula (11).
Let ∂J

∂Ât

= −2
∑t

i=1 λt−i{−xtyT
t + ÂtytyT

t } = 0, then we can get

Ât =
(

t∑
i=1

λt−ixtyt
T

)(
t∑

i=1

λt−iytyT
t

)−1

. (13)

Since calculating the inverse matrix is complex, therefore an iterative method for calcu-
lating Ât is proposed. The update formula of Ât is discussed in the following.

Let ϕt = ∑t
i=1 λt−iytyT

t , then we can get the following formula:

ϕt =
t−1∑
i=1

λt−1−iyt−1yT
t−1+ytyT

t = λϕt−1 + ytyT
t . (14)

Left multiplying ϕt
−1 and right multiplying ϕ−1

t−1 on both sides of the equation (14), then

ϕt
−1ϕtϕ

−1
t−1 = λϕt

−1ϕt−1ϕ
−1
t−1 + ϕt

−1ytyT
t ϕ−1

t−1, (15)
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ϕ−1
t−1 = λϕt

−1 + ϕt
−1ytyT

t ϕ−1
t−1. (16)

Right multiplying yt on both sides of equation (16), then

ϕ−1
t−1yt = λϕt

−1yt + ϕt
−1ytyT

t ϕ−1
t−1yt = ϕt

−1yt

[
λ + yT

t ϕ−1
t−1yt

]
, (17)

ϕt
−1yt = ϕ−1

t−1yt

[λ + yT
t ϕ−1

t−1yt ]
. (18)

Substituting equation (18) into (16), we can get

ϕt
−1 = 1

λ

[
ϕ−1

t−1 − ϕ−1
t−1ytyT

t ϕ−1
t−1

λ + yT
t ϕ−1

t−1yt

]
. (19)

Let Pt = ϕ−1
t , Qt = Pt−1/(λ + yT

t Pt−1yt ), qt =
t∑

i=1
λt−ixtyt

T = qt−1 + xtyt
T , then it

can be gotten that

Pt = 1

λ

[
Pt−1 − Pt−1ytyT

t Qt

]
. (20)

Substitute Pt , Qt and qt into (13), then

Ât =
(

t∑
i=1

λt−ixtyT
t

)(
t∑

i=1

λt−iytyT
t

)−1

= 1

λ

(
λqt−1 + xtyT

t

)(
Pt−1 − Pt−1ytyT

t Qt

)
= qt−1Pt−1 − qt−1Pt−1ytyT

t Qt + xtyT
t Pt

= Ât−1 − Ât−1ytyT
t Qt + xtyT

t Pt . (21)

The global separation matrix C can be estimated by the following formula:

Ĉ = WVÂt . (22)

An iterative method for calculating the crosstalk error can be obtained by substituting
equation (22) into formula (6).

3.2. Location Introduction

It can be seen from the first section that some isolated signals may be the same signal,
if the maximum value of the corresponding rows share the same column. Therefore, an im-
proved crosstalk error definition is proposed here to eliminate the wrong decision caused
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by positions of optimal values in the same column, which is defined as

PI(C) = 1

n(n − 1)

⎧⎨
⎩

n∑
i=1

(
n∑

j=1

|cij |
maxk|cik| − 1

)

+
n∑

j=1

(
n∑

i=1

|cij |
maxk |ckj |

j∏
p=1

(1 + rp) − 1

)⎫⎬
⎭ , (23)

where rp = 1, and rp = 0 or rp > 0, when p = 2,3, . . . , n. Let rp > 0, if the column
with the maximum value in row p is same as any other rows before row p, otherwise
rp = 0, for p = 2,3, . . . , n. rp is a factor for punishing the proximity of C to a generalized
permutation matrix.

Crosstalk errors given in (6) and (23) are equal while C is a generalized permutation
matrix (maximum values in every row share different columns). However, the crosstalk
error increases when the global separation matrix is in the situations described in (Zhang
et al., 2011). The more maximum values in different rows share the same column, the
worse the effect of blind source separation is and the greater the crosstalk error calculated
by equation (23) is. Thus, the proposed adaptive calculation method of the crosstalk error
can evaluate the effectiveness of blind source separation algorithm. Plugging the solutions
of the location optimizations into the algorithm, we get the complete adaptive algorithm
for calculating the crosstalk error. The pseudo code of the proposed algorithm is given in
Algorithm 1.

Algorithm 1 Pseudo code of the proposed algorithm
Require: The number of the sample points, N ; The set of observation vectors, xt ∈ Rm,

t = 1,2, . . . ,N ; The forgetting factor, λ;
Ensure: The estimated value of the crosstalk error, PI(Ĉ);

1: Parameter initialization. Assign Pt to be an identity matrix, and Ât to be a random
matrix and t = 1;

2: Pre-whitening xt ∈ Rm by using formula zt = Vxt ;
3: Separate the whitened signal zt with natural gradient RLS algorithm (Zhu and Zhang,

2002). And then obtain the isolated estimated signal yt ;
4: Update the value of Ât by using formulas: Qt = Pt−1/(λ + yT

t Pt−1yt ), Pt =
[Pt−1 − Pt−1ytyT

t Qt ]/λ, Ât = Ât−1 − Ât−1ytyT
t Qt + xtyT

t Pt ;
5: Calculate Ĉ by using formula Ĉ = WVÂt ;
6: Substitute Ĉ into formula (23) to compute PI(Ĉ). And then t = t + 1;
7: return Ât , Pt , Qt to step 2;
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Fig. 1. Comparison of the estimation of PI and the theoretical value of PI .

4. Experiments and Analysis

In this section, the proposed algorithm is evaluated by two methods, which are simulation
experiment and real world experiment.

4.1. Simulation Experiments

The new proposed crosstalk error definition defined by formula (23) is used to recalculate
the crosstalk error of the matrixes described by the formulas (7). The new crosstalk error
values are PI(C1) = 1.3000 and PI(C2) = 1.3021, respectively. It can be seen that the
new crosstalk error that can reflect the effectiveness of BSS is poor, and improves the
instability of the crosstalk error that due to the small value changes effectively.

In order to verify the robustness of the new proposed calculation method for evaluating
BSS, two simulation examples for comparison are presented. First, we use the natural gra-
dient RLS algorithm mentioned in literature (Zhu and Zhang, 2002) as the BSS algorithm.
The source signal vector is

St = [
sign(cos(310πt)), sin(1600πt), sin(600πt + 5 cos(60πt)), sin(180πt)

]T
,

where the superscript T is the meaning of matrix transposition. In this experiment, the
sampling rate is taken as 10 KHz. The number of sampling points is 5000. A is randomly
generated by the function A = randn(4,4) of MATLAB library. Let W = I, where I
is the unit matrix. Zero-mean independent Gaussian white noise is added to the mixtures,
and the signal-to-noise ratio is 20 dB. The forgetting factor of the algorithm is 0.993. The
proximity of the estimation of PI calculated by our proposed algorithm and the theoretical
value of PI calculated by the conventional RLS algorithm is shown in Fig. 1, the value of
the crosstalk error is the average of 500 Monte Carlo trials.
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Fig. 2. The source signals.

Fig. 3. The estimation of source signals.

According to the initial conditions, the initial values of the estimated and theoretical
values are 0.8669 and 0.8412, respectively. From Fig. 1, it is found that the difference be-
tween the estimated value and the theoretical value in the initial 500 iterations is obvious,
but then the difference between them decreases with the increase of the number of itera-
tions. Obviously, the trend of them is consistent and the estimated value of our proposed
algorithm is more accurate than the theoretical value.

Figure 2 shows the source signal waveforms. Figure 3 shows the estimated signal wave-
forms of the source signals during the process. It can be clearly observed that the esti-
mation of the source signals are quite similar to the source signals, which indicates the
effectiveness of our proposed algorithm.
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Fig. 4. Average performance index in an over-determined model.

The former experiment was established under positive definite conditions. In this case,
we evaluate the algorithm in over-determined conditions, and the source signal vector
becomes:

St = [
sin(1600πt), sin(180πt)

]T
.

The mixed matrix becomes A = randn(4,2), and the number of samples is 16,000.
The remaining experimental conditions remain unchanged. The 500 Monte Carlo trials
are run, and convergence curves of the estimated value and the theoretical value of are
shown in Fig. 4. As can be seen from Fig. 4, compared with the conventional algorithm,
our proposed algorithm has a faster convergence rate and a smaller convergence value.
Obviously, our proposed algorithm can still work well in the case of an over-determined
model.

In order to indicate the advantage of our proposed algorithm in terms of convergence
rate, we apply to the conventional algorithm proposed by Zhang et al. (2011) to the same
data set. The 500 Monte Carlo trials are run, and the comparison curves of crosstalk error
in iterative process is shown in Fig. 5. From Fig. 5, we can see that the conventional
algorithm proposed by Zhang requires about 15,000 iterations to achieve convergence,
but our proposed algorithm only requires about 1800 iterations. Obviously, our proposed
algorithm increases the convergence rate more than eight times relative to the conventional
algorithm proposed by Zhang.

4.2. Real World Signals Experiments

In the real word signals experiments, a set of actual signals are used to test the proposed
algorithm. The experimental environment is shown in Fig. 6. The signal transmission
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Fig. 5. Average performance index of the proposed algorithm and the conventional algorithm.

Fig. 6. The experiment setup.

system consists of a signal generator and four transmitting antennas. The signal receiving
system is made up of a signal receiver and four-element antenna array.

In the test, the signal generator generates single-frequency signals that are transmitted
through the transmitting antennas, and then the signal receiver receives the mixed signals
using the four-element antenna array. The sampling frequency is set to 62 MHz. We select
16,000 sampling points to compute the crosstalk error. The experimental result is shown
in Fig. 7. It can be clearly observed that the convergence value of the proposed algorithm
is smaller than that of the conventional algorithm and the convergence rate of the proposed
algorithm is far better than the conventional algorithm. It demonstrates that the proposed
algorithm is effective in practical experiment.

From the above experiments, we can know that the proposed algorithm for calculat-
ing the crosstalk error not only improves the robustness and the convergence rate of the
crosstalk error greatly, but also deduces the crosstalk error to practical applications.
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Fig. 7. Average performance index of the proposed algorithm and the conventional algorithm in a real world
experiment.

5. Conclusion

At present, the crosstalk error is widely used to verify the validity and stability of the BSS
algorithms in the simulation conditions. However, in the real application environment, it
is impossible to know the global separation matrix of the signal in advance. Therefore, this
criterion cannot be used in practice. In this paper, the crosstalk error calculation model is
established based on the RLS algorithm, and the calculation method of the crosstalk error
is deduced as an adaptive algorithm without prior knowledge by using real-time estimating
of the global separation matrix. It can greatly extend the use scope of the crosstalk error. At
the same time, a new crosstalk error definition is proposed to improve the robustness and
convergence rate of the original crosstalk error. Finally, the experimental results show that
the method proposed in this paper can predict the convergence trend of the crosstalk error
well, which indicates the validity and robustness of the method proposed in this paper.
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