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Abstract. Many biological ecosystems exhibit chaotic behavior, demonstrated either analytically using parameter choices in
an associated dynamical systems model or empirically through analysis of experimental data. In this paper, we use existing
software tools (COPASI, R) to explore dynamical systems and uncover regions with positive Lyapunov exponents where
thus chaos exists. We evaluate the ability of the software’s optimization algorithms to find these positive values with several
dynamical systems used to model biological populations. The algorithms have been able to identify parameter sets which
lead to positive Lyapunov exponents, even when those exponents lie in regions with small support. For one of the examined
systems, we observed that positive Lyapunov exponents were not uncovered when executing a search over the parameter
space with small spacings between values of the independent variables.
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1. Introduction

Chaos is known to occur in many natural bio-
logical systems involving population dynamics [10,
12, 13, 17]. For example, Becks et al. demonstrated
existence of chaotic and non-chaotic states in an
experimental study of a microbial predator-prey sys-
tem with a nutrient source [7]. The authors used
daily measurements of the population size of each
species to document transitions between chaotic and
non-chaotic states after changing the strength of the
nutrient source. Another experimental study involv-
ing baker’s yeast and a fermenter [11] also observed
chaotic fluctuations in the growth rate of the fungus.
The paper demonstrated chaotic behavior through
time series analysis.
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Farmington, CT 06030-6033, USA. Tel.: +001 860 679 7516,
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Even simple dynamical system models are known
to exhibit chaotic behavior for certain values of sys-
tem parameters [19, 28]. However, even such simple
systems can possess a wide range of chaotic and
non-chaotic behavior, related in a non-trivial way
to certain combinations of system parameters and
initial conditions. As a result, detecting and analyz-
ing chaotic behavior is far from straightforward and
requires a high degree of mathematical sophistica-
tion. This can pose a significant challenge to modelers
with a mostly biological background and hinder the
discussion of chaotic dynamics in biological systems
for educational purposes.

In this work, we evaluate the ability of standard
computational tools to find subsets of the parameter
space which give rise to positive Lyapunov expo-
nents. In particular, we use optimization algorithms
to efficiently search the parameter space and return
values which define arrangements of dynamical
systems giving computationally positive Lyapunov

ISSN 1386-6338 © 2020 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms
of the Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

mailto:koshychenthittayil@uchc.edu
https://creativecommons.org/licenses/by-nc/4.0/


42 S. Koshy-Chenthittayil et al. / A computational framework for finding parameter sets associated with chaotic dynamics

exponents. The framework uses numerical techniques
to generate approximate solutions to the dynami-
cal system coupled with optimization algorithms to
uncover connections between parameters and high-
light regions of chaos.

We pair the results from the optimization with visu-
alization tools available in R to allow investigators
to easily establish relationships between parame-
ter choices and identify ranges of parameter values
leading to chaotic behavior. The aim is to help biolo-
gists develop a better understanding of the causes of
chaotic behavior in dynamical systems without hav-
ing to master the intricate mathematical analysis often
required to rigorously detect and analyze chaotic
behavior. The main novelty of the approach is the
use of optimization algorithms and high-dimensional
visualization techniques to assist with identification
and understanding of parameters leading to chaotic
dynamics.

We validate our computational approach by apply-
ing it to population models in the literature. The
equations in the systems we considered contain rate-
limited functions to model predator/prey dynamics.
Systems of this type have been well studied in
chemostat environments, both experimentally and
analytically [3, 7, 17, 19]. They have been shown
to demonstrate chaotic dynamics [7, 6, 14] and can
be considered as small-scale studies for larger eco-
logical systems [4]. In particular, we consider the set
of coupled differential equations

dY1

dt
= f1 (Y1, . . . , Yn, t)

...

dYn

dt
= fn (Y1, . . . , Yn, t) ,

where Y1 . . . Yn−1 represent population levels of var-
ious predator or prey species and Yn represents the
abundance of a nutrient source. The functions on
the right-hand side are determined using principles
of mass balance, mass action, and enzyme kinet-
ics. The standard approach uses enzyme-mediated
growth rates [4], where rates are defined as limiting
functions, which cap the ability of the bacterial pop-
ulations to grow based on defined saturation-limited
values. These principles are rooted in Michaelis-
Menten kinetics [3, 23] and are part of the standard
approaches used to model systems in a chemostat or
other bacterial environment (see, for instance, [15,
18–21, 25, 30] and references therein).

Given the wide applicability of these models to
different physical and ecological systems, we seek
to better understand the choices of model parame-
ters and initial conditions leading to chaotic behavior.
Let P ⊆ Rm denote all possible valid settings for
the m parameters in our system (e.g., one param-
eter might describe the dilution rate which is the
rate at which a nutrient is introduced into the sys-
tem). Let I ⊆ Rn denote the set of all valid initial
conditions for (Y1, Y2, . . . , Yn). Defining S = P × I,
we seek to characterize the regions of S leading to
chaotic behavior. A particular region s ∈ S is deemed
chaotic if it has negative divergence at its initial con-
ditions (to ensure boundedness) and yields a positive
Lyapunov exponent. In our computations we use stan-
dard numerical integrators for ordinary differential
equations along with popular methods for numerical
Lyapunov exponent calculation [8, 31].

In the following sections, we describe the algo-
rithms and visualizations used in our approach, we
provide the results from the validation exercises, and
we summarize our findings and provide discussion
on future research directions.

2. Description of the framework

The framework discussed in this paper uses the
freely available software tools COPASI (a COmplex
PAthway SImulator) [16] and R [26] to compute
the Lyapunov exponents, evaluate the objective
functions, and construct parallel coordinates visual-
izations of the results. The flowchart in Fig. 1 shows
the progression of the algorithm.

Let Y′ = f (t,Y, s) represent a dynamical system
with parameters s ∈ S. If the system models pop-
ulation dynamics, for instance, the parameters can
contain birth and death rates along with initial con-
ditions. We take S to be the design space in this
framework.

The usual test for chaos is calculation of the largest
Lyapunov exponent; a positive largest Lyapunov
exponent indicates chaos [29]. Lyapunov exponents
provide a quantitative measure of the convergence
or divergence of nearby trajectories for a dynami-
cal system. The system is said to be chaotic over
s ∈ S if the maximum Lyapunov exponent L(s) is
positive and the diverence of the system D(s) is neg-
ative [2]. The divergence of the system is defined
as the trace of the Jacobian associated with the sys-
tem evaluated at the initial state. That is, the system
exhibits chaotic dynamics if L(s) > 0 and D(s) < 0.
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Fig. 1. Flowchart of the simulation framework. The data returned from COPASI is handed to R to generate the parallel coordinates
visualization. Any optimization algorithm can be used to explore the design space.

Thus, our overall objective is to efficiently search S

to find members s in the space for which the maxi-
mum Lyapunov exponent L(s) > 0 and for which the
divergence D(s) < 0.

Strategies for computing the Lyapunov spec-
trum for a dynamical system have been known for
some time [31]. At the heart of these algorithms is
an efficient computational technique for generating
accurate numerical approximations to the system.
Our interest is in the inverse problem; that is, given
a dynamical system with an associated parameter
space, is it possible to use numerical tools to find ele-
ments in the space which result in a positive Lyapunov
exponent for the system? In addition, we wanted to
gain insight into the possible connections between
the parameter values leading to these positive expo-
nents. Thus, we used visualization tools to generate
graphical representations of these associations.

The algorithm in Wolf, et al. [31] actually
computes the entire Lyapunov spectrum from the
discretized solution to the system of ordinary differ-
ential equations (ODEs) and the associated linearized
equations of motion. The linearized equations of
motion are formed from the Jacobian of the system
of ordinary differential equations. We use the imple-
mentation of this algorithm available in COPASI.

The objective function defined for the optimization
routine is to maximize the maximum Lyapunov expo-
nent for a given dynamical system Y′ = f (t,Y, s),
over a paramter set s. That is, starting with the defini-
tion of the dynamical system and the initial parameter
set s0, the optimization algorithm computes the max-
imum Lyapunov exponent and the divergence of
the system associated with that particular param-

eter set. The optimization problem is constrained
by the divergence. That is, the Lyapunov exponent
must be positive, and the divergence negative, for
this parameter set to be feasible. We note most opti-
mization algorithms minimize objective functions, so
our objective function is actually the negative of the
maximum Lyapunov exponent.

Based on the information returned from the eval-
uation of the objective function, the optimization
routine then chooses another parameter set s1 and
again computes the maximum Lyapunov exponent
and divergence for that parameter set. This process
continues until the optimization algorithm exhausts
its set of function evaluations or determines progress
is no longer being made in maximizing (or minimiz-
ing) the objective.

We chose to use the genetic algorithm available in
COPASI [16] as the optimization algorithm. Genetic
algorithms move through “generations" of design
points by evaluating the fitness of members of the
generation and selecting members to continue to the
next generation (through mutation or cloning), parent
offspring for the next generation, or die (i.e., these
points are removed from the population) [24]. The
algorithm was run multiple times, with different ini-
tial choices for parameters, to look for multiple design
points.

These results were validated with the simulated
annealing optimization routine also available in
COPASI. The simulated annealing algorithm ran-
domly selects design points and keeps those which are
associated with lower objective function evaluations.
In order to make the search global, the algorithm also
selects a few random points which increase the value
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of the objective function. The algorithm moves to a
new state or remains in a given state with a specified
probability, with an increased probability associated
with those states giving lower values of the objective
function. The behavior of the algorithm is defined by
choosing parameters which define the size of the ini-
tial search region and reduce the size of the search
space as the algorithm progresses [1, 9].

Let C ⊆ S denote the subset of all parameters and
initial conditions leading to chaotic behavior. Now
that we have a method for efficiently generating sam-
ples from the chaotic regime C, we use an interactive
visualization platform to help the user understand
the structure of C — a challenging task, due to the
potentially complex, high-dimensional nature of this
set. Our platform is based on parallel coordinates, a
popular means of visualizing high-dimensional data.
The plots were generated using the plotly [27] pack-
age in R. The input for the parallel coordinates was
obtained from the result files from the optimization
task of COPASI. All COPASI and R files can be
found in https://github.com/skoshyc/Computational-
Framework-Chaotic-Dynamics.

Figure 2 shows an example of sample points with a
positive Lyapunov exponent generated from the equa-
tions of the well-known Lorenz system [22]. The set
of ODE equations in [22] is given as

dx

dt
= σ(−x + y)

dy

dt
= −xz + rx − y

dz

dt
= xy − bz.

The parameters we varied are r and b; σ = 10. The
ranges of r and b were chosen from the search con-
ducted in [5]. Each of the selected varied parameters
is mapped to an individual coordinate axis, arranged
in parallel from left to right, with each sample point
drawn as a “poly line” that intersects each coordinate
axis at the appropriate location. The values of r and
b were constrained to lie in the intervals [80, 110]
and [2.6, 2.7], respectively, during initial sampling,
although by dynamically dragging the upper and
lower endpoint markers on each axis, the user can
further restrict the display so it only shows samples
generated within a smaller sub-rectangle.

Parallel coordinate plots allow us to understand
a number of useful properties by visual inspec-
tion and interactive manipulation. For example,
in Fig. 2, we see that chaos can be obtained for
log(r) ∈ (4.55, 4.6) and values of b ∈ (2.60, 2.63).
The purple line depicts one particular combination
of the parameters and the Lyapunov exponent. The

Fig. 2. Chaotic samples visualized using parallel coordinates and obtained using the Lorenz system [22]. Note the narrow range of values
for log(r) and b. For the purpose of the example, only 50 runs of the genetic algorithm were run. The pink line in ln(r) axis represents the
user-defined choice of parameter range. The faint grey lines depict parameters that fall outside the user-defined choice.

https://github.com/skoshyc/Computational-Framework-Chaotic-Dynamics
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faint lines are combinations outside the selected
range of log(r). By restricting several coordinates at
a time, the user can filter an initially large number of
sample points down to only a few.

3. Numerical results

The numerical results presented are intended to
demonstrate the ability of the framework to meet the
stated goal of this work; i.e., provide researchers with
a convenient numerical tool for exploring the param-
eter space and uncovering regions where parameter
choices lead to chaos. We validated the framework
on several dynamical systems from the literature. We
include results from two of those studies here [14, 19].

Both of the included systems can be used to
model predator-prey dynamics in ecosystems. The
mathematical analysis of both systems uncovered
parameter values which gave chaotic solutions [14,
19]. We sought to replicate these findings by maxi-
mizing the Lyapunov exponent over a design space
consisting of the initial conditions for the variables
and two of the parameters used to define the ODEs.
We use this section to describe the equations and the
results of our study.

All computations were carried out on a Windows
10 PC with Intel(R) CPU and 4 Cores. The version of
COPASI was 4.27 and R was 4.0.0. Both the genetic
algorithm and simulated annealing were run multi-
ple times to obtain multiple sample points. Each run
had randomized start values which is an option in
the optimization task in COPASI. After each run, the
maximum Lyapunov exponent along with the opti-
mal parameters are generated. COPASI collects the
information from each run and provides the output
from all the runs in a text file. The positive Lyapunov
exponents and associated parameter set are chosen by
R and visualized using the parallel coordinates plot.

We used 200 generations with 20 population mem-
bers in each genetic algorithm search to generate the
results provided below. The algorithm was run 100
times to generate the parallel coordinates plots. For
the simulated annealing results, we used the COPASI
default parameter values for the starting temperature,
the cooling factor, and the tolerance [1]. The start
temperature defines the size of the random pertur-
bations on the parameters for the algorithm, and the
cooling factor defines the size of the reduction of the
random perturbations at each cycle. The algorithm
stops when the change in the objective function has
been smaller than the tolerance in the last two temper-

ature steps. The simulated annealing algorithm was
run 25 times in order to have a defined number of
points to compare with the results from the genetic
algorithm. The number of repeated runs was limited
due to the computational expense of the simulated
annealing algorithm.

3.1. Double forced Monod system (DFMS)

We first consider one of the dynamical systems
presented and analyzed in work by Kot, Sayler,
and Schultz [19]. While experimental results are not
included in the paper, the authors justify their choice
to study this particular system by noting the possibil-
ity of obtaining experimental validation of their work.
As our primary interest in developing the framework
presented here is to aid biologists in their data-based
studies of dynamical systems, this particular problem
presents an ideal benchmark case.

The dimensionalized equations for the DFMS are
given as

dS

dt
= D

[
Si

(
1 + ε sin

(
2π

T
t

))
− S

]
− μ1

Y1

SH

K1 + S

dH

dt
= μ1

SH

K1 + S
− DH − μ2

Y2

HP

K2 + H

dP

dt
= μ2

HP

K2 + H
− DP,

where S represents the limiting substrate, H rep-
resents a prey species, and P represents a predator
species. We note the predator species consumes only
the prey, so its population is indirectly associated
with the changes in S. The parameters in the model
govern the response of the organisms to changes in
the system. D is the dilution rate, which defines the
ratio of the flow into the chemostat to the volume of
organisms in the chemostat; μ1 and μ2 are the max-
imum specific growth rates of the prey and predator,
respectively; Y1 is the yield of prey per unit mass
of substrate, and Y2 is the yield of predator per unit
mass of prey; and K1 and K2 are the half-saturation
constants.

Si is the inflowing substrate concentration where
i denotes inflow of the substrate into the chemostat.
We note the parameter ε changes the dynamics of the
inflowing substrate. Smaller values of ε lead to more
constant inflows, while larger values of ε introduce
more fluctuation into the inflow. Both ε and the fre-
quency of the associated oscillation were important
parameters for chaos, indicating nutrition rates play
an important role here.
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The equations are nondimensionalized by rescal-
ing all variables by the inflow substrate, the prey by
its yield constant Y1, and the predator by both yield
constants [19]. The dimensionless system is given by

dx

dτ
= 1 + ε sin (ωτ) − x − Axy

a + x

dy

dτ
= Axy

a + x
− y − Byz

b + y

dz

dτ
= Byz

b + y
− z,

where x = S

Si

, y = H

Y1Si

, and z = P

Y1Y2Si

, τ = Dt,

and ω = 2π

DT
. Also, A = μ1

D
, a = K1

Si

, B = μ2

D
, and

b = K2

Y1Si

.

As shown in the referenced paper, the dimension-

less system exhibits chaotic behavior for ω = 5π

6
and

ε = 0.6, with Si = 115 mg/l, D = 0.1 / h, and ini-
tial conditions x(0) = 0.42, y(0) = 0.4, z(0) = 0.42.
The remainder of the parameter values are provided
in Table 1. Representative manifold plots are given in
[19] and are not duplicated here.

To determine if our framework could recover
the values cited in [19], we used the optimization

Table 1
Parameter values associated with the chaotic system described

in [19].

Yi μi (h−1) Ki (mg/l)

Prey (i = 1) 0.4 0.5 8
Predator (i = 2) 0.6 0.2 9

algorithms to maximize the computed Lyapunov
exponent as a function of ε, ω, and the initial states for
x (τ), y (τ), and z (τ). A subset of our results is shown
using parallel coordinates visualization in Fig. 3. This
visualization indicates more positive Lyapunov expo-
nents associated with small values of ω. Note in
the rescaled system ω is the angular frequency of
the forcing term. Thus, observing positive Lyapunov
exponents for small values of ω may indicate to a
biologist an interesting connection between periodic
forcing and chaotic behavior that they may be able
to further study experimentally. Any clustering of the
remainder of the parameters chosen for our study is
less obvious. Figure 4 contains a manifold plot of the
dimensionless system for a randomly chosen set of
parameter values from those discovered by our frame-
work; namely, ε = 0.753444, ω = 0.455121, and
initial conditions x(0) = 4.49844, y(0) = 0.428112,
and z(0) = 0.446482. We note that the strange attrac-
tor shown in Fig. 4 is distinct from the one given in
the referenced paper.

Fig. 3. Results from the parameter search for the double forced Monod system in [19] visualized using parallel coordinates. The vertical
axes are associated with values for the maximum calculated Lyapunov exponent, ε, ω, x(0), y(0), and z(0). The results are from 100 runs of
the genetic algorithm in COPASI. The pink line in ε axis represents the user-defined choice of parameter range. The faint grey lines depict
parameters that fall outside the user-defined choice.
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Fig. 4. Manifold plot of forced model in [19]. Note the strange
attractor is distinct from the one given in the paper.

To further investigate the efficacy of having a tar-
geted search of the parameter space, we also used
the simulated annealing approach of COPASI to gen-
erate a comparison of Lyapunov exponents with the
results of the genetic algorithm. The initial condi-
tions were set to (x, y, z) = (1, 1, 1) to observe the
behavior of only the two parameters ε and ω. Each of
the algorithms were run 25 times for the comparison.
The comparison was repeated twice to account for
stochasticity. As is seen in Fig. 5, there are clusters
of positive Lyapunov exponents (and hence chaos) in
the ranges of ε ∈ (0.18, 0.21) and ω ∈ (0.8, 1).

We sought to better understand these results
by computing the maximum Lyapunov exponent
over a 100 × 100 discretization of the region ε × ω

for ε ∈ (0.18, 0.21), ω ∈ (0.9, 1) using the initial
condition (1, 1, 1). The task was completed using the
parameter scan option in COPASI. The results are
shown in Fig. 6. The graph shows all of the largest
Lyapunov exponents at these discrete points were
negative, indicating the optimization algorithms
were able to locate these small regions where positive
Lyapunov exponents were computed. One of the
reasons we possibly don’t get the requisite parame-
ters in the 100 × 100 grid search is because the grid
is regularly spaced. For example, two of the values
associated with the cluster in Fig. 5 are (ε, ω) =
(0.180791, 0.955417), (0.181136, 0.913295). Such
numbers do not appear in the regularly spaced grid
search.

3.2. A three-species food chain

The second example uses a three-species food
chain model where chaos was observed for a given set

Fig. 5. Comparison of results from simulated annealing and the
genetic algorithm with the initial conditions as (1, 1, 1). The two
figures 5A and 5B are from running the comparison search twice.
In each search, the algorithms are run 25 times. The regions of
positive Lyapunov exponents are the same in each figure.

of biologically relevant parameters [14]. The model
was a continuous, non-linear system which has bio-
logical implications of chaos on a general food web
model. Our algorithm was able to find the same
parameter values reported in the paper along with
other parameter choices which lead to chaos.

This three-species model [14] is defined using the
equations
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Fig. 6. Surface plot of Lyapunov exponents obtained for ε ∈
(0.18, 0.21) and ω ∈ (0.9, 1) with initial conditions (1, 1, 1).

dX

dT
= R0X(1 − X

K0
) − C1F1(X)Y

dY

dT
= F1(X)Y − F2(Y )Z − D1Y

dZ

dT
= C2F2(Y )Z − D2Z,

where

Fi(U) = AiU

Bi + U
i = 1, 2.

The variables X, Y, Z represent three species with X

being the prey for Y and Y being the prey for Z. T

represents time. The parameters are R0, the intrinsic
growth rate; K0, the carrying capacity of species X;
C1 and C2, the conversion rates of prey to predator
for species Y and Z, respectively; and D1 and D2, the
constant death rates for species Y and Z, respectively.
The functions Fi(U) are a Monod type response to the
prey species.

The authors created a nondimensional system of
equations using the following transformations:

x = X

K0

y = C1
Y

K0

z = C1
Z

C2K0

t = R0T.

The system used in our analysis is the nondimensional
system given by

Table 2
Parameter values associated with

the chaotic system described in [14].

Parameters Values

a1 5.0
b1 3.0
a2 0.1
b2 2.0
d1 0.4
d2 0.01

dx

dt
= x(1 − x) − f1(x)y

dy

dt
= f1(x)y − f2(y)z − d1y

dz

dt
= f2(y)z − d2z,

where fi(u) = ai(u)/(1 + biu) i = 1, 2. The
parameter values in the nondimensionalized system
for which the authors of [14] observed chaos are in
Table 2. The range of b1 they studied was b1 ∈ (2, 6).
In addition, they observed chaotic dynamics for
some values of b2 which were not given in their
paper.

For our design space, we considered b1 ∈
(2.5, 4), b2 ∈ (1, 3), and ranges for the initial con-
ditions x (0) ∈ (0.1, 1), y (0) ∈ (0.1, 1), and z (0) ∈
(7.5, 10.5).

The results obtained from this search are provided
in Table 3 and Fig. 7. The authors of [14] note chaos
is observed for larger values of b2 (i.e. larger than 2),
which we observe in the parallel coordinates plot as
well. We also see that most of the positive Lyapunov
exponents are found when b1 and b2 are both close
to 2.5.

A comparison of simulated annealing and the
genetic algorithm was performed to better under-
stand the landscape of the Lyapunov exponents as
a function of (b1, b2) with the initial conditions set
to (0.5, 0.3, 9). As seen in Fig. 8, the majority of
the parameter combinations which show chaos are
centered around (b1 = 2.5, b2 = 2.5).

4. Conclusion

We have provided a computational strategy that
allows researchers to efficiently search over a design
space including parameter values and initial con-
ditions and discover possible connections between
values of these constants and chaotic dynamics. The
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Table 3
Subset of the results from the genetic algorithm search for the three-species food chain in [14]

Lyapunov exponent b1 b2 x(0) y(0) z(0)

0.023648 2.63651 2.59459 0.332151 0.220724 9.03868
0.0234837 2.5 2.45609 0.112289 0.292607 10.1235
0.0253758 2.51406 2.67227 0.143063 0.188911 10.5
0.0247539 2.52096 2.63509 0.170619 0.373552 10.5
0.0235603 2.57053 2.56936 0.165032 0.255972 10.5
0.0253312 2.5 2.64983 0.149159 0.199885 10.5
0.0290962 2.5 2.67319 0.28922 0.286104 9.83263
0.0227857 2.56591 2.65262 0.267509 0.255673 9.38101
0.0277303 2.6796 2.66453 0.1 0.289252 9.94014
0.0241472 2.5 2.64446 0.146135 0.112823 10.5

Fig. 7. Results from the parameter search for the three species food chain in [14] visualized using parallel coordinates. The vertical axes are
associated with values for the maximum calculated Lyapunov exponent b1, b2, x(0), y(0), and z(0). The pink line in b1 axis represents the
user-defined choice of parameter range.

ability for such a search may reveal chaotic behav-
ior in systems not previously known to have chaotic
regime and the existence of parameters and initial
conditions not previously known to yield chaotic
behavior in studied systems. In one of the models
we investigated, our technique found chaotic regions
which were not observed using a regularly spaced
grid search. This showed that to obtain the chaotic
parameters, we would need a finer grid and thus sev-
eral more iterations. Another brute force technique
such as a random search may also miss the chaotic
parameters. The use of COPASI and R results in
a robust, comprehensive framework for analyzing a
given dynamical system without the need for rigorous
mathematical analysis.

One of the main strengths of this approach is that it
allows the study of system behavior that is virtually
impossible to observe in a laboratory environment,
thus making it useful to experimentalists. The par-
allel coordinates plots provide further insight into
system dynamics for a wide variety of parameter
changes.

Parallel computations will improve the efficiency
of this strategy. The genetic algorithm is concep-
tually easy to parallelize, in that objective function
evaluations for a generation can be easily distributed
across processors. We have not evaluated the speed-
up which would be associated with this modification.
We also continue to evaluate the ability of differ-
ent objective functions to locate parameter values
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Fig. 8. Comparison of results from simulated annealing and the
genetic algorithm search for chaos in the three species food chain
in [14] with the initial conditions as (0.5, 0.3, 9).

associated with chaos. One of the Lyapunov expo-
nents being positive is the chaos indicator that we
employ in this paper. The optimization algorithm
which searches for the maximal Lyapunov exponent
will find the conditions which give the most posi-
tive exponent. As the Lyapunov exponent can be a
discontinuous function of the design space, it can be
easy for an optimization algorithm based on proper-
ties of continuous functions to miss them. Thus, better
strategies for finding these points are warranted. If
the system has two positive Lyapunov exponents, we
are limited in the use of an optimization algorithm
as the algorithm will probably give us the parame-
ters which give rise to the more positive exponent
thus missing other regions of chaos. However, multi-
ple runs of global optimization algorithms like the
genetic algorithm, simulated annealing, evolution-
ary algorithms in COPASI would give us different
parameter combinations of the desired chaotic
regions.
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