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Abstract. The role of the immune system in tumor development increasingly includes the idea of cancer immunoediting. It
comprises three phases: elimination, equilibrium, and escape. In the first phase, elimination, transformed cells are recognized
and destroyed by immune system. The rare tumor cells that are not destroyed in this phase may then enter the equilibrium
phase, where their growth is prevented by immunity mechanisms. The escape phase represents the final phase of this process,
where cancer cells begin to grow unconstrained by the immune system. In this study, we describe and analyze an evolutionary
game theoretical model of proliferating, quiescent, and immune cells interactions for the first time. The proposed model is
evaluated with constant and dynamic approaches. Population dynamics and interactions between the immune system and
cancer cells are investigated. Stability of equilibria or critical points are analyzed by applying algebraic analysis. This model
allows us to understand the process of cancer development and might help us design better treatment strategies to account
for immunoediting.
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1. Introduction

Understanding how the immune system affects
cancer progression is one of the most important
topics in cancer immunology. The immune system
plays an important role in cancer evolution. Cancer
cells are originated by mutations in tumor suppressor
genes, DNA repair genes, and oncogenes in normal
cells [1]. Tumor cells replicate through uncontrolled
cell division and spread into surrounding tissues [2].
Immunoediting consists of three distinct phases: (i)
elimination, (ii) equilibrium and (iii) escape. In elim-
ination phase, immune cells such as natural killer
cells and T cells are activated by cytokines. They
kill cancer cells and consequently cells that have
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escaped enter equilibrium phase. It is the longest can-
cer immunoediting phase. In the escape phase, cancer
cells gain more resistance to immune detection and
it is the most dangerous phase [3, 4, 5].

The presence of cancer cells elicits a host immune
response, the dynamics of which have been the sub-
ject of many recent studies. Many different methods
have been proposed for modeling development and
evolution of cancer such as Cellular automaton [6, 7],
evolutionary game theory [8–17] defferential equa-
tions [18–20], multiagent systems [21].

Game theory is a mathematical tool for modeling
interactions between entities. In a game in canoni-
cal game theory, each of the players rationally selects
a strategy to maximize its profit [22]. Evolutionary
game theory originated as an application of game
theory to evolutionary contexts. In this approach, the
selection is based on repetition and strategies repre-
sent fixed phenotypes. Evolutionary games have three
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important features. In such games, the population is
considered to be infinite, reproduction is asexual and
the interactions are mutual [28]. Cancer, being a pro-
cess of somatic evolution, is amenable to evolutionary
game theory [24].
Many studies have used evolutionary game the-
ory (EGT) to model cancer evolution and in each
of them the focus is the interactions between dif-
ferent cancer phenotypes. Tomlinson and Bodmer
[11] were the first ones to use EGT to model can-
cer. In their work the interactions between cancer
cells in the context of angiogenesis is considered.
Later, Tomlinson introduced another model in which
the interaction of three phenotypes is studied: cells
producing a paracrine growth factor and cells produc-
ing an autocrine growth factor to prevent apoptosis
for other cells or themselves, respectively. More-
over, they described cells which are susceptible to
paracrine growth factors but are not able to produce
them themselves. In [13], Basanta and Deutsch study
cell behaviour in environmental poisoning as a result
of glycolytic metabolism and how the introduction
of a new phenotype, even if not an evolutionary suc-
cessful one, can influence the evolutionary dynamics
of the tumor. In a subsequent study, Basanta et al.
[12] proposed a different model where the interac-
tion between cancer cells and stroma cells is studied.
Recently, Gatenbee et al. [25] explore the evolution of
immune escape strategies in ductal cancers. In sum-
mary, they show that spatial competition and structure
influence transient dynamics during invasion.

In many research, interaction between cancer and
immune cells are investigated with math equations
and none of them investigated by a game-theoretical
approach. So, the previous game theory models never
consider the interactions between cancer and immune
cells. The main contribution of this paper is three-
fold: First, in the proposed model we describe the
interactions between two types of cancer cells (pro-
liferating and quiescent) and immune cells. Second
the model is analyzed in three tumor phases, and third
the proposed model will be investigated with static
and dynamic analysis approaches.

To the best of our knowledge, this is the first
time that an evolutionary game model of cancer
and immune cells interactions has been proposed.
The paper is organized as follows. We will first
describe the model in Section 2 following by anal-
ysis presented in Section 3. We will then in Section 4
present some examples based on biologic real-
ity for each development phase of a tumor and
provide conclusions.

2. The proposed evolutionary game theory
model

Interactions between immune and cancer cells cre-
ate the immunoediting process. It consists of three
phases: elimination, equilibrium and escape. Figure
1(a) illustrates immunoediting process. In the elimi-
nation phase, the innate and adaptive immune systems
work together to kill susceptible cancer tumor cells.
Molecules and immune cells that are active in this
phase can recognize and kill cancer cells. More-
over, dangerous signals such as type I IFNs are
released from dying tumor cells or from damaged
tissues during tumor progression. These cytokines
activate immune cells and provide adaptive anti-
tumor immune response. Ligands such as MICA/B
and H60 that are abundant on the surface of tumor
cells, bind to activating receptors on immune sys-
tem cells and activate them. The spread of CD4+T

and CD8+T cells leads to a coordination and bal-
ance in activation of both innate and adaptive immune
response [3].

Ideally all cancer cells in this phase are killed by
the immune system as shown in Figure 1(b). If, how-
ever, some tumor cells remain, it may then progress
to the equilibrium phase. The equilibrium phase is a
function of adaptive immunity. In this phase, tumor
cells are maintained by IL-12, T, IFNγ factors. This
phase may last as long as the lifetime of the host [5,
26]. In the escape phase, changes and transformations
such as antigene reduction occurs in tumor cell sur-
face. It leads to a reduction in the recognition of tumor
cells by the immune system. Also in this phase, cellu-
lar resistance may increase to the cytotoxic effects of
immunity. For example, anti-apoptotic mechanisms
such as activation of factors such as STAT3 or expres-
sion of anti-apoptotic molecules like BCL-2 can lead
to the increase cellular resistance (Figure 1(b)).

Cancer proliferating cells are dangerous cells that
have enough nutrients and ability to cell devision.
Due to low immunogenic level of these cells, the
probability of recognition by the immune system is
low. Moreover, the cells will remain hidden from
immune system. The cancer quiescent cells are alive
but have not sufficient nutrient source to support cell
division. Some researches have considered interac-
tion between quiescent cells with other cells [6, 7,
20, 41–43]. The immune system can usually rec-
ognize the highly immunogenic cells. Therefore,
the cost imposed to these cells increase. Now we
model the interaction between cancer proliferating
cells(P), cancer quiescent cells (Q) and immune cells
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Fig. 1. Cancer Immunoediting. It is reproduced from the information presented in [3].

(I) by evolutionary game theory. These cells interact
together by producing significant factors. Therefore,
we define proliferating cancer cell, quiescent cancer
cell and immune cell as players that their benefit are
based on their abilities to survive themselves. Figure
2 shows possible interactions considered in the pro-
posed model. Green solid lines indicate stimulation
and red dashed lines indicate inhibition. Stimulations
of cancer-immune interaction may cause tumor elim-
ination, tumor dormancy or tumor escape.

Table 1 translates the described interactions
between three cells (Figure 2) to real values that show
the cell’s payoffs.

In this model, the sources of cancer cells and
immune cells are assumed to be separated. a and b

represent the basic payoff that immune and cancer
cells can obtain from their proprietary source, respec-
tively. As shown in the first row of Table 1, there
are three types of the interactions for proliferating
cells. When proliferating cells interact with them-
selves, the amount of basic payoff is equally divided
between them ( b

2 ). Also, they may produce paracrine
and autocrine growth factors that prevent apoptosis

Table 1
This table represents the general reward matrix for interactions
between immune (I), proliferating (P) and quiescent(Q) cells. For
example, αb is proliferating (P) payoff interaction between quies-

cent (Q) and proliferating (P) type

Phenotype P Q I

P
b

2
+ F1 αb b − C1

Q βb
b

2
+ F2 b − C2

I a + γ1 a + γ2
a
2

for themselves or other cells. Consequently they can
gain a value F1 . αb represents the benefit derived
by P cells from the resources and increased survival.
While proliferating cells interact with immune cells,
immune cells produce cytokines and antibodies to kill
cancer cells. C1 represents the cost to cancer cells
imposed by their interactions with immune cells.

As described in the second row of Table 1, βb rep-
resents the payoff for quiescent cells when interacting
with proliferating cells. when quiescent cells interact
with themselves, they gain a fitness advantage from
growth factors, which is represented by F2. When
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Fig. 2. Interactions considered in the proposed model.

Table 2
Description of Model Parameters

Parameter Description

P Proliferating cancer cells

Q Quiescent cancer cells

I Immune cells

b Basic payoff for cancer cells

a Basic payoff for immune cells

γ1, γ2 Net benefit

C1, C2 The costs of cancer cells that imposed by immune cells

F1, F2 The benefit produced by growth factors

αb Fraction from basic payoff for proliferating cancer cell

βb Fraction from basic payoff for quiescent cancer cell

quiescent cells interact with immune cells, the cost
value C2 is imposed on them.
As shown in the third row of Table 1, the payoff
for immune cells playing together is a

2 . When qui-
escent cells interact with immune cells, they produce
a signal or ligand and antigen on the surface of the
cells to stimulate and activate immune cells. γ1 and γ2
are benefit for immune cells when they interact with
proliferating and quiescent phenotypes, respectively.
Table 2 summarizes the parameters in the proposed
model.

3. Analysis of the proposed evolutionary game

In this study we investigate two approaches (i.e.,
static and dynamic) to analyze evolutionary game
theory. The first approach originates from the model
presented by Smith [28] that captures the dynamic
process of natural selection using a static definition
of ESS. To describe how the ESS is achieved, to deter-
mine which one Evolutionary Stable Strategy (ESS)
point will be selected when there are more than one

ESS in the game, and to analyze other type of stabil-
ities of the game we use replicator dynamics [40].

In Game Theory, Nash Equilibrium (NE) is a state
of the game where no player can increase its payoff by
deviating from the state unilaterally. In Evolutionary
Game Theory, an ESS is a strategy profile such that,
if most members of a population adopt it, there is no
mutant strategy that would give a higher reproductive
fitness [28]. The ESS concept has been proposed by
Maynard Smith [28]. ESSs can be monomorphic or
polymorphic [29]. A profile of strategies represents
a monomorphic (polymorphic) ESS, if it cannot be
invaded by other pure (mixed2) strategies. We for-
malize this concept in the following definition.

Definition 1. In a symmetric game3 , the strategy
(phenotype) ŝ is an evolutionarily stable strategy of
the game if and only if: u(ŝ, ŝ) ≥ u(s′, ŝ) ∀s′ ∈ S

(where S is strategy set) and if u(ŝ, ŝ) = u(s′, ŝ), then
u(ŝ, s′) > u(s′, s′).

An ESS is a stability concept that was inspired by
the replicator dynamic. In other words an ESS is a
strategy profile that is resistant to invasion by new
strategies [44]. Let assume that a population of play-
ers is playing a given strategy, then a small population
of invaders change their strategies. The old strategy
is an ESS if it obtain higher payoff rather the mixture
of the new and old strategies. In this case, the old
strategy is winner phenotype in the competition over
times and natural selection favors it. In the following

2A mixed strategy profile induces a probability on the pure
strategy profile. By mixed strategy a player can randomly chose a
pure strategy. There exist infinite number of mixed strategies for a
player, because probabilities are continuous.

3A symmetric game is a game in which each player obtains
the same payoff when choosing the same strategy against similar
strategies of his opponent. In other word, the payoffs only depend
on the players strategies not on who is playing them.
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sections, we have analyzed the proposed model with
two static and dynamic approaches. In static analy-
sis, we investigated the Nash equilibrium (NE) and
the evolutionary stable strategy (ESS). NE and ESS
represent the stage in cancer progression where no
more changes are expected.

3.1. Static analysis

In the static analysis of a game, the final state of the
population is considered. In this section, we investi-
gate the conditions that lead to dominance in each of
phases: elimination, equilibrium and escape. As dis-
cussed in the previous section, sometimes immune
system can detect and inhibit cancer cells which
results in preventing the development of many can-
cers. The following proposition demonstrates the
conditions under which the immune cells’ natural
capability are able to destroy cancer cells. In the
metaphor of the game we say that the immune cells
are stable strategy. This phase is called elimination.

Proposition 1. In the elimination phase, strategy
profile (I,I), under the following condition is a
monomorphic ESS.

b < min((
C1 + C2 + a

2
), (βb + a + γ1 − 2F1),

(αb + a + γ2 − 2F2)) (1)

Proof. It is easy to check that according to mentioned
conditions, strategy profile (I,I) is strict Nash equi-
librium and consequently it is a monomorphic ESS.

fitness(
a

2
) is a dominant in its column.

a

2
> b − C1,

a

2
> b − C1then b < (

C1 + C2 + a

2
)

(2)

fitness(
b

2
+ F1) is not a dominant in its column.

b < (βb + a + γ1 − 2F1) (3)

fitness(
b

2
+ F2) is not a dominant in its column.

b < (αb + a + γ2 − 2F2)) (4)

Therefore

b < min((
C1 + C2 + a

2
), (βb + a + γ1 − 2F1),

(αb + a + γ2 − 2F2)) (5)

Immune cells can eradicate proliferative and quies-
cent cancerous cell completely, however, sometimes,
cancer cells may escape from the immune system’s
detection and destruction. In this situation, cancer
cells can suppress the immune system’s response
through several mechanisms (please see Section 2),
and also enable invasive cells to move and spread to
the neighboring tissues [30]. The following proposi-
tion represents conditions that induce a monomorphic
ESS in the escape phase.

Proposition 2. In the escape phase, strategy profile
(P,P), under the following conditions is a monomor-
phic ESS.

βb + 2a + γ1 − 2F1 + c1 + c2

3

< b < αb + a + γ2 − 2F2 (6)

Proof. It is easy to check that according to mentioned
conditions:

fitness(
b

2
+ F1) is a dominant in its column.

b

2
+ F1 > βb,

b

2
+ F1 > a + γ1, then

βb + a + γ1 − 2F1 < b (7)

fitness(
a

2
) is not a dominant in its column.

b > (
C1 + C2 + a

2
) (8)

fitness(
b

2
+ F2) is not a dominant in its column.

b < αb + a + γ2 − 2F2 (9)

Therefore

βb + 2a + γ1 − 2F1 + c1 + c2

3

< b < αb + a + γ2 − 2F2 (10)

Moreover, in some situations, cancer cells may
not be completely eradicated but instead manage to
survive immune destruction and so enter into an equi-
librium state in which the immune system derives
tumor growth. In the game theory metaphor, if quies-
cent cells go to a stable state, or quiescent and immune
cells compose a polymorphic stable state, then dur-
ing cancer immunoediting, the immune system drives
tumor cells go to the equilibrium phase.
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Proposition 3. The equilibrium phase of cancer
includes one of the following:
i) Strategy profile (Q,Q), under the following condi-
tions is a monomorphic ESS.

αb + 2a + γ2 − 2F2 + c1 + c2

3

< b < βb + a + γ1 − 2F1 (11)

ii) Mixed strategy p̂ = (p, 1 − p), is combina-
tion of immune and quiescent populations as p =

C1 − b + a
2

αb − b + C1 − a
2 − γ2

then it is ESS.

Proof. i) It is similar to the proof of Proposition 1.

fitness(
b

2
+ F2) is a dominant in its column.

b

2
+ F2 > αb,

b

2
+ F2 > a + γ2, then

b > αb + a + γ1 − 2F2 (12)

fitness(
a

2
) is not a dominant in its column.

b > (
C1 + C2 + a

2
) (13)

fitness(
b

2
+ F1) is not a dominant in its column.

βb + a + γ1 − 2F1 > b (14)

Therefore

αb + 2a + γ2 − 2F2 + c1 + c2

3

< b < βb + a + γ1 − 2F1 (15)

ii) According to Definition 1, p̂ represents an ESS if
there following relationship is satisfied:

u(p̂, ṕ) > u(ṕ, ṕ)∀ṕ (16)

�

3.2. Dynamic analysis

The process of carcinogenesis includes all princi-
ples of evolutionary theory: reproduction, mutation,
and selection. In cancer, the fitness of phenotypes or
genotypes depends on their relative frequencies in
the population [45–48]. There are many evidences
that the selection and expansion of one cell pop-
ulation in tumor influences and is influenced by
the relative frequencies of other cell populations
(including normal cells) [49]. This type of selection

is called frequency-dependent selection [45]. This
type of selection is a driver of heterogeneity and
genetic diversity in tumors. Many models that analyze
cancer evolution and development often disregard
frequency-dependent selection and suppose that evo-
lution is interpreted over a given fitness landscape.
They have assumed that each phenotype has a defi-
nite fitness value that is not depending on the relative
frequencies. Hence, this may result in misleading [45,
46, 49]. Replicator dynamic is a standard tool to cap-
ture the frequency-dependent nature of interactive
populations [50, 51] Hence, in this study, we have
employed replicator dynamics. Moreover, replicator
dynamics only assume the inheriting of pure strategy
that is in accordance with cancer nature.

The replicator dynamic was developed for evolu-
tionary games by Maynard Smith and Price [28]. In
addition, the replicator equations are employed to the
deterministic evolutionary process [40]. These equa-
tions describe how the proportions of a population
change over time based on different in the fitness of
each of the other populations in a frequency depen-
dent manner [31]. Hence, in applications of EGT to
cancer, researchers employ replicator equations to
investigate the dynamics of the populations [12].

In our model we show the proportion of P cells, the
proportion of Q cells and the proportion of I cells at
a given time t shown by x, y and z, respectively. The
absolute fitness of each cell is:

W(x) = (
b

2
+ F1)x + (αb)y + (b − C1)z (17)

W(y) = (βb)x + (
b

2
+ F2)y + (b − C2)z (18)

W(z) = (a + γ1)x + (a + γ2)y + (
a

2
)z (19)

W̄ presents the average fitness of the population and
can be calculated by:

W̄ = xW(x) + yW(y) + zW(z) (20)

Equations (21), (22) and (23) show population
dynamic of model.

ẋ = x(Wx − W̄) (21)

ẏ = y(Wy − W̄) (22)

ż = z(Wz − W̄)) (23)
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In summary, according to the environmental con-
ditions and internal factors of the tumor, one of the
phase of tumor growth may occur.

4. Result

The final stage of cancer can be one of the fol-
lowing: cancer- free status (immune cells are stable),
dormant status (quiescent cells are stable) or lethal
and dangerous status (proliferating cells are stable).
In our problem, the status of the tumor must be
changed from proliferating to controlled states (equi-
librium or elimination phase) for patients treatment.
It can control or recover the disease. Therefore a good
understanding of this process can help us to design
treatment strategies.

4.1. Numerical simulation

In this section, we want to investigate the evolution
of different phenotypes in the tumor population using
the replicator equations in a number of scenarios. In
other hand, we have not considered the exact real
values for payoffs in a specific tumor, because the
payoffs differ from individual to individual. In this
paper, we don’t restrict ourselves to a specific situa-
tion and we analyze the general forms of the model.
This is a standard way to analyze highly variable envi-
ronmental. In most of the papers in this area, there
doesn’t exist any calibration for extracting exact real
value of the payoff and most of the applied param-
eters are qualitative [8, 9, 12, 13, 38, 39]. Despite
these, we delineate the phenotypes behaviors using
the several possible scenarios under various environ-
ment conditions. This scenario represents different
payoff in different environment. In fact we investi-
gate different behavior of the phenotypes instead of
investigating a special case using exact value. The-
ses scenarios are determined by the model variables:
α, C1, C2, F1, F2, γ1, and γ2. In each case, the repli-
cator equations iterate for 20 generations. In this
regard, we investigate two scenarios that describe
three phases including elimination, equilibrium and
escape phases.

Scenario i) In this scenario, the imposed costs on
cancer cells are low then population dynamic direct
toward escape or equilibrium phase by increasing the
impact of cancer growth factors.

As the first row in Figure 3 shows, the outcomes
from the phases determined by α and the sum of costs
(C1 + C2) that set to lower than 1. Outcome is P

phenotype (escape phase) if 2F1 − γ1 is suffciently
small.

Figures 4(a) and 4(b) show the population
dynamic for the example of escape phase. Using
initial conditons a, b = 1, α = 0.9, β = 0.1, F1 =
1.5, F2 = 0.5, γ2 = 0.2, γ1 = 0, C1 = 0 and C2 =
0.2, the conditions of Proposition 2 are satisfied. They
show the population dynamics of tumor cells for 100
generations.

Equilibria are not always stable. Since stable and
unstable equilibria play quite different roles in the
dynamics of a system, it is useful to classify equi-
librium points based on their stability. We consider
biological network that are modeled by differential
equations.

Definition 2. Let dynamic equations are calculated
like the following system:

⎛
⎜⎜⎝

dx1
dt

= P1(λ1,...λn,x1,...xn)
Q1(λ1,...λn,x1,...xn)

...

dxn

dt
= Pn(λ1,...λn,x1,...xn)

Qn(λ1,...λn,x1,...xn)

⎞
⎟⎟⎠

where P1, ..., Pn, Q1 /= 0, ..., Qn /= 0 are polynomi-
als in λ1, ..., λn, x1, ..., xn. We can obtain critical
points by equating equations to zero [32, 33]. A point
x̄ is called a critical point (an equilibrium) when

P1(λ̄, x̄) = 0, ..., Pn(λ̄, x̄) = 0, Q1(λ̄, x̄) /= 0,

..., Qn(λ̄, x̄) /= 0 (24)

Then eigenvalues of jacobian matrix J(λ̄, x̄) corre-
sponding to every critical point can be calculated,
and
(a) If all the eignvalues of the matrix J(λ̄, x̄) have
negative real parts, then the point x̄ is stable.
(b) If the jacobian matrix J(λ̄, x̄) corresponding to
the point x̄ has at least one eigenvalue with positive
real part, then that point is unstable.

According to our definition 2, the equilibrium point
(1,0,0) is stable (Table 3). In this game, the population
dynamics direct toward the dominance of proliferat-
ing cells and a strategy profile (P,P) is NE and ESS.
Tumor progression leads to an escape state resulting
from the reduced ability of immune system in rec-
ognizing and killing cancer cells (C1 = 0, C2 = 0.2)
or, alternatively, an increase in cellular resistance to
the effects of cytotoxics (F1 = 1.5, F2 = 0.5).

In this scenario, outcome is Q phenotype
(equilibrium phase) if 2F1 − γ1 is high enough.
When α is large, population dynamic is leading



8 F. Tavakoli et al. / Cancer immunoediting: A game theoretical approach

Fig. 3. Outcomes from the replicator equations. Each box represents the outcome in which specific values of 2F1 − γ1 and 2F2 − γ2 are
varied (from 0 to 1).

Fig. 4. Population dynamic in the escape phase. The parameters characterising this game are a, b = 1, α = 0.9, β = 0.1, F1 = 1.5, F2 =
0.5, γ2 = 0.2, γ1 = 0, C1 = 0, C2 = 0.2..

to the coexistence of three phenotypes. Fig-
ures 5(a) and 5(b) show population dynamic
for the example of equilibrium phase. Using
initial conditons a, b = 1, α = 0.1, β = 0.9, F2 =
1.5, F1 = 0.5, γ2 = 0, γ1 = 0.2, C2 = 0, and C1 =
0.2 the conditions of Proposition 3 are satisfied. As

seen in Table 3, equilibrium point (0,1,0) is stable
in Definition 2. In this game, population dynamic
direct toward dominant quiescent cells and strategy
profile(Q,Q) is NE and ESS. Empirical evidences
indicate that tumors can remain dormant in patients
for many years (at least 10 years). This state of dor-
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Table 3
Analysis of critical points

Scenario Critical Points Eigenvalues Description

(2) X0 = (0, 0, 0) 0, 0, 0 Free of cancer

X1 = (1, 0, 0) −1, −0.5, 1 Unstable

X2 = (0, 1, 0) −1, −0.5, 1 Unstable

X3 = (0, 0, 1) −0.5, −0.5, −0.5 Stable

X4 = (0.5, 0.5, 0) 1.25, −0.75, 0.25 Unstable

(1) X0 = (0, 0, 0) 0, 0, 0 Free of cancer

X1 = (1, 0, 0) −1, −0.1, 0.2 Unstable

X2 = (0, 1, 0) −2, −1.9, −1 Stable

X3 = (0, 0, 1) −0.5, 0.3, 0.5 Unstable

X4 = (0.6, 0, 0.4) −0.92, −0.12, 0.02 Unstable

X5 = (0.95, 0.05, 0) −0.955, 0.095, 0.235 Unstable

(1) X0 = (0, 0, 0) 0, 0, 0 Free of cancer

X1 = (1, 0, 0) −2, −1.9, −1 stable

X2 = (0, 1, 0) −1, 0.1, 0.2 unstable

X3 = (0, 0, 1) −0.5, 0.5, 0.3 unstable

X4 = (0, 0.6, 0.4) −0.12, −0.92, 0.02 unstable

X5 = (0.05, 0.95, 0) 0.095, −0.955, 0.235 unstable

Fig. 5. Population dynamic in the equilibrium phase.The parameters characterising this game are a, b = 1, α = 0.1, β = 0.9, F2 = 1.5, F1 =
0.5, γ2 = 0, γ1 = 0.2, C2 = 0, C1 = 0.2.

mant can be disrupted and cells escaped from immune
control.

Scenario ii) The use of cytokines to reinforce the
immune system constitutes a typical application of
immunotherapy [34, 35]. A cytokine is hormone
protein which is produced by active lymphocytes.
Cytokines mediate between adaptive and innate
immune systems. Cytokine enhancement increases
the costs imposed on quiescent and proliferating
cells (C1 + C2). As the second row in Figure 3
shows, the outcomes by α and the sum of costs
(C1 + C2) that set to higher than 1. When C1 +
C2 and 2F2 − γ2 are heigh, phenotype I domi-

nates the population and spread through it. Hence
in this situation the tumor will be in elimina-
tion phase. As shown in Figure 3, The patient’s
condition can be changed from escape state to equi-
librium or elimination state by proceeding more
cytokines. Figures 6(a) and 6(b) show population
dynamic for the example of elimination phase. Let
a,b=1, under Proposition 1 conditions, we can use
initial condition α = 0.5, β = 0.5, F1 = 0.5, F2 =
0.5, γ2 = 1, γ1 = 1, C1 = 1 and C2 = 1. Following
the predetermined initial conditions, immune cells
become the dominant over the cancer cells. Also,
according to Definition 2, the equilibrium point
(0,0,1) is stable (Table 3).
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Fig. 6. Population dynamic in the elimination phase. The parameters characterising this game are α = 0.5, β = 0.5, F1 = 0.5, F2 =
0.5, γ2 = 1, γ1 = 1, C1 = 1, C2 = 1.

Table 4
Reward matrix for a patient in escape state with Bortezomib ther-

apy

Phenotype P Q I

P 2 0.9 1 − cos2 m

Q 0.1 1 0.8 − cos2 m

I 1 1.2 0.5

5. Discussion

Therapy methods like surgery and radiotherapy
have a limited impact on the survival of patients.
Different immunotherapy strategies have been devel-
oped, based on the use of dendritic cells, antibodies
and peptide vaccination. Bortezomib, a proteasome
inhibitor, is a chemotherapeutic drug that is com-
monly used to treat a variety of human cancers that
has shown clinical activity in several human tumors,
including myeloma. By using Bortezomib the uptake
of human myeloma cells in myeloma cancer by den-
dritic cells (DCs) after tumor cell death, but not

Table 5
Reward matrix for a patient in escape state with Bortezomib ther-

apy

Phenotype P Q I

P 1 0.1 0.8 − cos2 m

Q 0.9 2 1 − cos2 m

I 1.2 1 0.5

irradiation or steroids, results in to the induction of
antitumor immunity, including against primary tumor
cells, without the need for any additional adjuvants
[36]. Treatment of tumor cells with bortezomib led
to the upregulation of Hsp60 and Hsp90 on the cell
surface and promoted their phagocytosis by den-
dritic cells (DCs) [37]. Bortezomib effects our model
parameters C1, C2, γ1, γ2.

We analyze our proposed model using Bortezomib.
The patient conditions in escape and equilibrium
states are considered and therapy is applied using a
periodical treatment. In this analysis, certain thresh-
old values for drug doses are derived that the patient

Fig. 7. a) Population dynamic in the escape phase without considering therapy. b) With considering therapy, population dynamic is leading
to the elimination state ( m = 0.7854).
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Fig. 8. a) Population dynamic in the equilibrium phase without considering therapy. b) With considering therapy, population dynamic is
leading to the elimination state ( m = 0.5).

conditions from escape or equilibrium state lead
to elimination state. We add a periodical function
cos2 m to the general reward matrix for interactions
between immune (I), proliferating (P) and quiescent
(Q) cells (Table 1) that mimics the periodical dosage.
While proliferating and quiescent cells interact with
immune cells, injected cytokine kill cancer cells.
So, periodical function cos2 m represents the cost of
cancer cells which is imposed by cytokine. Table 4
represents the reward matrix for a patient in escape
state with considering therapy.

The point (1,0,0) under the condition 0.5 <

cos2m < 1.3 is stable for the example. As Figure 7
shows population dynamic direct toward dominant
immune and proliferating cells. The patient’s condi-
tion can be changed from escape state to elimination
state by proceeding more drug doses.

Table 5 represents the reward matrix for a patient
in quiescent state with considering therapy.

As shown in the figure the point (1,0,0) under
the condition cos2 m > 0.5 is stable. The patient’s
conditions can be changed from equilibrium state to
elimination state as seen in Figure 8.

6. Conclusion

Modeling of cancer disease leads to understand
tumor growth process, estimate cancer risk and
design effective treatment strategy. In this paper,
the interaction between immune system cells and
cancer cells has been modeled by evolutionary
game theory. Analysis of model has shown three
phases of tumor growth process. Model graphs of
the population variation have shown the direction
of population and finally which strategy has been
stable in population. Equilibrium points stability

by algebraic analysis has been studied. Therefore,
in this model the cancer development process can
be well understood and provide the possibility of
testing treatment methods on model and find the
effective parameters in treatment.
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