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ABSTRACT: Signal transduction events are often mediated by small protein domains such as SH2 (Src homology 
2) domains that recognize phosphotyrosines (pY) and flanking sequences.  In case of the SHP-2 receptor tyrosine 
phosphatase an N-terminal SH2 domain binds and inactivates the phosphatase (PTP) domain.  The pY-peptide- 
binding site on the N-terminal SH2 domain does not overlap with the PTP binding region.  Nevertheless, pY-peptide 
binding causes domain dissociation and phosphatase activation.  Comparative multi-nanosecond molecular dynam-
ics simulations on the N-SH2 domain in ligand-bound and free states have been performed to study the allosteric 
mechanism that leads to domain dissociation upon pY-peptide binding.  
Significant ligand-dependent differences in the conformational flexibility of regions that are involved in SH2-PTP 
domain association have been observed.  The results support a mechanism of signal transduction where SH2-peptide 
binding modulates the domain flexibility and reduces its capacity to fit into the entrance of the PTP catalytic domain 
of SHP-2. 
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INTRODUCTION 

 
The Src family of tyrosine phosphatases are highly conserved signaling proteins in which a catalytic 

phosphatase domain (PTP) is preceded by two Src homology 2 domains (SH2).  The crystal structure of 
the SHP-2 phosphatase shows that the N-terminal SH2 domain (N-SH2) inactivates the phosphatase by 
binding to the entrance of the catalytic PTP domain [5].  The N-terminal SH2 domain of SHP-2 specifi-
cally binds phosphotyrosine (pY)-containing peptides (or proteins) with the consensus sequence 
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(L/V)XpY(T/A)X(L/V) [6].  Phosphotyrosylpeptide binding induces a change in conformation or flexibil-
ity that propagates to the PTP binding site of the N-SH2 domain and causes dissociation and thereby acti-
vation of the PTP domain [10].  Phosphatase activation in turn results in further downstream signal trans-
duction events. 

Since the pY-peptide binds to a region of the N-SH2 domain several Ångstrøms apart from the PTP 
binding surface, SHP-2 is a good model system to investigate the crosstalk between distant protein re-
gions in atomic detail.  Such ligand-induced allosteric conformational changes play a role in many signal 
transduction processes. 
 
RESULTS AND DISCUSSION 

 
The crystal structures of the isolated N-terminal SH2 domain (N-SH2) of SHP-2 in free- and ligand-

bound forms as well as the crystal structure of the complete three-domain SHP-2 molecule in ligand-free 
form are available [5,9,11].  The conformational difference between the isolated peptide-bound and free 
N-SH2 crystal structures in terms of an atomic root mean square deviation (RMSD) is only 1.6 Å (Figure 
1A).  This is smaller than the RMSD of 2.1 Å between the isolated peptide-free N-SH2 and the corre-
sponding peptide-free structure in the intact SHP-2 molecule (Figure 1B).  Hence, the static crystal struc- 
 

 
 
Fig. 1. Influence of pY-peptide binding and PTP domain association on the 3D conformation of the N-terminal SH2 
domain of the SHP-2 phosphatase.  (A) Influence of pY-peptide binding: Superposition of the crystal structures (as 
ribbons) of the isolated N-SH2 domain in pY-peptide-bound (red, PDB ID: 1AYD) and pY-peptide-free form 
(green, PDB ID:1AYA [9]).  The pY-peptide (PDGFR-1009) is shown at atomic resolution (stick representation) 
and comprises Ser (−3), Val (−2), Leu (−1), P-Tyr (0), Thr (+1), Ala (+2), Val (+3), Gln (+4) and Pro (+5).  (B) In-
fluence of PTP-domain association: Superposition of the crystal structures (as ribbons) of the peptide-free N-SH2 
domain, in isolated (green, PDB ID:1AYA [9]) and PTP-domain-associated form.  The PTP-domain-associated form 
is extracted from the crystal structure of the complete SHP-2 phosphatase (blue, PDB ID 2SHP [5]). 
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Fig. 2. The root mean square deviation time course of the 15 ns and 18 ns simulations of the ligand-bound (black) 
and free (grey) N-SH2 domains, respectively.  The drift is shown with respect to the starting structures (PDB Ids: 
1AYA and 1AYD, respectively) over the course of the simulation. 
 
 
 
 
tures themselves are not sufficient to explain differences in ligand-dependent binding behaviour to the 
PTP domain.  Especially, the large conformational difference between the ligand-free N-SH2 domain in 
isolated and PTP-associated state (Figure 1B) may indicate that ligand-induced changes in N-SH2 con-
formational flexibility may play a significant role for the domain association behaviour. 

In the present study, comparative multi-nanosecond molecular dynamics (MD) simulations on the iso-
lated N-terminal SH2 domain (in absence of the rest of the SHP-2 molecule) were performed for the pep-
tide-bound and free states.  The aim was to investigate how pY-peptide binding at one site affects the 
structure and dynamic at a distant region that interacts with the PTP domain in the complete SHP-2 mole-
cule.  The room temperature MD simulations resulted in stable trajectories as indicated by well conserved 
overall SH2-domain folds.  Convergence to a stable RMSD with respect to the starting structure was ob-
tained after 2–3 ns for the ligand-bound form.  However, in case of the free N-SH2 form an equilibration 
time of 6 ns was necessary, since larger time scale motions could be observed (Figure 2). 

During the MD simulation no significant drift of the ligand-free N-SH2-domain towards the PTP-
bound N-SH2 conformation, as found in the crystal structure of the complete SHP-2 molecule, was ob-
served (Figure 3).  This result was obtained by comparing the complete N-SH2 structures (Figure 3A) as 
well as by comparing only the regions that form the binding interface to the PTP domain (Figure 3B). 

In addition, the analysis of the backbone C-C distances between individual residues of the ligand-free 
N-SH2 domain during the simulations gave no conclusive hint for a stable conformational drift towards 
the PTP-bound conformation (Figures 4 and 5).  Some C-C distances monitored during the simulation 
show good agreement with the corresponding distances found experimentally in the PTP-bound SHP-2 
crystal structure (Figure 5A).  In other cases, however, the residue distances of the pY-peptide-bound 
form are more resembling to those of the PTP-bound conformation (crystal structure of SHP-2) than to 
those in the ligand-free form (Figure 5B, E and F).  However, the broader peaks of the distance-
distribution in case of the ligand-free form (Figure 5C–F) indicate a greater conformational flexibility. 
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Fig. 3. The root mean square deviation time course of the 15 ns and 18 ns simulations of the ligand-bound (black) and 
free (grey) N-SH2 domains, respectively, (PDB Ids: 1AYD and 1AYA) relative to the crystal structure of the ligand-
free N-terminal SH2 domain associated to the PTP domain in the complete SHP-2 phosphatase (PDB ID 2SHP).  (A) 
Superposition on the whole domain.  (B) Superposition on the PTP-binding region, only (residues 57–80). 
 

 
 
 
Fig. 4. Ribbon diagram of the N-SH2 domain, illustrating the distances (A, B, C, D, E and F), that have been re-
corded during the MD trajectory and are presented in Figure 5 A–F.  The residues that are contacting the PTP do-
main (according to Hof et al. [5]) are coloured in dark grey and the residues that are involved in pY-peptide-binding 
(according to Lee et al. [9]) are coloured in light grey. 
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Significantly larger atomic fluctuations and a larger conformational drift from the start structure were 

found for the free SH2-domain compared to the pY-peptide-bound form (Figures 2 and 6). As it would be 
expected, absence of the ligand leads to an increased flexibility of regions that are directly involved in li-
gand binding.  This is the case for the EF-loop (66–69) and the BG-loop (90–94) that directly contact the 
pY- peptide ligand.  In addition, the DE-loop (58–62) shows significant larger conformational flexibility in 
the absence of the ligand, although it does not contact the ligand in the pY-peptide complexed SH2 domain 
but goes into a deep cleft of the associated PTP domain [5].  The increased flexibility induced by ligand dis-
sociation of the above mentioned regions compared to the rest of the molecule becomes even more apparent 
when superimposed on only the rigid -helical and -sheet core regions (Figure 6 B).  Comparison of Figure 6 
A and B indicates not only a higher intrinsic EF-, BG- and DE-loop flexibility in the free state but also lar-
ger loop motions relative to the protein core made up of two -helices and one central -sheet. 

 
 
 
 

 
 
 
 
Fig. 5. Distribution of particular distances during the simulation gathering time (starting after 6 ns equilibration 
time) of the ligand-bound (straight line)and ligand-free state (dashed line).  The corresponding distance in the crystal 
structure of N-SH2 in complex with the intact SHP-2 molecule is marked by the vertical dashed line.  C-C distance-
distributions between residues (A) Gly60 and Lys35, (B) Gly60 and Thr42, (C) Gly60 and Asn10, (D) Gly67 and 
Thr42, (E) Glu90 and Asn10, (F) Glu90 and Arg42 are shown. 
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Fig. 6. Identification of flexible regions: (A) Atomic fluctuations of backbone (C) atoms averaged over the trajec-
tory. (B) same as (A) but superposition on the two -helices and the central -sheet. 
 
 
CONCLUSIONS 

 
The comparative MD simulations indicate that the conformational flexibility of the C-terminal half 

(57–95) of the N-SH2 domain that forms the interface to the PTP domain is significantly larger in the ab-
sence of a pY-peptide.  Greater conformational freedom implies a greater capacity for conformational 
adaptation.  Such enhanced capacity for conformational adaptation of the N-SH2 domain might be neces-
sary to form a binding interface that exactly fits to the entrance of the PTP domain.  The present results 
support a mechanism of SHP-2 activation where N-SH2-peptide binding reduces the flexibility of the N-
SH2 domain and in turn decrease the capacity to associate with the PTP catalytic domain. 
 
 
METHODS 

 
The atomic coordinates for the crystal structures of recombinant mouse N-terminal SH2 domain of 

SHP-2 in peptide-free form (PDB ID 1AYD) and complexed with the phosphotyrosylpeptide PDGFR-
1009, with the sequence: S V L pY T A V Q P (PDB ID 1AYA) [9] were used as starting structures for 
molecular dynamics calculations.  The AMBER (Assisted Model Building with Energy Restraints) suite 
of programs, version 5.0 [1], with the parm94 force field [2] was used for all simulations.  The crystal 
structures were prepared for the dynamics using the Leap module of AMBER.  The net charge of the pro-
tein was neutralized by adding 6 Na+ / 4 Cl− ions and roughly 3400 TIP3 water molecules [7].  For the 
nonbonded short-range interactions a 9.0 Å cutoff was used.  The particle mesh Ewald summation tech-
nique with a grid size of 1.0 Å was employed to calculate long-range electrostatic interactions for dis-
tances greater than 9.0 Å [3].  The conformation of the solvated protein was first relaxed via energy 
minimization.  Following the minimization the system was gradually heated from 20 to 300 K, thereby 
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slowly increasing the atomic velocities over a period of 200 ps.  The solvent was separately heated before 
heating of the complete system including the solute.  The equilibration time at 300 K was 6 ns, followed 
by a gathering time of 9 ns (1AYA) and 12 ns (1AYD), respectively.  During both MD simulations a con-
stant pressure of 1 bar and a relaxation time of 0.2 ps was used.  Coordinates were stored each 1 ps simu-
lation time.  Root mean square Cartesian coordinate fluctuations for all heavy atoms were calculated after 
deduction of overall translation and rotation. 
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