
Page 34 ICCA NEWSLETTER 

AN ENHANCEMENT TO mE ITERATIVE, ALPHA-BETA, 

MINIMAX SEARCH PROCEDURE 

by William Fink, author of the Sfinks chess programs 

June 1982 

The greatest problem facing any chess program employing a minimax 
search procedure is the problem of the exponential growth in the number 
of board positions to be evaluated. 

Alpha-beta pruning has been the primary method of combating this problem 
without the loss of accuracy. For some time it has been known that the 
efficiency of alpha-beta pruning depended upon the order in which moves 
were searched. If the best moves were searched first, the maximum 
number of cut-offs would occur. One method of causing the better moves 
to be searched first 'was to employ an iterative search and on each suc
ceeding iteration, first search the moves from the principal variation 
(best line of play) from the preced~ng iteration. 

The enhancement, about to be described, is a more general application of 
the preceding idea. Simply stated, the idea is to remember the principal 
variation for each legal move and search it first on the next iteration. 
(To distinguish these variations from the best line of play over the set 
of all legal moves, they will be referred to as alternate variations.) 
This idea was first suggested to me by Charles Heath. He used it in his 
reversi program. l I have since seen the idea briefly mentioned in 
Advances in Computers. 2 It was very easy to add this enhancement to my 
chess program, and it gave an improvement in search times of up to 15%. 

The Implementation 

My current program, Sfinks 3.0, uses a full-width iterative minimax 
search procedure and employs alpha-beta pruning. On the first ply, all 
the moves are generated and then sorted in a list. Eight bytes of stor
age are used for each legal move: four for the representation of the 
move, two for a link to the next move in the sorted list, and two for 
the move's value. To implement a version of the idea, it was necessary 
to double the amount of memory used by the move list. That is, for 
every move, eight additional bytes were set aside. In the first four 
additional bytes per move, the "best" response from ply 2 to the move on 
ply 1 was saved. In the remaining four additional bytes, the "best" 
reply from ply 3 to the move from ply 2 was saved. In other words, the 
best variation for each legal move was stored, but only for two addi
tional plies. 

1. Master Reversi for 32K Model I TRS-80 from INSTANT SOFTWARE, INC. 

2. "Recent Progress in Computer Chess" by M. M. Newborn, 1979, in 
Advances in Computers, Vol. 18, pp. 59-117, Academic Press 



June 1982 ICCA NEWSLETTER Page 35 

There were two problems to be solved: 1) where to find the moves of the 
alternate variations so that they could be saved, and 2) when to play and 
search these moves for an evaluation. 

The moves to be saved were found in two places during a tree search. 
Whenever the principal variation (best line of play over the set of all 
legal moves) was found and saved at ply depth of 2, the moves from plies 
2 and 3 could be saved directly into the space provided for the alternate 
variation for the move being considered on ply 1. Also, whenever an 
alpha-beta cut-off occurred and the depth of the search was 2, either 
one (from ply 2) or two moves (from plies 2 and 3) were saved, depending 
upon the maximum depth of the iteration. 

It was easier to determine when to play and search the moves saved. When 
checking to see if a move from the principal variation should be played, 
the list of best values for each ply is scanned from the value for current 
depth -1 down to the value for depth 1 to see if all values are initial 
values (±eD). If they are, a move from the principal variation is 
played and searched. If they are all initial, except for the value for 
ply 1, and the depth of the search is 2 or 3, the appropriate move is 
fetched from the alternate variation to be searched.* 

The implementation just described is one that effectively enhances the 
alpha-beta cut-offs in the Sfinks chess program which runs on a 32K 
TRS-80 microcomputer. This or other versions of the idea might be tried 
on different computers.· If the host computer has a lot of memory and the 
entire tree is saved for the first couple of plies, the idea can most 
likely be implemented at a greater depth with a beneficial effect, also. 

*In Sfinks 3.0, the moves on the deeper plies are generated in stages 
and duplication of moves to be searched sometimes occurs (i.e., when 
the expected alpha-beta cut-off fails). This causes only a relatively 
insignificant slow down and can be ignored. 


