
146 ICGA Journal 43 (2021) 146–161
DOI 10.3233/ICG-220197

IOS Press

Deep learning for general game playing with Ludii and
Polygames

Dennis J.N.J. Soemers a,b,∗, Vegard Mella b, Cameron Browne a and Olivier Teytaud b

a Department of Data Science and Knowledge Engineering, Maastricht University, The Netherlands
b Meta AI Research, France

Abstract. Combinations of Monte-Carlo tree search and Deep Neural Networks, trained through self-play, have produced
state-of-the-art results for automated game-playing in many board games. The training and search algorithms are not game-
specific, but every individual game that these approaches are applied to still requires domain knowledge for the implemen-
tation of the game’s rules, and constructing the neural network’s architecture – in particular the shapes of its input and
output tensors. Ludii is a general game system that already contains over 1,000 different games, which can rapidly grow
thanks to its powerful and user-friendly game description language. Polygames is a framework with training and search
algorithms, which has already produced superhuman players for several board games. This paper describes the implemen-
tation of a bridge between Ludii and Polygames, which enables Polygames to train and evaluate models for games that are
implemented and run through Ludii. We do not require any game-specific domain knowledge anymore, and instead leverage
our domain knowledge of the Ludii system and its abstract state and move representations to write functions that can au-
tomatically determine the appropriate shapes for input and output tensors for any game implemented in Ludii. We describe
experimental results for short training runs in a wide variety of different board games, and discuss several open problems
and avenues for future research.

Keywords: General games, Deep learning, Ludii, Polygames

1. INTRODUCTION

Self-play training approaches such as those popularised by AlphaGo Zero (Silver et al., 2017) and
AlphaZero (Silver et al., 2018), based on combinations of Monte-Carlo tree search (MCTS) (Kocsis
and Szepesvári, 2006; Coulom, 2007; Browne et al., 2012) and Deep Learning (LeCun et al., 2015),
have been demonstrated to be fairly generally applicable, and achieved state-of-the-art results in a
variety of board games such as Go (Silver et al., 2017), Chess, Shogi (Silver et al., 2018), Hex, and
Havannah (Cazenave et al., 2020). These approaches require relatively little domain knowledge, but
still require some in the form of:

(1) A complete implementation of a forward model for the game, for the implementation of lookahead
search as well as automated self-play to generate experience for training.

(2) Knowledge of which state features are required or useful to provide as inputs for a neural network.
(3) Knowledge of the action space, which is typically used to construct the policy head in such a way

that every distinct possible action has a unique logit.

The first requirement, for the implementation of a forward model, is partially addressed by research
on using learned simulators for tree search as in MuZero (Schrittwieser et al., 2020), but in practice a

*Corresponding author. E-mail: dennis.soemers@maastrichtuniversity.nl. Work done during internship at Facebook AI
Research.

1389-6911 © 2021 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

mailto:dennis.soemers@maastrichtuniversity.nl
https://creativecommons.org/licenses/by-nc/4.0/


D.J.N.J. Soemers et al. / Deep learning for general game playing with Ludii and Polygames 147

Fig. 1. Basic architecture of DNNs for game playing. Raw game states s are transformed into a tensor representation T (s)
of some fixed shape (often 3-dimensional). The DNN learns to compute hidden representations of its inputs in hidden
layers. Finally, it computes a scalar value estimate V (s), and a discrete probability distribution P(s) with probabilities

P(s, a) for all actions a in the complete action space.

simulator is actually still required for the purpose of generating trajectories outside of the tree search.
For the board games Go, Chess, and Shogi, MuZero still requires the input and output tensor shapes
(for states and actions, respectively) to be manually designed per game. We remark that MuZero was
also evaluated on 57 different Atari games in the Arcade Learning Environment (ALE) (Bellemare et
al., 2013), and it can use identical tensor shapes across all these Atari games because ALE uses the
same observation and action spaces for all games in this framework. The requirement for knowledge
of the action space may be avoided by not training a policy at all (Cohen-Solal, 2020), but throughout
this paper we assume that it is still desirable to train one.

The challenge posed by General Game Playing (GGP) (Pitrat, 1968) is to build systems that can play
a wide variety of games, which makes the three forms of required domain knowledge listed above
difficult. A number of systems have been proposed that can interpret and run any arbitrary game
as long as it has been described in their respective game description language, such as the original
Game Description Language (GDL) (Love et al., 2008) from Stanford, Regular Boardgames (RBG)
(Kowalski et al., 2019), and Ludii (Browne et al., 2020; Piette et al., 2020).

In this paper, we describe how we combine the GGP system Ludii and the PyTorch-based (Paszke et
al., 2019) state-of-the-art training algorithms in Polygames (Cazenave et al., 2020), with the goal of
mitigating all three of the requirements for domain knowledge listed above. Section 2 provides some
background information on these training techniques. Section 3 describes existing work and limita-
tions in applying these Deep Learning approaches to general games. Section 4 presents the interface
between Ludii and Polygames. Experiments and results are described in Section 5. We discuss some
open problems in Section 6, and conclude the paper in Section 7.

2. BACKGROUND

The basic premise behind AlphaZero and similar approaches in frameworks such as Polygames is
that Deep Neural Networks (DNNs) take representations T (s) of game states s as input, and produce
discrete probability distributions P(s) with probabilities P(s, a) for all actions a in states s, as well
as value estimates V (s), as outputs. This is depicted in Fig. 1. Both of these outputs are used to guide
MCTS in different ways.



148 D.J.N.J. Soemers et al. / Deep learning for general game playing with Ludii and Polygames

DNNs in general have a fixed architecture, requiring fixed and predetermined shapes for both the
input and the output representations. The value output is always simply a scalar,1 but determining
the shapes of the input tensors T (s) and policy outputs P(s) typically requires game-specific domain
knowledge.

T (s) is generally a 3-dimensional tensor, where 2 dimensions are spatial dimensions (corresponding
to e.g. a 2-dimensional playable area in a board game). The third dimension is formed by a stack of
different channels which each have different semantics. For example, T (s) in AlphaZero has a shape
of 19 × 19 × 17 for the game of Go played on a 19 × 19 board, with eight times two binary channels
encoding the presence of the two players’ pieces – for a history of up to eight successive game states
ending in s – and one final channel encoding the current player to move. The spatial structure of the
first two dimensions is typically assumed to be meaningful, which is exploited by the inductive bias
of Convolutional Neural Networks (CNNs) (LeCun et al., 1989).

For the policy head, it is customary for neural networks to first output real-valued logits L(s, a) for all
possible actions a. These are subsequently converted into probabilities P(s, a) using a softmax over
all legal actions a′ ∈ A(s) in s:

P(s, a) = exp(L(s, a))
∑

a′∈A(s) exp(L(s, a′))
.

It is generally assumed that every distinct possible action a that may be legal in any game state
s has a unique, matching logit L(s, a). This means that domain knowledge of the game’s action
space is required to construct a DNN’s architecture in such a way that distinct actions always have
distinct logits. The logits are sometimes laid out in a structure of multiple 2-dimensional planes, like
the inputs, but typically preceded by fully connected (as opposed to convolutional) layers. This is
equivalent to all the logits being laid out in a single, flat vector with no spatial structure.

In addition to such typical architectures, Polygames (Cazenave et al., 2020) includes various different
structures, such as:

• Fully convolutional networks: As in many cases, actions are spatially distributed in a manner
somehow close to the pieces, the output has spatial coordinates matching the spatial coordinates
of the input. This can be exploited in fully convolutional networks (Shelhamer et al., 2017): the
policy head has no fully connected layer, and directly maps inputs to outputs through convolutional
blocks. This has the advantage of being boardsize invariant: we can train in size 13 × 13 and play
in 19 × 19. Global pooling can be used to additionally make the value head size-invariant (Lin et
al., 2014; Wu, 2019).

• U-networks: It is usually considered that DNNs rephrase their data in an increasingly abstract man-
ner, layer after layer. However, in fully convolutional networks, the output is dense; it has the same
low-level nature as the input. The level of abstraction increases, and then decreases again. Then, one
may consider that layers might benefit from a direct connection into a layer containing information
at the same level of abstraction. This can be done by skip-connections, i.e. additional connections
to layers symmetrically positioned in the network (Fig. 2(c)): this is a U-network (Ronneberger et
al., 2015).

Some of these different structures are depicted and explained in Fig. 2.

1Assuming 2-player zero-sum games; see (Petosa and Balch, 2019) for relaxations of this assumption.



D.J.N.J. Soemers et al. / Deep learning for general game playing with Ludii and Polygames 149

Fig. 2. Convolutional neural network (a). Fully convolutional counterpart (b, image from (Shelhamer et al., 2017); other
images from Wikipedia), typically used in image segmentation: image segmentation is related to policy heads in games in

that the output has the same spatial coordinates at the input. U-networks (C): only convolutional layers, and skip
connections symmetrically connecting layers. Global pooling (d): here we down-sample to a spatial size 1x1 in the value
head: this is boardsize invariant. Global pooling can use channels for mean, standard deviation, max, etc: the number of

channels is not necessarily preserved. (B+d) or (c+d) allow boardsize-invariant training (Cazenave et al., 2020).

3. DEEP LEARNING IN GENERAL GAME PLAYING

To some extent, all GGP systems mitigate the requirement for the implementation of complete for-
ward models for every distinct game, in the sense that new games can be added and supported simply
by defining them in a game description language. Ludii’s game description language in particular
has been designed in such a way that game descriptions for new games are fast and easy to write
and understand (Browne et al., 2020; Piette et al., 2020), which has allowed for a significantly larger
library of distinct games2 to be built up than would be feasible if they were all written in a program-
ming language such as C++. Ludii’s predecessor has also already demonstrated that the “ludemic”
approach to game description languages used by Ludii facilitates procedural generation of complete
games (Browne, 2009), which can be used to easily extend the set of compatible benchmark problems.

Similarly, we may argue that running games through a GGP system removes the requirements for
game-specific knowledge about how to shape state inputs and action outputs, but introduces require-

2Ludii has over 1,000 distinct built-in games at the time of this writing, with many of them having multiple variants for
different board sizes, board shapes, variant rulesets, etc.



150 D.J.N.J. Soemers et al. / Deep learning for general game playing with Ludii and Polygames

ments for similar knowledge about the GGP system. Given any arbitrary game defined in a game
description language of a GGP system, we require the ability to construct tensor representations of
game states, and the ability to map from any index in a policy head to a matching action in any
non-terminal game state.

GDL (Love et al., 2008) is a low-level logic-based game description language, where games are de-
scribed as logic programs consisting of many low-level propositions. Many GDL-based agents convert
such a GDL description into a propositional network (Schkufza et al., 2008; Cox et al., 2009; Sironi
and Winands, 2017), which can more efficiently process the games than Prolog-based reasoners or
other similar techniques. Such propositional networks can be automatically constructed from GDL
descriptions, and the structure of such a network remains constant across all game states of the same
game. Goldwaser and Thielscher (2020) therefore proposed using the internal state of a game’s propo-
sitional network as the input state tensor for a deep neural network. A downside of this approach is
that the state input tensor is a flat tensor, and there is no possibility to use inductive biases such as
those of CNNs for inputs with spatial semantics. Galvanise Zero (Emslie, 2019) does exploit knowl-
edge of spatial semantics through CNNs, but it only supports a limited selection of GDL-based games
because it requires a handwritten Python function to create the mapping from game states to input
tensors for every game that it supports. The action space can automatically be inferred from GDL
descriptions, which means that these approaches require no extra domain knowledge with respect to
the output policy heads.

In the game description language of Ludii (Browne et al., 2020; Piette et al., 2020), common high-level
game concepts such as boards, piece types, etc. are all “first-class citizen” of the language, as opposed
to GDL where every separate game description file encodes such concepts from scratch in low-level
logic. Based on these concepts, Ludii also has an object-oriented game state representation that it uses
internally, which remains consistent across all games. This enables us to write a single function that
automatically constructs input tensors from Ludii’s internal state representation, using our domain
knowledge of Ludii as a whole instead of domain knowledge of every individual game. Unlike GDL,
it is not straightforward (if at all possible) to infer the action space from game description files in
Ludii. However, actions in Ludii do have an object-oriented structure, and at least an approximation
of the action space can be constructed based on these properties – again, based on domain knowledge
of Ludii rather than any individual game. In many games, this is sufficient to distinguish most or all
legal actions from each other.

4. INTERFACE BETWEEN LUDII AND POLYGAMES

Based on the insights described above, we developed an interface between the Ludii general game
system, and the Polygames framework with state-of-the-art AI training code. In Polygames, differ-
ent games are normally implemented from scratch in C++. The basic idea of this interface is that
there is a single “Ludii game” in Polygames, with C++ code that interacts with Ludii’s Java-based
API through Java Native Interface. Polygames command-line arguments can be used to load different
games and variants from Ludii into this wrapper. This section provides details on how Ludii auto-
matically constructs tensor representations of its state and action spaces, based on its own internal
representations, for any arbitrary game implemented in Ludii.



D.J.N.J. Soemers et al. / Deep learning for general game playing with Ludii and Polygames 151

Fig. 3. Two different approaches for computing a grid based on a playable space defined by three sites A, B, and C, each
with distinct x- and y-coordinates. The approach we use is depicted in (a). This approach results in smaller, more dense
tensors, but information of the relative distances between all sites is not necessarily preserved. The alternative approach,

depicted in (b), preserves more of this information, but can result in large and sparse tensors.

4.1. Constructing the spatial dimensions

CNNs normally operate on grid structures of “pixels”, such that every position can be indexed by a
row and column, and every position has a square of up to eight neighbour positions around it. This
structure resembles the game boards of games such as Chess, Shogi, and Go most closely. Some
other boards, such as the tilings of hexagonal cells used in games like Hex and Havannah, can also
be “packed” into such a grid. This approach is used for the game-specific C++ implementations
of those games in Polygames. However, Ludii supports games with arbitrary graphs as boards, and
hence requires a generic solution that can map positions from graphs with any arbitrary connectivity
structure into a grid structure that CNNs can work with.

For every game in Ludii, there is at least one (and possibly more than one) container, which specifies
a playable “area” with positions that may contain pieces, have corresponding clickable elements in
Ludii’s GUI, etc. (Browne et al., 2020; Piette et al., 2020, 2021). The first container typically corre-
sponds to the board that a game is played on, and is often the largest. Any other containers represent
auxiliary areas, such as players’ hands to hold captured pieces in Shogi. Even games that are not
generally thought of as being played on a board are still modelled in this way in Ludii. For instance,
Rock-Paper-Scissors is modelled as a board with two (initially empty) cells, and two hands for the
two players, each containing rock, paper, and scissors “pieces” which players can drag onto their
designated cells on the board to make their move.

Every site in any such container in Ludii has x and y coordinates in [0, 1], which are used by Ludii
for purposes such as drawing game states in the GUI for human players. We construct a grid structure
simply by sorting all the distinct x- and y-coordinates across all sites in the board in increasing order,
and assigning distinct columns and rows, respectively, to distinct x- and y-coordinates. Coordinates
that are within a tolerance value of 10−5 are treated as equal, to avoid generating excessively large
and sparse tensors due to small differences resulting from floating-point arithmetic. Note that this
approach is not equivalent to directly overlaying a sufficiently fine-grained grid over the [0, 1]2 space,
because we only add rows and columns that each contain at least one site. This is depicted in Fig. 3.
Our approach may lose some information concerning the relative distances between sites, but because
these x- and y-coordinates are only used for the graphical user interface – not for game logic – we



152 D.J.N.J. Soemers et al. / Deep learning for general game playing with Ludii and Polygames

Fig. 4. Shogi being played in Ludii’s user interface. The game board is on the left-hand side, and each player has a “hand”
with seven slots to hold captured pieces on the right-hand side. Figure 5 shows how the numbered positions get mapped to

positions in a tensor.

expect the smaller and less sparse grids to be preferable due to improved computational efficiency.
Note that the vast majority of games in Ludii use boards defined by regular or semiregular tilings, and
for these the two approaches will have similar results.

In the current version of Ludii, containers other than the first one (corresponding to the “main” board)
never have more than one meaningful dimension; they are always a single, contiguous sequence of
cells. Each of those containers is concatenated to the grid constructed for the first container, either
using one extra column or one extra row per extra container (whichever results in the lowest increase
in total size of the tensor). Additionally, one extra dummy row or column is inserted to create a
more explicit separation between the main board (for which we expect there to be meaningful spatial
semantics) and the other containers (for which there is no expectation that any meaningful spatial
semantics exist). For example, Shogi is played on a 9 × 9 board, but each of the two players also has
a “hand” of 7 cells as extra containers to potentially hold captured pieces. This results in a 12 × 9 grid
for Shogi. A screenshot of Shogi being played in Ludii’s user interface is depicted in Fig. 4, with cells
of the different containers labelled by numbers. The mapping from these positions to positions in the
tensor representation is depicted in Fig. 5.

4.2. Representing Ludii game states as tensors

Let s denote a raw game state in Ludii’s object-oriented state representation (Piette et al., 2021), for
a game G. Based on the properties of s, we construct a tensor representation T (s) – which can be
used as input for a DNN – of shape (C, W, H), where C denotes the number of channels (variable,
depends on G), W denotes the width (i.e., number of columns), and H denotes the height (i.e., number
of rows). The channels are constructed as follows:

• Binary channels indicating the presence (or absence) of every piece type defined in G. Most games
have one channel per piece type, where values of 1 indicate the presence of a piece of that type in a
position. If G is a “stacking” game, meaning that it allows for multiple pieces to form a stack on a



D.J.N.J. Soemers et al. / Deep learning for general game playing with Ludii and Polygames 153

Fig. 5. Mapping from positions in Shogi’s three containers to positions in a single tensor. Numbers 0 through 80 correspond
to positions on the board, 81 through 87 are positions in the hand of Player 1, and 88 through 94 are positions in the hand

of Player 2 (see Fig. 4).

single position, we use M + N binary channels per piece type, instead of just one. For every piece
type i, M channels are used to indicate presence of piece type i in each of the bottom M layers
of every stack on every position, and N channels indicate the same for each of the top N layers.
In other words, where a game without stacking would require K channels for K different piece
types, a stacking game uses K × (M +N) such layers, encoding similar data separately for M +N

different levels of each stack. In our implementation, we use M = N = 5. If a single stack contains
more than M + N pieces, this representation is not sufficient to provide information about some of
the middle layers to the DNN, but this is rare in practice (generally it is not straightforward, if at
all possible, to automatically infer the maximum stack size for any arbitrary game). The primary
reason for encoding the bottom M and the top N layers (as opposed to, for example, only the top
M + N or only the bottom M + N layers) is that in different games, different parts of a stack may
be more or less important.

• If G is a “stacking” game, we include an additional non-binary channel containing the height of
every stack in every position.

• If G is a game where positions can contain a “count” of more than one piece, we include a non-
binary channel denoting the count of pieces on that position. This channel is semantically similar
to the one described above for stack heights. In Ludii, positions in these games are still restricted to
containing only a single piece type at a time. This is most notably used for mancala games. Games
where pieces of different types can share a single position are modelled as stacking games instead.

• Ludii’s state representation can include an “amount” value per player, primarily intended to rep-
resent money for games that involve betting or other similar mechanisms. If G uses this, we add
one non-binary channel per player, such that every position in the channel for player p contains the
amount value of p in s.

• If G is played by n > 1 players, we include n binary channels, such that the nth channel is filled
with values of 1 if and only if n is the current player to move in state s. This also accounts for
swap rules. For example, the first player normally plays red, and the second blue, in Hex. If s is a
state where the red player is the next to make a move, and a swap has occurred, the second of these
channels will be filled with 1 entries instead of the first.



154 D.J.N.J. Soemers et al. / Deep learning for general game playing with Ludii and Polygames

• In some games, every position has a “local state” variable, which is an integer value. Different
games can use this in different ways to store (temporary) auxiliary information about positions. For
instance, local state values of 1 are used for positions that contain pieces that are still in their initial
position, and values of 0 otherwise (this is used for castling). Most games only use low local state
values, if any at all. Hence, we use separate binary channels to indicate local state values of 0, 1, 2,
3, 4, and � 5.

• If the game uses a swap rule (or “pie rule”), such as Hex, we include a binary channel that is filled
with values of 1 if and only if a swap has occurred in s.

• For every distinct container in G, we include one binary channel that has values of 1 for entries that
correspond to a position in that container, and values of 0 everywhere else.

• For each of the last two moves m played prior to reaching s, we add one binary channel with only a
single value of 1 in the entry corresponding to the “from” position of m (typically the location that
a piece moves away from), and a similar channel for the “to” position of m (typically the location
that a piece is placed in).

With these channels, we did not yet exhaustively cover all the state variables in Ludii’s game state
representation (Piette et al., 2021), but we covered the most commonly-used ones. Whenever new
variables are added to Ludii’s game state representation, engineering effort for including these in the
tensor representations is only required once for Ludii as a whole – not once per game added to Ludii.

4.3. Representing Ludii actions as tensors

In contrast to GDL (Love et al., 2008; Emslie, 2019; Goldwaser and Thielscher, 2020), it is not
straightforward – if at all possible – to automatically infer the complete action space for any arbitrary
game described in Ludii’s game description language. This is because in Ludii’s game description
language, the function that generates lists of legal moves is defined as a composite of many sim-
ple functions (ludemes), which may be arranged in any arbitrary tree structure. While each of these
ludemes in principle has some domain for its possible inputs, and range for its possible outputs, these
are not strictly defined in logic-based or other formats that permit automated inference.

Similar to its state representation, Ludii has an object-oriented move3 representation (Piette et al.,
2021). However, in contrast to the state representation, the most important variables of the move rep-
resentation are arbitrarily-sized lists (of primitive modifications to be applied to a game state) and
arbitrarily-sized trees (of ludemes to be evaluated after applying the initial primitive modifications).
The arbitrary sizes of these variables make them difficult to encode in a fixed-size tensor representa-
tion. Hence, we ignore these properties, and only distinguish moves based on some simple properties
that can easily be used for this purpose. We construct the space of output tensors to map moves for a
game G as follows:

• The action space is organised as a stack of 2-dimensional planes, with the spatial dimensions being
identical to those of the state tensors (see Section 4.2). Every action will map to exactly one position
in this space – i.e., one location in the 2-dimensional area, and one channel.

• Pass and swap moves have been identified as special cases that are sufficiently common, important,
and semantically different from any other kind of move that they warrant the inclusion of their own
dedicated channels.

3In this document we use the terms “move” and “action” interchangeably, to refer to complete decisions that players
make. Within Ludii, these are referred to only as moves, and actions are smaller parts of moves.



D.J.N.J. Soemers et al. / Deep learning for general game playing with Ludii and Polygames 155

Fig. 6. Left: representation of the action space tensor. Right: Taikyoku Shogi (804 pieces of 209 distinct types per player)
leads to an unmanageable explosion in state and spaces.

• Many games only involve moves that can be identified by just a single position in the spatial dimen-
sions; these are generally games where players place stones (Go, Hex, Havannah, etc.), but may in
theory also be games like Chess if they have been defined in a way such that movements are split
up into two separate decisions (picking a source and picking a destination). These games can be
automatically discovered in Ludii. For these games, we only add one more channel in addition to
the pass and swap move channels, to encode all other moves based on their positions in the spatial
dimensions. In Ludii, this position is referred to as the “to” position.

• In all other games, moves may have distinct “from” and “to” positions; typical examples are stan-
dard implementations of Chess, Amazons, Shogi, etc. For moves that have an invalid “from” po-
sition, we assume that it is equal to the “to” position. For games that involve stacking, moves
may additionally have lmin and lmax properties which refer to the levels within a stack at which a
move operates; both are assumed to equal 0 if the game does not allow stacking. The “to” posi-
tion of a move is used to map the move to a location in the spatial dimensions, and the remaining
properties are used to index into one of multiple channels based on the relative “distance cov-
ered” by the move. More specifically, we create (2M + 1) × (2M + 1) × (N + 1) × (N + 1)

channels, where we use M = 3 in our experiments, and N = 2 if G involves stacking, or
N = 0 otherwise. Let dx and dy denote the differences in rows and columns, respectively,
between the “to” and “from” positions of a move. Let [a]cb denote a value of a clipped to lie
in the interval [b, c]. Then, this move gets mapped to the channel given by the 0-based index
(([dx]M−M × (2M + 1) + [dy]M−M) × (N + 1) + [lmin]N0 ) × (N + 1) + [lmax − lmin]N0 . The basic
idea is that there is one channel to cover moves with (dx, dy) = (0, 0), one channel for moves
with (dx, dy) = (0, 1), etc., up to and including a range of M in either direction along either axis.
Figure 6 illustrates this for M = 1. Note that the M and N parameters in this case are unrelated to
those described for the state representations in stacking games in Section 4.2.

Note that this is simply one approach to constructing tensor representations of moves that we imple-
mented, but we may envision other approaches as well. For instance, in a game like Chess, it may be
more important to encode the type of the piece that makes a move, rather than encoding the distance
and direction covered by a move. This could be accomplished by creating channels that are indexed
based on the type of piece in the “from” location of a move, instead of the distance between “from”
and “to” positions.



156 D.J.N.J. Soemers et al. / Deep learning for general game playing with Ludii and Polygames

While we find this approach to be sufficient to distinguish moves from each other in many cases,
there are cases where multiple distinct moves that are legal in a single game state will end up being
represented by exactly the same logit. When multiple distinct moves are represented by the same
logit in a DNN’s output, we say that they are aliased. DNNs cannot distinguish between aliased
moves, and hence always provide the same advice (in the form of the prior probabilities P(s, a)) to
MCTS for these different moves. However, in Polygames (Cazenave et al., 2020), the MCTS itself
can still distinguish between the different moves by different representing them as distinct branches
in the search tree, and backing up (potentially) different values throughout the tree search. This is
an important difference with other frameworks, such as OpenSpiel (Lanctot et al., 2019), where the
MCTS itself requires every possible distinct action that may ever be legal in a game to be assigned
a unique integer upfront. When subsequently using the visit counts to compute the standard cross-
entropy loss as proposed by Silver et al. (2017), the visit counts for all moves that share a single logit
are summed up. The softmax over the logits only counts every distinct logit once.

5. EXPERIMENTS

In this section we describe experiments4 intended to demonstrate the potential for the approach de-
scribed in the previous section to facilitate training and research in general games. We picked fifteen
different games, all as implemented with their default options in Ludii (Browne et al., 2020; Piette
et al., 2020) v1.1.6, and trained a model of the ResConvConvLogitPoolModelV2 type from
Polygames (Cazenave et al., 2020) in each of these games. The selected games are depicted in Fig. 7.

We used the same training hyperparameters across all games. Every training run used 20 hours of
wall time, with 8 GPUs, 80 CPU cores, and 475GB memory allocated per training job. Every training
job used 1 server for model training, and 7 clients for the generation of self-play games. The MCTS
agents used 400 MCTS iterations per move in self-play.

The final model checkpoint of every training run is evaluated in a set of 300 evaluation games played
against a pure MCTS – a standard UCT agent (Kocsis and Szepesvári, 2006; Browne et al., 2012)
without any DNNs. In evaluation games, the MCTS with a trained model used 40 iterations per move,
whereas the pure MCTS used 800 iterations per move – where at the end of every iteration, the
average outcome of 10 random rollouts is backed up. The final column of Table 1 reports the win
percentages of the trained MCTS against the untrained MCTS. The table also provides further details
on the number of trainable parameters in each of the DNNs, and for some games summarises unusual
properties that these games have which we did not yet observe in much of the existing literature on
learning through self-play in games.

In the majority of the evaluated games, the trained MCTS easily outperforms the untrained one, even
using 20 times fewer MCTS iterations (or 200 times fewer if the number of random rollouts performed
by the untrained MCTS is counted). Note that, in comparison to work that focuses on achieving
superhuman playing strength (Silver et al., 2018; Cazenave et al., 2020), we focused on short training
runs using fewer resources and smaller networks. Our primary aim is to demonstrate the possibility
of training effectively using a single implementation without game-specific domain knowledge.

The two results that stand out most are for Lasca and Fanorona. The win percentage of 3.50% for
Lasca indicates that this model is not trained nearly as well as the others. Lasca is the only game

4The source code of Ludii is available from https://github.com/Ludeme/Ludii. All the training and evaluation code of
Polygames is available from https://github.com/facebookincubator/Polygames. Checkpoints of models used in these experi-
ments are available from http://dl.fbaipublicfiles.com/polygames/ludii_checkpoints/list.txt.

https://github.com/Ludeme/Ludii
https://github.com/facebookincubator/Polygames
http://dl.fbaipublicfiles.com/polygames/ludii_checkpoints/list.txt


D.J.N.J. Soemers et al. / Deep learning for general game playing with Ludii and Polygames 157

Table 1

Data for a variety of different games, all implemented in Ludii v1.1.6, for which we trained models in Polygames over a
duration of 20 hours using 8 GPUs and 80 CPU cores per model. The second column lists some interesting properties for
games that we have not yet often seen (if at all) in existing literature using AlphaZero-like training approaches. The third
column lists the number of trainable parameters in the model (we used identical Polygames hyperparameters for the DNN
architecture across all games, but in Polygames by default the number of channels in hidden convolutional layers scales
with the number of input channels). The last column lists the win percentages of MCTS with the trained model using 40

iterations per move, against MCTS without any trained model using 800 iterations per move – where every iteration backs
up the average outcome of 10 random rollouts

Game Unusual Properties Trainable Parameters Win Percentage
Breakthrough – 188,296 100.00%
Connect6 – 180,472 75.67%
Dai Hasami Shogi – 188,296 99.33%
Fanorona Move aliasing due to choice of capture direction. 188,296 50.00%
Feed the Ducks Moves have global effects across entire board. 231,152 83.00%
Gomoku – 180,472 91.00%
Hex – 222,464 100.00%
HeXentafl Asymmetry in piece types, initial setup, and goals. 231,152 98.67%
Konane – 188,296 98.00%
Lasca Pieces (of multiple different types) can stack. 5,450,268 3.50%
Minishogi – 2,009,752 97.00%
Pentalath – 180,472 95.33%
Squava Lines of 4 win, but lines of 3 lose. 222,464 96.67%
Surakarta Loops around board allow for unique move patterns. 188,948 100.00%
Yavalath Lines of 4 win, but lines of 3 lose. 222,464 97.33%

among those tested that involves stacking of multiple pieces on a single site. Our procedures for
the construction of input and output tensors lead to a significantly larger numbers of channels in this
game compared to the other games, which is also reflected in the large number of trainable parameters
that this model has. Further research is required to establish whether it would be sufficient to reduce
the size of the model, or whether entirely different approaches for constructing the tensors would be
more appropriate. In Fanorona, the win percentage of 50% for the trained model is not necessarily
a poor level of performance (considering the large difference in number of MCTS iterations), but it
appears to be noticeably worse than in the other games. One possible explanation for this may be
that Fanorona has a more severe degree of move aliasing, because there are situations where there
are multiple different legal moves with identical “to” and “from” positions, but different effects in
that a player can choose in which direction they wish to capture opposing pieces. Such moves are all
represented by a single, shared logit in our output tensors – which means that only the MCTS can
distinguish between them, but the trained policy head cannot.

6. OPEN PROBLEMS

Thanks to the large library of games available in Ludii (Browne et al., 2020; Piette et al., 2020), we
can get a clear picture of categories of games that are open problems to various extents; some that are
simply not supported yet by Polygames (Cazenave et al., 2020) and require more engineering effort,
and some that appear to have been neglected across the majority of recent game AI literature. All of
these types of games are supported by Ludii:



158 D.J.N.J. Soemers et al. / Deep learning for general game playing with Ludii and Polygames

Fig. 7. Screenshots of all the Ludii-based games included in our experiments. First row: Breakthrough, Connect6, Dai
Hasami Shogi, Fanorona, Feed the Ducks. Second row: Gomoku, Hex, HeXentafl, Konane, Lasca. Third row: Minishogi,

Pentalath, Squava, Surakarta, Yavalath.

• Stochastic games: these were not included in this paper because they are temporarily unsupported
by the MCTS implementation of Polygames, but were supported in earlier versions of Polygames
and will be again in future versions.

• Games with more than 2 players: support for these can be added relatively easily (Petosa and Balch,
2019), but is not yet available in Polygames.

• Imperfect-information games: there has been some recent work towards AlphaZero-like training
approaches that support imperfect-information games (Brown et al., 2020), but tractability is still a
concern for games with little common knowledge.

• Simultaneous-move games: simultaneous-move games will at least require significant changes in
the MCTS component (Browne et al., 2012) as it is typically used in AlphaZero-like training setups.

• Games with excessively large state or move tensors: games such as Taikyoku Shogi (depicted in
Fig. 6), with a 36 × 36 board and 402 pieces per player of 209 different types, can be modelled
and run in Ludii, but produce excessively large tensors which quickly lead to memory issues when
training with standard hyperparameter values that work well for “normal” games. These issues
do not appear straightforward to resolve with current hardware and large DNNs. For cases where
only move tensors are excessively large, one solution may be to avoid training a policy altogether
(Cohen-Solal, 2020).

• Games played on a mix of cells, edges and/or vertices of graphs: while games like Chess are only
played on cells, and games like Go only on vertices, there are also games such as Contagion that
are played on a mix of multiple different parts of a graph. It is not clear how to directly support
these with the standard CNNs.

• Games without an explicitly defined board: games such as Andantino or Chex are not played in a
limited area that is defined upfront, but in a playable area that grows dynamically as play progresses.
The standard DNN architectures require these spatial dimensions to be predefined and fixed.



D.J.N.J. Soemers et al. / Deep learning for general game playing with Ludii and Polygames 159

• Games with more than 2 spatial dimensions: games such as Spline have a third spatial dimension,
which cannot be handled by the standard 2D convolutional layers. While a straightforward exten-
sion to 3D convolutional layers may be sufficient, we are not aware of any existing research towards
this for games, and also imagine that a third spatial dimension can rapidly lead to tensors becoming
excessively large again for many non-trivial games.

7. CONCLUSIONS

We have described our approach for constructing tensor representations of states and moves for any
game implemented in the Ludii general game system, and used this to implement a bridge between
Ludii and the Polygames framework. This allows for the state-of-the-art tree search and self-play
training techniques implemented in Polygames to be used for training game-playing models in any
game described in Ludii’s general game description language. Whereas AlphaZero-like approaches
typically require game-specific domain knowledge to define a Deep Neural Network’s architecture
and its input and output tensors, we only require such domain knowledge at the level of the general
game system as a whole, and can now leverage Ludii’s wide library of games – which can quickly
grow thanks to its user-friendly game description language – to facilitate more general game AI re-
search with minimal requirements for game-specific engineering efforts. We have identified a series
of “open problems” in the form of classes of games that are already supported by Ludii, but not yet by
Polygames. For some of these there is a clear path that merely requires additional engineering effort,
but others are likely to require a more significant amount of extra research.

ACKNOWLEDGEMENTS

This work was partially supported by the European Research Council as part of the Digital Ludeme
Project (ERC Consolidator Grant #771292), led by Cameron Browne at Maastricht University’s De-
partment of Data Science and Knowledge Engineering. We thank Éric Piette for his image editing
skills, and Matthew Stephenson for his mastery of the English language. We thank the anonymous
reviewers for their feedback on this paper.

REFERENCES

Bellemare, M.G., Naddaf, Y., Veness, J. & Bowling, M. (2013). The Arcade Learning Environment:
An Evaluation Platform for General Agents. Journal of Artificial Intelligence Research, 47, 253–279.
doi:10.1613/jair.3912.

Brown, N., Bakhtin, A., Lerer, A. & Gong, Q. (2020). Combining deep reinforcement learning and
search for imperfect-information games. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan and
H. Lin (Eds.), Advances in Neural Information Processing Systems 33 (NeurIPS 2020).

Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P.I., Rohlfshagen, P., Tavener, S., Perez,
D., Samothrakis, S. & Colton, S. (2012). A survey of Monte Carlo tree search methods. IEEE Trans-
actions on Computational Intelligence and AI in Games, 4(1), 1–49. doi:10.1109/TCIAIG.2012.
2186810.

https://doi.org/10.1613/jair.3912
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/TCIAIG.2012.2186810


160 D.J.N.J. Soemers et al. / Deep learning for general game playing with Ludii and Polygames

Browne, C., Stephenson, M., Piette, É. & Soemers, D.J.N.J. (2020). A practical introduction to the
Ludii general game system. In T. Cazenave, J. van den Herik, A. Saffidine and I.-C. Wu (Eds.), Ad-
vances in Computer Games. ACG 2019. Lecture Notes in Computer Science (LNCS). Cham: Springer.

Browne, C.B. (2009). Automatic Generation and Evaluation of Recombination Games. PhD thesis,
Queensland University of Technology.

Cazenave, T., Chen, Y.-C., Chen, G.W., Chen, S.-Y., Chiu, X.-D., Dehos, J., Elsa, M., Gong, Q.,
Hu, H., Khalidov, V., Li, C.-L., Lin, H.-I., Lin, Y.-J., Martinet, X., Mella, V., Rapin, J., Roziere,
B., Synnaeve, G., Teytaud, F., Teytaud, O., Ye, S.-C., Ye, Y.-J., Yen, S.-J. & Zagoruyko, S. (2020).
Polygames: Improved zero learning. ICGA Journal. To appear.

Cohen-Solal, Q. (2020). Learning to Play Two-Player Perfect-Information Games without Knowl-
edge. CoRR. https://arxiv.org/abs/2008.01188.

Coulom, R. (2007). Efficient selectivity and backup operators in Monte-Carlo tree search. In H.J. van
den Herik, P. Ciancarini and H.H.L.M. Donkers (Eds.), Computers and Games. LNCS (Vol. 4630, pp.
72–83). Berlin Heidelberg: Springer. doi:10.1007/978-3-540-75538-8_7.

Cox, E., Schkufza, E., Madsen, R. & Genesereth, M.R. (2009). In Proceedings of the IJCAI Workshop
on General Intelligence in Game-Playing Agents (GIGA) (pp. 13–20).

Emslie, R. (2019). Galvanise zero. https://github.com/richemslie/galvanise_zero.

Goldwaser, A. & Thielscher, M. (2020). Deep reinforcement learning for general game playing. In
The Thirty-Fourth AAAI Conference on Artificial Intelligence (pp. 1701–1708). AAAI Press.

Kocsis, L. & Szepesvári, C. (2006). Bandit based Monte-Carlo planning. In J. Fürnkranz, T. Scheffer
and M. Spiliopoulou (Eds.), Machine Learning: ECML 2006. LNCS (Vol. 4212, pp. 282–293). Berlin,
Heidelberg: Springer. doi:10.1007/11871842_29.

Kowalski, J., Maksymilian, M., Sutowicz, J. & Szykuła, M. (2019). Regular boardgames. In The
Thirty-Third AAAI Conference on Artificial Intelligence (pp. 1699–1706). AAAI Press.

Lanctot, M., Lockhart, E., Lespiau, J.-B., Zambaldi, V., Upadhyay, S., Pérolat, J., Srinivasan, S.,
Timbers, F., Tuyls, K., Omidshafiei, S., Hennes, D., Morrill, D., Muller, P., Ewalds, T., Faulkner, R.,
Kramár, J., de Vylder, B., Saeta, B., Bradbury, J., Ding, D., Borgeaud, S., Lai, M., Schrittwieser, J.,
Anthony, T., Hughes, E., Danihelka, I. & Ryan-Davis, J. (Eds.) (2019). OpenSpiel: A Framework for
Reinforcement Learning in Games. http://arxiv.org/abs/1908.09453.

LeCun, Y., Bengio, Y. & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. doi:10.1038/
nature14539.

LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W. & Jackel, L.D. (1989).
Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4), 541–551.
doi:10.1162/neco.1989.1.4.541.

Lin, M., Chen, Q. & Yan, S. (2014). Network in Network. CoRR. abs/1312.4400.

Love, N., Hinrichs, T., Haley, D., Schkufza, E. & Genesereth, M. (2008). General Game Playing:
Game Description Language Specification. Stanford University.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., Bai, J. & Chintala, S. (2019). PyTorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dÁlché-Buc, E. Fox and R.

https://arxiv.org/abs/2008.01188
https://doi.org/10.1007/978-3-540-75538-8_7
https://github.com/richemslie/galvanise_zero
https://doi.org/10.1007/11871842_29
http://arxiv.org/abs/1908.09453
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1162/neco.1989.1.4.541
http://arxiv.org/abs/abs/1312.4400


D.J.N.J. Soemers et al. / Deep learning for general game playing with Ludii and Polygames 161

Garnett (Eds.), Advances in Neural Information Processing Systems (Vol. 32, pp. 8024–8035). Curran
Associates, Inc.

Petosa, N. & Balch, T. (2019). Multiplayer AlphaZero. In Workshop on Deep Reinforcement Learning
at the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019.

Piette, É., Browne, C. & Soemers, D.J.N.J. (2021). Ludii Game Logic Guide. CoRR. https://arxiv.org/
abs/2101.02120.

Piette, É., Soemers, D.J.N.J., Stephenson, M., Sironi, C.F., Winands, M.H.M. & Browne, C. (2020).
Ludii – the ludemic general game system. In G.D. Giacomo, A. Catala, B. Dilkina, M. Milano, S.
Barro, A. Bugarín and J. Lang (Eds.), Proceedings of the 24th European Conference on Artificial In-
telligence (ECAI 2020). Frontiers in Artificial Intelligence and Applications (Vol. 325, pp. 411–418).
IOS Press.

Pitrat, J. (1968). Realization of a general game-playing program. In A.J.H. Morrel (Ed.), Informa-
tion Processing. Proceedings of IFIP Congress 1968 Edinburgh, UK, 5–10 August 1968 (Vol. 2, pp.
1570–1574). Hardware, Applications.

Ronneberger, O., Fischer, P. & Brox, T. (2015). U-Net: Convolutional networks for biomedical image
segmentation. In N. Navab, J. Hornegger, W.M. Wells and A.F. Frangi (Eds.), Medical Image Com-
puting and Computer-Assisted Intervention – MICCAI 2015, Cham (pp. 234–241). doi:10.1007/978-
3-319-24574-4_28.

Schkufza, E., Love, N. & Genesereth, M. (2008). Propositional automata and cell automata: Represen-
tational frameworks for discrete dynamic systems. In W. Wobcke and M. Zhang (Eds.), AI 2008: Ad-
vances in Artificial Intelligence. LNCS (Vol. 5360, pp. 56–66). Berlin, Heidelberg: Springer. doi:10.
1007/978-3-540-89378-3_6.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A., Lockhart,
E., Hassabis, D., Graepel, T., Lillicrap, T. & Silver, D. (2020). Mastering Atari, Go, chess and shogi
by planning with a learned model. Nature, 588, 604–609. doi:10.1038/s41586-020-03051-4.

Shelhamer, E., Long, J. & Darrell, T. (2017). Fully convolutional networks for semantic segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 640–651. doi:10.1109/
TPAMI.2016.2572683.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L.,
Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K. & Hassabis, D. (2018). A general reinforce-
ment learning algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419),
1140–1144. doi:10.1126/science.aar6404.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker,
L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T.
& Hassabis, D. (2017). Mastering the game of Go without human knowledge. Nature, 550, 354–359.
doi:10.1038/nature24270.

Sironi, C.F. & Winands, M.H.M. (2017). Optimizing propositional networks. In Computer Games
(pp. 133–151). Springer. doi:10.1007/978-3-319-57969-6_10.

Wu, D.J. (2019). Accelerating Self-Play Learning in Go. CoRR. http://arxiv.org/abs/1902.10565.

https://arxiv.org/abs/2101.02120
https://arxiv.org/abs/2101.02120
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-540-89378-3_6
https://doi.org/10.1007/978-3-540-89378-3_6
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1038/nature24270
https://doi.org/10.1007/978-3-319-57969-6_10
http://arxiv.org/abs/1902.10565

	Introduction
	Background
	Deep learning in general game playing
	Interface between Ludii and Polygames
	Constructing the spatial dimensions
	Representing Ludii game states as tensors
	Representing Ludii actions as tensors

	Experiments
	Open problems
	Conclusions
	Acknowledgements
	References

