Source and References


LITERATURE RECEIVED

WISSENSDARSTELLUNG UND -VERARBEITUNG IN STRATEGISCHEN SPIELEN

Christian Posthoff, Michael Schlosser and Rainer Staudte

Preprint Nr. 218/6. Jg./1992
Fachbereich Informatik
Technische Universität Chemnitz
21 pages

An English version of the abstract reads:

Strategic games (Draughts/Checkers, Chess, Go etc.) still are a major application area for AI methods, because the evaluation of results is as convenient as a risk-free experiment. Specifically one has to state, for the theories, algorithms and programs created, where they stand between the extremes of the algorithmic and descriptive concepts. The former is based on a small space requirement and intensive computing, the latter on high storage needs and relatively slight computing demands; any point in the spectrum between these extremes may nowadays be aimed at. In order to keep decisions subject to experts’ judgement, concepts within the human window are to be preferred.

There is a natural stress in knowledge processing on the construction of rules which may be derived from aggregating single pieces of information. Several procedures for solving this problem are proposed. Applications are on positions in strategic games, for which extensive and generally-known experience is already available, which may not be true for less well-developed areas of knowledge.

COMPUTER-CHESS ARTICLES PUBLISHED ELSEWHERE


Abstract – Conventional blind search techniques generally assume that the goal nodes for a given problem are distributed randomly along the fringe of the search tree. We argue that this is often invalid in practice and suggest that a more reasonable assumption is that decisions made at each point in the search carry equal weight. We go on to show that a new search technique called iterative broadening leads to orders-of-magnitude savings in the time needed to search a space satisfying this assumption; the basic idea is to search the space using artificial breadth cutoffs that are gradually increased until a goal is found. Both theoretical and experimental results are presented.