
22 ICC A Journal

THE AMATEURS' BOOK-OPENING ROUTINE

John F. WhUe

Workmgham
England

ABS1RACT

March 1990

An easy, memory-efficient method for stonng readable book-openings IS descnbed. It achieves Its
two obJectives: to be easy to mput and to be convenient to alter. The book has the additIOnal ad­
vantage of being presented In a form easIly edited for adequate perusal by human beings. It IS
espeCially apphcable when memory IS tIght

1. INTRODUCTION

A book-opening hbrary forms a valuable part of the armoury of most modem chess programs. Moves made by
reference to the lIbrary have the advantages that"

I) they are made almost mstantly, savmg time for subsequent moves;

u) non-obvIOus moves of strategic Significance can be made;

Ill) deep opening traps can be aVOIded WithOUt calculation

ThiS article descnbes the routIne that I use for my own chess programs. Book openmgs have prevIOusly been
descnbed m thiS Journal by K. Spracklen (1983), USing a pnnclple ascnbed to K. Thompson. The Significant dif­
ference between a profeSSIOnal book-opening lIbrary and that of an amateur hes m the trade-off between time
and cost.

A profeSSional programmer's labour Will be diVided among many Units of many SimIlar chess programs, for
which the savmgs of computer memory may be Significant. The amateur programmer, If he sets any store on the
value of hiS tIme at all, wIll certainly find It cheaper to buy more computer-memory space (or disk storage) than
to wnte the complIcated additIOnal utIlIties needed to make effiCient use of memory space.

2. BOOK STRATEGIES

A number of observatIOns can be made about computer book-opening lIbraries.

From my own expenence, It IS apparent that breadth of the library IS more Important than depth of mdlvldual
openings. ThiS IS because knowledgeable human players, and Wily computer programmers, aim to take their
machine opponent out of ItS openings' book as soon as pOSSible. The advantage of thiS approach IS that the ma­
chine then spends valuable tIme thinking about developing pieces, which are frequently placed on the wrong
squares anyway.

A second reqUirement IS that the book opening should be capable of easy reVISion, so that the program does not
keep falhng Into the same errors. Probably most chess programmers are familIar With the unnerVing expenence
of seemg their creatIOn make a disastrous blunder Immediately after emerging from a long opening sequence

I do not share the view that all free memory should be used to store book openings. A balanced book IS more
Important than a full book, especially With regard to the ease With whIch the program can be taken out of book
Rather, I beheve that It IS more Important to leave space for revIsing the book lIbrary as nece~<;ary. Naturally,
thiS conSideratIon does not apply to commerCial chess computers where unused computer memory IS wasted
memory.

The Amateurs' Book-Opening Routine 23

Condon and Thompson (1983) have recorded that Belle's enormous book-openings library has conferred on
Belle very little competitive advantage. My own chess program has only 175 book lines (some 2,000 moves)
and occupies less than three-quarters of the allocated space.

Finally, it is desirable that a chess program should be able to pick between several possible alternative book
continuations.

3. REPRESENT A TION OF BOOK-OPENING MOVES

Book openings may be stored in two ways: as complete positions with which the associated book response is re­
corded and as lengthy strings of moves.

3.1. Storage of Complete Positions

This method has the great advantage of permitting book moves to be found after transposition of moves. That is
to say, no matter what sequence of moves is used to reach a position, a stored response will always be available
from that position.

The difficulty with this approach for the amateur is that of automation: creating an auxiliary program into which
book positions may be fed, the resulting board position encoded and the subsequent book move stored.

A secondary problem is that it takes a great deal of computer memory to store complete board positions, al­
though it may be deduced that 40 bits may suffice to define most opening board positions uniquely (see Nelson,
1985). In the latter case, a hashing technique will be needed to reduce the board position, and another routine
will subsequently be required to check all the hashed positions for uniqueness. Alternatively, standard data com­
pression techniques such as Huffman coding could presumably be used.

Levy (1985) has stated that the storage of board positions is "an opening feature of doubtful value" in view of
the cost in programming time and extra memory.

3.2. Storage of Move Strings

The Spracklen-Thompson system for storing move strings aims at the association of one move with one byte of
memory. This is accomplished by storing, not the moves, but the offset of the required move into the legal list
of moves generated by the program at each position.

The difficulty of this approach for the amateur programmer lies, as with storing board positions, in the creation
of a separate routine to calculate the move offsets. If moves are instead stored in the conventional FROM-TO
manner, the Spracklen-Thompson system requires the use of two bytes of memory for each stored book res­
ponse.

The Spracklen-Thompson system additionally permits a limited degree of move transpositions, since short
move strings may be followed by a 'JUMP' command into the middle of a longer move string. Such jumps are
difficult to calculate, and need revision whenever the book library is expanded.

Finally, the Spracklen-Thompson system stores book moves in an efficient, but highly unreadable form. For
example, the book opening lines of Table 1 would be stored as:

(e4(e5(Nf3(Nc6(Bb5a6)Bc4)Nf6)f4) (c5Nf3(d6d4)Nc6)e6)

It requires little imagination to picture the prospect of debugging such a mixture for a 2,000 move book
opening, while sitting in one's cold, dark spare bedroom at midnight.

24

e2e4e7e5g1 f3b8c6flb5a7a6
e2e4e7e5g1f3b8c6flc4
e2e4e7e5g1f3g8f6
e4e4e7e5f2f4
e2e4c7c5g1f3d7d6d2d4
e2e4c7c5g1f3b8c6
e2e4e7e6

ICCAJoumal

Table 1: Example of book opening moves in the FROM-TO notation.

4. AN AMATEUR BOOK ROUTINE

March 1990

The book opening method which I have evolved for my own use is also based on the storage of move strings.
The strings are entered into a word processor exactly as shown in Table 1. It is very important that similar
strings, i.e. those starting with identical moves, are stored adjacent to one another.

A short BASIC program next examines each string to see whether the front part of the string, counting every
four characters, is identical to its predecessor. If so, the front (matched) part of the string is replaced with an as­
terisk followed by the number of bytes (FROM-TO) that will be replaced.

For example, the string data of Table I would be reduced to the string data of Table 2:

e2e4e7e5g1f3bSc6flb5a7a6
*8flc4
*6gSf6
*4f2f4
*2c7c5g1f3d7d6d2d4
*6bSc6
*2e7e6

Table 2: Reduced form of book-opening moves of Table l.

A second BASIC program then examines the reduced data as per Table 2 and POKEs the corresponding moves
as hex values (FROM-TO) into memory. Spccialtokens represent the '*n' code and the end of each move string
is marked by having the most significant bit of the last move byte set to 1.

5. USE OF THE AMATEUR OPENING BOOK

In operation, the moves played by both sides are stored contiguously in a buffer (BUFFERO) which maintains a
record of the actual game as played. The same moves are additionally stored in BUFFER 1. The reason for using
BUFFER 1 will become apparent in Section 6.1. (Transpositions).

When the program looks for any move in the book opening, it first extracts the first string of the book and stores
it in BUFFER2. If BUFFER 1 matches the front part of BUFFER2, counting bytes in pairs, the next two bytes
from BUFFER2 (if they exist) contain the book response. The following two bytes after that provide a hint for
the program's opponent.

If, however, there is no match, the program copies the next book string into BUFFER2, but with the important
proviso that the first n bytes of BUFFER2 are skipped if the new string begins with a '*n' token. Thus, from the
example of Table 2, the second book string would be copied into BUFFER2 starting at byte 8 of BUFFER2
(skipping bytes 0 to 7).

The Amateurs' Book-Opening Routine 25

The new BUFFER2 contents are compared with BUFFER!. This process is continued until the whole book
string has been traversed. BUFFER2 will be completely rewritten only when the next considered book string
lacks the '*n' token.

This method of book-opening compression can be extremely efficient since an average of less than one extra
byte - relative to the Spracklen-Thompson system - is needed for each opening line stored. Thus, considering
the data in Table 1, there are 29 moves requiring 58 bytes of storage in the FROM-TO representation; the
Spracklen-Thompson scheme requires 30 bytes and the Amateur Book routine requires 36 bytes. This assumes
the use of two bytes of memory for each move stored, as previously explained; however, all the systems are
amenable to use of the offset method to find the move from the current legal list.

It can be seen that the Amateur Book routine is particularly efficient with closely-related deep opening lines, but
poorer with a broad opening library (a feature shared by the Spracklen-Thompson system). It has the advantage
that the original book opening text is easy to read and to correct on the word-processor, while the modifying
programs in BASIC are short and simple to write.

6. ENHANCEMENTS

Four further enhancements to the Amateur Book routine are possible.

6.1. Transpositions

When the opening sequence of moves is copied into BUFFERI, it is possible to make transpositions in BUFF­
ERI by reference to a look-up table. For example, the string c2c4e7e6d2d4 ... is changed after copying to
d2d4e7e6c2c4

This method is limited by the size of the look-up table, while an excessive number of comparisons would be ex­
pected to slow the book routine too much. Nevertheless, I have managed to pack in a lot of such transpositions
without noticeable effect on the speed of book search. Instead, my limit is that of available free memory.

6.2. Book Window

An additional feature of storing similar book strings together is that use of a 'book window' becomes feasible.
Instead of 'walking' the whole book opening to match moves, two 'book limits' are set (initially to zero and +
infinity). When matches are found with the book strings, the 'book limits' are reset to mark the highest and lo­
west book strings with which matches were found. This creates the 'book window'.

When the book routine is next called, the book opening library is searched only within the memory area defined
by the book window. The book window will then again be narrowed to reflect the decreasing range of book
choices.

Transposition routines, when present, have to be considered carefully for their effect on the book window. The
easiest solution is to re-initialize the window whenever a transposition is made to BUFFER I.

6.3. Random Choice

It often happens that several alternative book strings provide different continuations from the present move se­
quence. The continuations could be stored in yet another buffer (BUFFER3) and a choice subsequently made
among them. However, in practice - for reasons of economy of memory - I prefer to accept the first book re­
sponse encountered and then to replace the first choice randomly - with high probability of acceptance - with
any subsequent alternatives as they arise. Accordingly, the move strings are listed in increasing order of merit,
always subject to the constraint that similar move strings are stored together.

26 ICCAJoumal March 1990

6.4. Universal Book Opening

It is possible to play the move 1. ... e5 as a response to any opening move by White other than d4, f4 or Nf3.
Consequently the move e5 can be used as a 'universal' book response for any opening move not found in the
book opening library, provided that replies to d4, f4 and Nf3 have been stored.

In practice, this universal book move should be stored separately from the book-opening library, and considered
only if the program exits from the library without a match after White's first move.

My own chess program opens a game as White with a move selected at random from e4, d4 and c4 without ref­
erence to the book-opening library.

7. PERFORMANCE

The Amateur Book routine described here works perfectly on an Atari 130XE domestic microcomputer (6502
CPU at 2 MHz; 64K RAM). Moves are made, inclusive of transpositions, within half a second per book move
without the 'book window'; virtually instantly with the 'book window'.

Changes to the book opening are easily made by altering the word-processor text file. The same file can conve­
niently be read for checking or proofreading.

8. REFERENCES

Condon, J.H. and Thompson, K. (1983). BELLE. Chess Skill in Man and Machine (Ed. P.W. Frey), 2nd edition,
pp. 201-210. Springer-Verlag, New York.

Levy, D.N.L. (1985). Quoted in: Harding, T.D. (1985). The New Chess Computer Book, pp. 238-239. Pergamon
Press, London.

Nelson, H.L. (1985). Hash Tables in Cray Blitz.ICCAJournal. Vol. 8, No.1, p. 6.

Spracklen, K. (1983). Tutorial: Representation of an Opening Tree.ICCA Newsletter, Vol. 6, No.1, pp. 6-8.

INFORMATION FOR CONTRIBUTORS

Contributors may be interested to know that the ICCA Journal, as of Vol. 10, No.1, is a source for the Institute
for Scientific Information® (lSI) for inclusion in the CompuMath Citation Index® (CMCI®), the Automatic
Subject Citation Alert (ASCA®) and SCISEARCH®, lSI's on-line database. The Journal is also a source for
the Information Company R.R. Bowker for inclusion in the International Serials Database which is a source for
Ulrich's International Periodicals Directory and the DIALOG on-line service.

Being included in the CMCI®, the ICCA Journal is one of the 400 Journals in mathematics, computer science,
statistics, operations research, and related disciplines which is abstracted and/or indexed and/or available as
tearsheets; this means that the Journal now is accessible in (on-line) database form.

Submission of material

Contributions to the Journal are welcomed in any form, although preferably by E-mail or on a MS-DOS format­
ted 5.25 inch diskette. In case contributors prepare their manuscripts with high-quality wordprocessors, it should
be noticed that text-files in VENTURA, TEX or TROFF format are processable directly by the Editors, thereby
alleviating their task considerably.

