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Who is the Master?

Jean-Marc Alliot∗
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Abstract. There has been debates for years on how to rate chess players living and playing at different periods (see Keene
and Divinsky (1989)). Some attempts were made to rank them not on the results of games played, but on the moves played
in these games, evaluating these moves with computer programs. However, the previous attempts were subject to different
criticisms, regarding the strengths of the programs used, the number of games evaluated, and other methodological problems.

In the current study, 26,000 games (over 2 millions of positions) played at regular time control by all world champions since
Wilhelm Steinitz have been analyzed using an extremely strong program running on a cluster of 640 processors. Using this
much larger database, the indicators presented in previous studies (along with some new, similar, ones) have been correlated
with the outcome of the games. The results of these correlations show that the interpretation of the strength of players based
on the similarity of their moves with the ones played by the computer is not as straightforward as it might seem.

Then, to overcome these difficulties, a new Markovian interpretation of the game of chess is proposed, which enables to
create, using the same database, Markovian matrices for each year a player was active. By using classical linear algebra
methods on these matrices, the outcome of games between any players can be predicted, and this prediction is shown to be
at least as good as the classical ELO prediction for players who actually played against each others.

Keywords: Chess, Player Evaluation

1. INTRODUCTION

The ranking of players in general, and especially of chess players, has been studied for almost 80
years. There were many different systems until 1970 such as the Ingo system (1948) designed by
Anton Hoesslinger and used by the German federation, the Harkness system (1956) designed by
Kenneth Harkness (1967) and used by the USCF federation, and the English system designed
by Richard Clarke. All these systems, which were mostly “rule of thumb” systems, were replaced
in almost every chess federations by the ELO system around 1970. The ELO system, the first to have
a sound statistical basis, was designed by Arpad Elo (1978) from the assumption that the performance
of a player in a game is a normally distributed random variable. Later on, different systems trying to
refine the ELO system were proposed, such as the chessmetrics system designed by Jeff Sonas (2005),
or the Glicko system, designed by Mark Glickman (1995), which is used on many online playing sites.
All these systems share however a similar goal: to infer a ranking from the results of the games played
and not from the moves played (for a comprehensive overview see also Glickman and Jones, 1999).

Guid and Bratko (2006) made a pioneering work, and advocated the idea of ranking players by analyzing
with a computer program the moves made and by trying to assert the quality of their moves (see also
Guid and Bratko, 2007; 2008; Guid, 2010). However, their work was criticized (Riis, 2006) on different
grounds. First, Guid and Bratko used a chess program (Crafty) which in 2006 had an ELO rating
around 2700, while top chess players have a rating above 2700. Moreover, they used a limited version
of Crafty which evaluated only 12 plies, which therefore reduces further its playing strength. Second,
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the sample analyzed is small (1397 games with 37,000 positions only). Guid and Bratko (2011) used
different and better engines (such as Rybka 3, with a rating of 3073 ELO at the time). However, the
search depth remained low (from 5 to 12), meaning that the real strength of the program was far from
3000 ELO, and the set of games remained small, as they only studied World Chess Championship
games. Their results were aggregated (there was no evaluation per year), and not easily reproducible
as the database of the evaluations was not put in the public domain. A second problem was that the
metrics they used could not be analyzed as the raw results were not available. A similar effort was made
by Charles Sullivan (2008). In total 18,875 games were used (which is a much larger sample), but the
average ply was only 16, the program used was still Crafty, and the raw data were not made available,
which makes the discussion of the metrics used (such as “Raw error and Complexity”) difficult. This
lack of raw data also denies the possibility to try different hypotheses (the author decided for example to
evaluate only game turns 8 to 40, which is debatable; Guid and Bratko made the same kind of decisions
in their original paper, such as simply excluding results when the score was above or less than 200
centipawns, which is also debatable). All these problems were discussed too by Fatta, Haworth, and
Regan (2009) and Haworth, Regan, and Fatta (2010).

In this article I present a database of 26,000 games (the set of all games played at regular time controls
by all World Champions from Wilhelm Steinitz to Magnus Carlsen), with more than 2 million positions.
All games were analyzed at an average of 2 minutes by move (26 plies on the average) by what is
currently the best or almost best chess program (Stockfish), rated around 3300 ELO at the CCRL
rating list. For each position, the database contains the evaluation of the two best moves and of the
move actually played, and for each move the evaluation, the depth, the selective depth, the time used,
the mean delta between two successive depth and the maximum delta between two successive depths.
As the database is in PGN it can be used and analyzed by anyone, and all kind of metrics can be
computed from it. The study was performed on the OSIRIM cluster (640 HE 6262 AMD processors)
at the Toulouse Computer Science Research Institute, and required 61440 hours of CPU time. The
exact methodology is described in section 2.

In section 3 we present different indicators that can be used to evaluate the strength of a player. Some
of them were already presented in other papers or other studies such as tactical complexity indicators
(section 3.1) in Sullivan (2008), “quality of play”1 (sections 3.2) which was mainly introduced by
the seminal work of Guid and Bratko (2006), distribution of gain (section 3.3) introduced by Ferreira
(2012). Last, we introduce in section 3.4 a new indicator based on a Markovian interpretation of chess
which overcomes some of the problems encountered with the other indicators2.

These indicators are then discussed, validated and compared using our database in section 4. The
results found demonstrate that the evaluation of a player’s strength based on the “quality” of his moves

1That we will call in this paper “conformance”.
2I consider here that computer programs are now strong enough (see next section) to be considered as “nearly perfect”

oracles when evaluating human games. This is absolutely true when considering endgames (at least up to 6 pieces): here
the evaluation function for each position can return the distance to mate, and thus gives an exact evaluation of each move.
Of course, as chess has not been solved, the evaluation function in the middle game is only an approximation of this exact
function, and different chess programs might return (a) different best moves ordering, and (b) different evaluation for the
same position (Stockfish is for example known for returning higher/lower evaluations than its siblings). (b) does not change
much to the current work: all results and curves would keep exactly the same shape, only the scales would be modified. (a) is
however a more serious objection: would the results be the same if using for example Komodo instead of Stockfish? The
two programs have approximately the same strength and sometimes return different move ordering for the same position.
This should be the subject of a further study; there has already been work done on comparing the output of different engines
(Levene and Bar-Ilan, 2005), especially recently as a result of the Rybka controversy (Dailey, Hair, and Watkins, 2013),
which shows that programs usually agree on 50% to 75% of the moves. However, such articles concentrate mainly on how
many moves are different, and not on how much moves are different.
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is not as straightforward as it might seem, as there remains a difficult question to answer: who is the
best player: the one who finds the exact best move most of the time but can make several mistakes,
or the one who does not find the best move as often, but makes smaller mistakes? As shown in the
following sections, there is no simple answer to this question; we will see that indicators are difficult
to calibrate, that a scalar indicator such as move conformance enables to build a global ranking, but is
less accurate than a Markovian predictor which is then more accurate but enables only head to head
comparison of players.

2. METHODOLOGY

We present in this section the evaluation of the ELO strength of the program (2.1), the criteria used
for choosing the games to evaluate (2.2), the experimental settings (2.3), and the kind of information
saved in the database (2.4).

2.1. Evaluation of the ELO strength of the program used

The choice of Stockfish was quite straightforward. Stockfish, as of 10/2015, tops the SSDF list
(Swedish Chess Computer Association, 2015) and is second on the CCRL list (CCRL website, 2015).
It is an open source program, which can be easily compiled and optimized for any linux system. At the
SSDF rating list, Stockfish is rated 3334 ELO, and 3310 at the CCRL rating list. These ratings are
given with the program running with 4 CPUs. Stockfish 6 on a single core is only rated at the CCRL
list at 3233 ELO. The ratings of the SSDF list are given for a Q6600 processor. Stockfish on this
processor is computing 3283 kn/s (kilo-nodes by second) when using 4 cores (Canbaz, 2015). It has
however not been benchmarked when using one core but the QX9650 using 4 cores is benchmarked
at 4134 kn/s and at 1099 kn/s using one core. So it is safe to assess a computation speed of around 870
kn/s on a Q6600 using one core.

On a 6262 HE core, Stockfish was benchmarked at 630 kn/s, so speed is divided by 1.38 compared to
the Q6600. Moreover, the games we are evaluating were played at regular time controls (3min/moves
on the average) but we only use 2 minutes by move for the evaluation. This induces a second reduction
of 1.5, for a total reduction of almost 2. There has been different studies on the increase in playing
strength regarding the depth of the search and the time used to search (Hyatt, 1997; Heinz, 2001a,b;
Ferreira, 2013; Guid and Bratko, 2007 and many others). Considering all these elements, it is safe to
assess that such a decrease in speed will not cost more than 80 ELO points, and that Stockfish under
these test conditions has a rating around 3150 ELO points. This is 300 points higher than the current
World Champion Magnus Carlsen at 2840, which is also the highest ELO ever reached by a human
player.

The question of whether this 3150 rating, which has only be computed through games with other
computer programs, is comparable to the ratings of human players is not easy to answer. Man vs
Machine games have become scarcer. There was an annual event in Bilbao called “People vs Com-
puters”, but the results in 2005 were extremely favorable to computer programs (Levy, 2005). David
Levy, who was the referee of the match, even suggested that games should be played with odds and
the event was apparently canceled the next year. In 2005 also, Michael Adams lost 51/2–1/2 to Hydra (a
64 CPU dedicated computer), and in 2006 Vladimir Kramnik, then World Champion, lost 4–2 to Deep
Fritz. In 2009, Hiarcs 13 running on a very slow hardware mobile phone (less than 20 kn/s) won
the Copa Mercosur tournament (a category 6 tournament) in Argentina with 9 wins and 1 draw, and
a performance of 2898 ELO (Chessbase, 2009). In the following years there have been matches with
odds (often a pawn) which clearly demonstrate the superiority of computer programs, even with odds.
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In 2014, Hiraku Nakamura (2800 ELO) played two games against a “crippled” Stockfish (no opening
database and no endgame tablebase) with white and pawn odds, lost one game and drew the other. So,
even if the 3150 ELO rating of this Stockfish 6 test configuration is not 100% correct, it is pretty
safe to assert that it is much stronger than any human player ever.

2.2. The initial database

The original idea was to evaluate all games played at regular time controls (40 moves in 2h) by all
“World Champions” from Wilhelm Steinitz to Magnus Carlsen. This is of course somewhat arbitrary,
as FIDE World Championships only started in 1948, and there was a split from 1993 up to 2006
between FIDE and the Grand Masters Association / Professional Chess Association.

Twenty players were included in the study: Wilhelm Steinitz, Emanuel Lasker, José Raul Capa-
blanca, Alexander Alekhine, Max Euwe, Mikhail Botvinnik, Vasily Smyslov, Mikhail Tal, Tigran
Petrosian, Boris Spassky, Robert James Fischer, Anatoly Karpov, Gary Kasparov, Alexander Khal-
ifman, Viswanathan Anand, Ruslan Ponomariov, Rustam Kasimdzhanov, Veselin Topalov, Vladimir
Kramnik, and Magnus Carlsen.

Gathering the games was done by using the “usual” sources such as the Chessbase Database, Mark
Crowthers’ “This Week In Chess” and many other online resources. Scripts and programs were devel-
oped to cross-reference all the sources in order to have a final database which was consistent regarding
data such as player names or date formatting. In the end, after suppressing duplicates, dubious sources,
games with less than 20 game turns, games starting from a non standard position and incorrect games,
more than 40,000 games were available.

The second filtering task was to keep only games played at regular time controls. This proved to be
a much more difficult task; time controls are usually absent from databases. Some have information
regarding “EventType”, but it is difficult to make a completely safe job. The option was to suppress
all games for which it was almost certain that they were either blitz, rapid, simultaneous or blind
games, which eliminated around 15,000 games. However, games played at k.o. time control during
the 1998–2004 period were kept; this decision was made in order to keep in the databases the FIDE
World Championships which were played at this time control between 1998 and 2004.

The final database consists of 25,802 games with more than 2,000,000 positions. The number of games
evaluated for each player is presented in Table 1. The database is probably the weakest point of this
study, as it is extremely probable that there are games played at time controls quite different from
the standard 2h / 40 moves. This is not such a problem as long as the difference is not too important,
but move quality is certainly inferior in rapid games. However, the goal here is also to provide raw
material, and anyone can improve the database by suppressing improperly selected games.

2.3. The experimental settings

A meta program was written using MPI (Snir et al., 1995) to dispatch the work on the nodes of the
cluster. Each elementary program on each node was communicating with a Stockfish 6 instance
using the UCI protocol. The Syzygy 6-men tablebase was installed in order to improve endgame play.
This revealed a small bug in Stockfish 6, and a more recent, github-version, of Stockfish, where
the bug was corrected, had to be used (version 190915). Hash tables were set to 4GB for each instance.
This size was chosen after testing different sizes (2, 4 and 6GB) on a subset of the database. MultiPV
was set to 2, for different reasons. First, the best two moves are analyzed in order to have an indicator
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Table 1

Games evaluated for each player

of the complexity and of the stability of the position. Second, it is often the case that the move played
by the human player is either the first or the second best one. Thus the small percentage of time lost by
evaluating 2 lines is at least partly compensated by not having to restart an analysis for the evaluation
of the human player’s move.

In previous studies, engines were often used at a fixed depth, instead of using them with time controls.
Guid (2010) and Guid and Bratko (2011) give two arguments to use fixed depths. On the one hand,
fixing the depth gives more time to complex positions, and less to simple positions. This is debatable,
as some positions with a high branching factor may be extremely stable in their evaluation, and thus
not so complex (this is the case for example at the beginning of a game). On the other hand, they want
to avoid the effect of the monotonicity of the evaluation function3, which reports larger differences
when searching deeper. Thus a position with a computed δ = vb − vp between the move played and
the best move at depth d will probably have a larger δ when searched at depth d + 1. So, Guid and
Bratko advocate the use of the same depth for all positions in the game, in order to have comparable δ.
However, this is debatable also; while the monotonicity of the evaluation function is a fact, it is not
clear if this monotonicity evolves faster regarding depth of search4, or length of search. The problem
of the reproducibility and stability of the evaluation of chess programs has been also discussed in other
studies such as the one by Barnes and Castro-Hernandez (2015) regarding cheating in (human) chess
by using computers; differences observed are minimal and should not impact this study.

3In layman’s words, the deeper you search, the more important is (usually) the difference in a given position between the
best move evaluation and any other move evaluation; it is easy to understand why: when you begin to build a small advantage,
you usually improve it as time goes by, which in terms of computer search is just an increase in the depth of the search.

4This could however be the start of a more in depth discussion about the structure and the interpretation of the evaluation
functions in chess. While in some other games (such as reversi for example as done by Michael Buro for Logistello), the
evaluation function returns a probability of winning the game, in chess, it is usually presented as the evaluation of the material
on the board, with different correcting terms. However, even if it is built that way, this is not what it is supposed to be. The fact
that, in chess, there is no absolute simple mapping between the value of the position and the probability of winning the game
is a problem that we will discuss again in subsection 3.2.3. Finding such a mapping is however not a real problem for chess
programmers because their problem is more to find a good ranking of the moves in a given position than an evaluation of
the probability of winning the game, which has no direct practical interest. See for example (Gomboc, Buro, and Marsland,
2005) for the problem of tuning evaluation functions.
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So another solution was adopted. The time limit set for the program on any position was 4 minutes.
However, the meta-program which was controlling the engine was permanently monitoring the output,
and was analyzing the evolution of the position evaluation during the search. The conditions checked
are:

� the engine had searched for at least one minute;
� the two best moves had been evaluated at exactly the same depth (to be sure that the evaluation

of the moves are comparable);
� the search had reached an evaluation point and an “info” string containing depth, score and pv

(principal variation) had just been returned by the UCI interface.

Then, if these three conditions hold, the search was stopped if:

1. the engine had searched for at least 3 minutes,

2. or the position analyzed was strongly biased in favor of the same player in successive game turns,

3. or the search was stable (the differences between evaluations for two successive depths was small)
for successive depths.

Condition 2 stops the search if the position is steadily biased in the same direction for at least three
consecutive game turns5 (e0 × e1 < 0 and e1 × e2 < 0) in the game and if the time already used (in
minutes) is greater than:

4 × max(100, (1000 − min(|e0|, |e1|, |e2|))/3)/400

where e0, e1 and e2 are the last game turns evaluations in centipawns. The formula looks complicated,
but is easy to understand on one example. If e0 = −420, e1 = 400 and e2 = −410, then the search will
stop if the time used is greater than 4 × ((1000 − 400)/3)/400 = 4 × 200/400 = 2 minutes. This is
done to prevent spending too much time on already lost or won games.

Condition 3 stops the search if the time already used (in minutes) is greater than:

4 × (10 + max(|e0 + e1|, |e0 − e2|, |e1 + e2|))/40

where e0, e1 and e2 are the last evaluations returned for the last 3 consecutive depths in the current
search. For example, if the last 3 evaluations are 53, -63 and 57, then search will stop if the time used
is over 4 × (10 + max(10, 4, 6))/40 = 4 × 20/40 = 2 minutes.

Under these settings, the average time used for finding and analyzing the best two moves was almost
exactly 2 minutes, with an average depth of 26 plies.

If the move played in the game is not one of the two best moves already analyzed, it is searched
thereafter. The engine is set to analyze only this move, at the exact same depth used for the two best
moves. No time limit is set. Usually, searching is fast or very fast, as the hash tables have already been
populated during the previous search.

5Evaluations returned are always relative to the player who is going to move, not to White. So a steady evolution would
result in alternating positions evaluations in the game, such as -40, +41, -42. Evaluations are always given in centipawns (1
pawn is equal to 100 centipawns).
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To enhance further the speed of the search, the game is analyzed in a retrograde way, starting from the
end. Thus, the hash tables contain information which also helps in stabilizing the score of the search,
and should improve the choices made by the engine.

2.4. Information saved in the Database

Evaluation starts only at game turn 10, as the first nine game turns can be considered as opening
knowledge6. For each position, 2 moves at least are evaluated (the only exception being when there is
only one possible move), and sometimes 3 when the move played in the game is not one of the 2 best
moves. For each move evaluated, the following elements are recorded:

� the evaluation of the move,
� the depth searched,
� the selected depth searched,
� the number of tablebase hits,
� the time used during the search,
� the average delta between evaluations at n and n + 1 depth levels,
� the maximal delta between evaluations at n and n + 1 depth levels and the associated value of n.

All this information is saved as comments of the move, and the additional moves are saved as variations
with comments.

The headers of each game are limited to the 7 standard PGN tags, plus an Annotator tag which
summarizes various information about the game, such as the average time for searching each move,
the average depth of the search, the total time used for the game, etc. The database fully complies
with the PGN standard, but is however in the simplest mode regarding chess notation: game turns are
only indicated by the start and end square and no numbering. This is not a problem for most database
programs, and moreover numerous tools exist to convert between PGN formats (such as the excellent
pgn-extract program).

Here is an example of the output:

[Event "URS-ch29"]
[Site "Baku"]
[Date "1961.11.19"]
[Round "3"]
[White "Smyslov, Vassily"]
[Black "Nezhmetdinov, Rashid"]
[Result "1-0"]
[Annotator "Program:Stockfish 190915, TB:Syzygy 6-men,
Hash Size:4096K, Total Time:5494s,Eval Time:240000ms,
Avg Time:122926ms, Avg Depth:25, First move:10,
Format:value,depth,seldepth,tbhits,time,dmean,(dmax,ddmax),
Cpu:AMD Opteron(tm) Processor 6262 HE,

6Opening knowledge usually goes much deeper than 10 game turns. However, below 10, it is pretty safe to assess that all
moves are played “by the book”, while this likelihood decreases after. Using 10 (instead of 20 for example) “guarantees” that
no mistake made by a player is left unseen, while the only drawback is that the number of “correct” moves for each player
will be slightly higher, as long as we believe that opening knowledge is coherent.
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Ref: http://www.alliot.fr/fchess.html.fr"]
c2c4 g7g6 b1c3 f8g7 d2d4 d7d6 g2g3 b8c6 g1f3 c8g4 f1g2 d8d7 d4d5
g4f3 e2f3 c6a5 d1d3 c7c6 c1d2 90,24,43,0,124176,8,(43,3) (b2b4
127,24,43,0,124176,9,(38,5)) c6d5 -91,25,37,0,68795,9,(46,6) (a8c8
-79,25,37,0,68795,1,(6,15))

The first move evaluated in the game was c1d2, with an evaluation of 90cp at depth 24, with a selective
depth of 43, and an evaluation time of 124s. The mean variation of evaluation along the line was 8,
with the maximal variation being 43 at depth 3. According to Stockfish, b2b4 was a better move with
an evaluation of 127cp.

3. INDICATORS CONSIDERED

Below we consider four different types of indicators. In 3.1 we present three different tactical complexity
indicators. In 3.2, we introduce three different conformance indicators. In 3.3 we analyze the notion
of distribution of gain. Last, in 3.4, we consider a chess game as a Markovian process.

3.1. Tactical complexity indicators

Sullivan (2008) defines a “complexity” indicator for a position which is correlated with the errors made
by players.

Here I define three indicators that can be computed from the output of the engine. The correlation of
these indicators with the errors made by the players will be evaluated using the classical Pearson’s
product-moment correlation (Pearson’s ρ).

An experimental evaluation of these indicators is presented in section 4.1.
� Depth of search vs time: A tactical complexity indicator can be computed from the engine depth

and time output after analyzing a move. In Fig. 1, the percentage of moves p(d, t) is plotted as
a function of depth d reached and of time t used (here t equals 60s, 90s, 120s, 150s, 180s, 210s
and 240s) over the 2,000,000 positions analyzed.

The red curve indicates for example that when a position is searched for 240s then 17% of the
moves are evaluated at depth 26 (p(26, 240) = 0.17), and 3% only at depth 23 or at depth 31.
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Fig. 1. Percentage of moves as a function of depth reached for a given time.
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Thus if a move is evaluated for 240s at depth 26, the position can be considered as average
regarding complexity, while it can be considered as a little bit above average complexity if it is
evaluated at depth 25 (15.5%) or a little bit below average at depth 27 (14.5%).

Numerous tactical complexity indicators can thus be computed for a move m evaluated at depth d

for a time t (these indicators are of course directly correlated with the branching factor of the tree
search). If: pmax(t) = maxi p(i, t) and dmax(t) = argmaxi p(i, t) then one of the simplest would be:

C(m) = p(d, t) − pmax(t)

pmax(t)
if d ≤ dmax(t)

= pmax(t) − p(d, t)

pmax(t)
if d ≥ dmax(t)

� Stability: During the search, the engine saves for each move the mean delta in the evaluation
function between two consecutive depths. This can be considered as an evaluation of the stability
of the position, and “unstable” positions could be considered as more “complex” than stable ones.

� Unexpected jumps in the evaluation: The engine also saves the largest difference between two
successive depths and the depth at which this difference is recorded. This can be seen as a trap in
the current position, especially if the jump is large and the depth at which it is recorded is high.
Three indicators are computed from these data. The first correlates only the maximal value of
the difference, the second correlates only the depth at which the jump in the evaluation appears,
and the third one is a product of the 2 values7.

3.2. Move Conformance and Game Conformance

Below we distinguish between raw conformance (3.2.1), Guid and Bratko conformance (3.2.2) and
ponderated conformance (3.2.3).

3.2.1. Raw conformance

Every move made by a human player can be compared to the move chosen by the computer program
in the same position. The difference between the evaluation vb of the computer program move8 and
the evaluation vp of the actual move made by the player will be called the raw conformance of the
move δ = vb − vp. By construction δ is always positive.

Some websites9 compute similar indicators, and call them Quality of Play. Conformance was chosen
as the term bears no presupposition regarding the possible optimality of the move, and also because
these indicators measure in fact how much the moves made are similar to the moves that a computer
program would play, rather than an hypothetical Quality of Play which is rather difficult to define.

7These three indicators, especially the third, are very close to the one used by Sullivan. The complete algorithm to
compute Sullivan’s complexity as described on his website is: (1) the score (call it BEST SCORE) for the best move (call
it BEST MOVE) is identified and the iteration (call it ITERATION) in which it was so identified is remembered; (2) a new
score (call it NEW SCORE) during a search of depth ITERATION-1 is done for BEST MOVE; (3) the difference between
BEST SCORE and NEW SCORE is the raw Complexity score (call it RAW COMPLEXITY); (4) the Complexity score is
RAW COMPLEXITY * ITERATION / 10. The difference here is that step (2) is not performed, we just use the largest
difference between successive evaluations during the search. It would be interesting to modify the system to record enough
data to compute Sullivan’s complexity indicator.

8The computer program move is supposed to be the best possible move, and thus the evaluation of the position is also
equal to y.

9db-chess.com computes for example the Stockfish First Choice Ranklist which is, more or less, a conformance 0 index
with Guid and Bratko restrictions. However, the details are only available to supporting members of the website.
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For a given player, these elementary indicators can be accumulated for a game (which would give a
game conformance indicator), or all games played for a year, or all games played during the whole
career of the player.

Here the indicator is computed for each player for each move for a given year, and for all years the
player was active. For each year, these results are accumulated by intervals of 10cp. Thus s(P, y, 0) is
the number of moves played by player P during year y in such a way that the move played has exactly
the same evaluation as the move chosen by the computer program. Then s(P, y, 0.1) is the number of
moves played in such a way that the raw conformance is between 0 (not included) and 10cp (or 0.1p),
subsequently s(P, y, 0.2) is the number of moves played in such a way that the raw conformance is
between 0.1p and 0.2p, and so on.

R(P, y, δ) defined by:

R(P, y, δ) = s(P, y, δ)
∑

∀d s(P, y, d)

is the percentage of moves belonging to interval [δ − 0.1, δ] (for δ /= 0, for δ = 0, see above) for player
P during year y.

R′(P, y, δ) defined by:

R′(P, y, δ) =
∑

∀d≤δ s(P, y, d)
∑

∀d s(P, y, d)

is the percentage of moves played with a conformance ≤ d.

Last, in order to smooth R′, Q(P, y, δ) is defined by:

Q(P, y, δ) =
∑

∀j≤y 2j−y
∑

∀c≤δ s(P, y, c)
∑

∀j≤y 2j−y
∑

∀c s(P, y, c)

This indicator has a “forgetting factor” over the years: results for year y − j are used to compute the
indicator for year y but they count with a factor of 2j−y (half for y − 1, a quarter for y − 2, etc.).

It would have been interesting to compute these indicators not by years, but by months, with a sliding
window. This is however very difficult because some players could spend a lot of time without playing,
and moreover the exact date for many old chess events are missing from the database.

We must also notice that this kind of indicator can be defined not for a year, but for only a game and,
if the indicator is meaningful, there must be a relationship between the indicator distribution (R is
a probability distribution function and R′ is a cumulative probability distribution function) and the
outcome of the game. This is the basis of the validation that will be performed in subsection 4.2.1 for
the accumulated conformance (and in subsection 4.3.1 for gain and distribution covariance).

3.2.2. Guid and Bratko conformance

In their papers, Guid and Bratko considered an indicator for conformance which was slightly different:
they did not take into account the conformance of moves when the evaluation function was already
above +200cp or below -200cp.

In the rest of this paper this indicator is called Guid and Bratko conformance indicator or sometimes
G&B conformance indicator.
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Fig. 2. The distribution of the mean of conformance as a function of the position evaluation for some selected players. The
right figure is a zoom of the left one.

As they did not have a large number of games available they only computed this indicator once for each
player, aggregating all the games they had for him. However a player’s strength changes depending
on the tournaments and through the years. So what they computed was not really an indicator of the
capacity of a player to find “the right move” (quotes intended), but rather an indicator of his capacity
to find the right move during some very specific event(s) in his career. Here, the G&B indicator is
computed as described above for the raw conformance indicator, in order to be able to determine if
“cutting out” some moves as advocated by Guid and Bratko is indeed beneficial.

3.2.3. Ponderated conformance

As seen above, Guid and Bratko are performing a “hard cut” at [−200; 200]. We can see in Fig. 2 the
distribution of the mean of the conformance as a function of the evaluation of the position10. In this
analysis, we are only interested in the moves which have a conformance different from zero, so the
latter have been excluded from the statistics. Moreover, moves have been aggregated in order to have
statistically significant classes (that is the reason why there are much more points close to 0, one point
represents one class).

The curves of all players are extremely similar, and this is all the most surprising if we consider the
“All Players” curve which represent all the players included in the study, i.e., the World Champions
and their opponents11. Of course most of the players of this study are world class players, as World
Champions usually do not play against club players, and the same plot would certainly be different
with less strong players. The slope is not the same if y > 0 or if y < 0. Players are making bigger
mistakes (that might be seen as “desperate maneuvers”) when they lose, than when they win. The
relationship is not exactly a linear one: when we are close to 0 the positive slope is around 0.2, while it
is 0.25 on the whole interval. The difference is even bigger for the negative slope, with a slope of -0.5
close to 0 and of –0.6 on the whole interval. However, the average of conformance for a position with
a valuation of y can be approximated by avg(c(y)) = ay + b, with b = 0.18, and a = 0.26 for y > 0
and b = 0.17 and a = −0.60 for y < 0 (the values are computed for the “All Players” curves).

In order to smooth the cut, a ponderated conformance indicator is defined for each move using the
following formula: if vp is the evaluation of the move played and vb

12 is the evaluation of the best

10We only represent here the curves for some selected players for the sake of readability, but I have computed and examined
all of them, and they are all similar.

11We must however remember that we only plot here the distribution of the mean of the conformance when it is different
from 0, we do not compare the number of times a player makes a “mistake”.

12vb is always greater than vp by construction.
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move then δ = vb − vp is the conformance of the move, and the ponderated conformance δ′ of the
move played is given by:

vb ≥ 0 : δ/(1 + vb/k1)

0 > vb : δ/(1 + vb/k2)

The idea is that, while small mistakes made when the evaluation is already very high (or very low)
should count for less, they should not be completely discarded. The values of k1 and k2 can be chosen
using the results of the statistical analysis above. If we consider that we map the conformance δ to a
new conformance δ′(vb) = δ(vb)

1+vb/k1
then the average value of δ′(vb) is avg(δ(vb))

1+vb/k1
. But avg(δ(vb)) is also

equal to avb + b. Thus avg(δ′(vb)) = a+bvb

1+vb/k1
= a

1+ b
a
vb

1+vb/k1
. This is equal to a (and is independent of vb)

for k1 = a
b
. Thus we are going to set k1 = 0.26/0.18 = 1.44 and k2 = −0.60/0.17 = −3.53.

It is important to stress again why we probably need to ponder δ. The accumulated conformance
indicator method (as well as the distribution of gain method described in the next section) take as
an hypothesis that an error of δ has the same influence on the game whatever the evaluation of the
position is, and they “aggregate” all these errors in the same class. This is the debatable point: making
a small mistake in an already won position seems less decisive than making the same mistake in an
equal position13. The Markovian interpretation presented in section 3.4 has been specifically designed
to avoid this pitfall.

In subsection 4.2.2, I experimentally compare and validate all these indicators by computing their
correlation with the outcome of games using Pearson’s ρ, and we will indeed see that the correlation
with the outcome of games is better when pondering δ.

3.3. Distribution of Gain

Ferreira (2012) defines the gain of a move in a way which is highly similar to the definition of
conformance. He computes the evaluation of the position at game turn k using a fixed depth search, then
at game turn k + 1, and he defines the gain14 as g(k) = vb(k + 1) − vb(k). If the position evaluation
made by the computer was perfect, the gain would be the exact opposite of the raw conformance
described above, because the evaluation at game turn k + 1 should exactly be the evaluation of the move
played at position k, and thus g(k) = vb(k + 1) − vb(k) = vp(k) − vb(k) = −δ(k). However, mainly
because of the monotonicity of the evaluation function discussed above, this is not the case; searching
“one move” deeper (because one move has been made) can often increase the value of the evaluation,
and thus, while δ is always positive, g(k) should be negative but is not always. Ferreira’s gain method is
less “computational intensive”, as it just requires to compute one evaluation (the position evaluation)
by game turn, instead of computing two (the evaluation of the best move and the evaluation of the move
played). However, as discussed above; evaluating two moves instead of one does not multiply the search
time by two, and thus it is better in my opinion to define the gain exactly as δ (disregarding the sign).

Ferreira does not discuss either the problem of “scaling” (or pondering) the gain according to the
position evaluation (he only uses “Raw” δ), while it is exactly the same problem as discussed above
regarding conformance.

13This is partly again a consequence of the lack of direct mapping of the value of the evaluation function in chess to the
probability of winning a game.

14Of course, the evaluation of position P is always equal to the evaluation of the best move in position P .
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Ferreira (2012) interprets conformance as a probability distribution function RP (δ) which represents
the probability for player P to make at each turn a move with conformance δ. This leads to a different
definition of the expected value of the result of a game between two players. As player one (p1) and
player 2 (p2) have different distribution functions Rp1 and Rp2, the probability distribution of the
difference between two random variables Rp1 and Rp2 is the convolution of their distribution Rp1

and Rp2:

Rp1−p2(δ) = (Rp2 ∗ Rp1)(δ) =
∑

m

Rp2(δ)Rp1(δ + m)

Here Rp2−p1 = 1 − Rp1−p2 as it is a probability distribution. Then Ferreira defines the expected
gain for p1 in a game between p1 and p2 as the scalar product of the distribution vector with
e = (0, · · · , 0, 0.5, 1, · · · , 1), as he interprets Rp1−p2(0) as a draw, Rp1−p2(δ) as a win if δ > 0 and as
a defeat if δ < 0. Then:

s(p1, p2) = 0 ×
∑

δ<0

Rp1−p2(δ) + 0.5 × Rp1−p2(0) + 1 ×
∑

δ>0

Rp1−p2(δ)

Assuming that the contribution of each element of Rp1−p2(δ) is the same for all δ < 0 (i.e., 0) and all
δ > 0 (i.e., 1) is not obvious. Using a vector with values starting at 0.0, with a middle value of 0.5
and ending at 1.0, with intermediate values continuously rising feels more intuitive: the contribution
of Rp1−p2(0.01) to the expected result “feels” different from the contribution Rp1−p2(10.00). We will
discuss this problem again in subsection 4.3 when validating experimentally the method.

3.4. A chess game as a Markovian process

The indicators described in sections 3.2 and 3.3 are suffering from the problem described at the end of
subsection 3.2.3. They basically rely on the idea that an error of δ in a position P has the same influence
on the game whatever the evaluation v(P) of the position is, and they “aggregate” all of them in the same
class. Pondering δ is a way to bend the problem, but the problem is intrinsic to both methods, and bending
it is not solving it. Here, I am presenting a method which does not rely on this hypothesis.

If the computer program is performing like an “oracle” always giving the true evaluation of the position
and the best possible move, then the database gives a way to interpret chess games for a given player
as a Markovian process.

For each position, the computer program is giving us the true evaluation of the position. This evaluation
is assumed to remain constant if the best available move is played, while it can only decrease if the
player makes a sub-optimal move. The transition matrix, which is triangular15, gives for each value of
the evaluation function the probability of the value of the evaluation function in the next step.

Table 2 presents this matrix computed with all the games played by Robert James Fischer in 1971. The
rows are the value of the evaluation function at state t, and the columns are the value of the evaluation
function at state t + 1. Each element in the table is the probability to transition from one state to the
other. The sum of all elements in a line is of course equal to 1, and this table defines a right stochastic
matrix.

For example, regarding state –0.6 (the evaluation function is between –0.4 and –0.8), the probability
to remain in state –0.6 (the evaluation function remains between –0.4 and –0.8) is 92%, the probability

15As the computer program is assumed to be a perfect oracle giving the “true” evaluation, the matrix is triangular by
construction under this assumption.
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Table 2

Transition state matrix for Robert Fischer in 1971 with g = 0.4,
binf = −2.0 and bsup = 2.0

to go to state –1.0 (the evaluation function drops between –0.8 and –1.2) is 6%, the probability to go
to state –1.4 (the evaluation function drops between –0.2 and –1.6) is 1% and the probability to go to
state –1.8 (the evaluation function drops below –1.6) is also 1%.

State –1.8 is an attractor and can never be left, as the player cannot enhance his position if his opponent
is never making a mistake. Diagonal values are the highest, as good players are usually not making
mistakes and maintain the value of their evaluation function.

Building this kind of table depends on three parameters, g which is the discretization grain, and binf and
bsup which are the bounds outside which a game is supposed to be lost (below binf ) or won (above bsup).

In the previous table, the evaluation function is considered from the point of view of the player who is
going to play, either White and Black. If the evaluation function is considered only from White’s point
of view, then two tables are built: one for White and one for Black. White’s table is the table above;
Black’s table is easily deduced from White’s table using the following formula16, where n is the size
of the matrix and the array indexes start at 0:

MBlack(i, j) = MWhite(n − 1 − i, n − 1 − j)

White’s matrix is always triangular inferior, and Black’s matrix is triangular superior. Table 3 is the
transition matrix for Boris Spassky computed from Black’s point of view using all his games in 1971.

Now if Fw is Fischer’s (White) matrix and Sb Spassky’s (Black) matrix the product:

MFwSb
= FwSb

is the matrix holding the transition probabilities after a sequence of one white move and one black move
(probability vectors v are row vectors and will be multiplied from the left, such as invMFw,Sb

= (vFw)Sb,
using the convention of right stochastic matrices). M is also a stochastic matrix, as it is the product of
two stochastic matrices. As such, there exists a vector π which is the limit of:

πn+1 = πnM

16Deducing Black’s matrix from White’s matrix by symmetry is a perfectly valid idea as long as we think that players
play in the same way when they are playing as Black or as White. However, this hypothesis seems to be slightly incorrect
as seen in subsection 3.2.3. So it might be beneficial to compute instead two different matrices, one with moves played as
Black and one with moves played as White.
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Table 3

Black transition state matrix for Boris Spassky in 1971 with g = 0.4,
binf = −2.0 and bsup = 2.0

One of the properties of the limit π is that it is independent of π0 as long as π0 is a stochastic vector
(the sum of all elements of π0 is 1), and that it is itself a stochastic vector, called the stationary state of
the Markov chain. Instead of calculating the limit, this vector can be easily computed by finding the
only stochastic eigenvector associated to eigenvalue 1.

Using 1971 data from Fischer and Spassky, the stationary vector is:

π = (0.07, 0.01, 0.01, 0.04, 0.14, 0.18, 0.07, 0.04, 0.04, 0.40)

The (very) rough interpretation is that the outcome of a match between them should have been 40%
wins for Fischer, 7% wins for Spassky and 53% of games drawn17. The 1972 World Championship,
if Fischer’s forfeit in game 2 is removed, ended in +7=11–2, or 35% wins for Fischer, 10% wins for
Spassky and 55% of games drawn18.

4. FITTING, VALIDATING, COMPARING

In section 4.1 I am quickly dealing with the complexity indicators presented in the literature and in
websites.

These indicators, while interesting, are not as “rich” as the cumulative conformance (4.2), the covari-
ance (4.3) and the Markovian (4.4) indicators; the methodology for these three indicators will mainly
be the same: I first check on individual games that the indicator has a good correlation with the outcome
of the game, and we try to enhance this correlation by fitting the model to the data. Then I evaluate
the indicator not on one game, but on a set of games (here World Championships) to see if “averag-
ing” it on a more macroscopic scale gives coherent results. Then, I compare it to the ELO ranking
system, regarding its ability to predict the outcome of games and to rank players. Last I evaluate how
they can be used to rank players (which is simple for the accumulated conformance indicator, but not

17The stationary vector is the limit when time → +∞. So the non-extremal values of the eigenvector are the probabilities
for the game to end in a draw with unbalanced material. Only games with a stationary evaluation at an extremal position
(greater than 1.8 or less than -1.8) can be won (or lost). We are making here the approximation that they are won (or lost),
i.e., we suppose that a game whose evaluation ends higher than +1.8 will be won. Technically, the expected value is computed
by making the scalar product of the stationary vector π with the vector (0, 0.5, 0.5 · · · 0.5, 0.5, 1.0).

18Of course, a single example does not give any statistical significance to this indicator. See subsection 4.4.3.
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so simple for the other two). To do this, I am going to use the World Championships for which the
complete data for the two players are available19, and I am going to compute the three indicators for
the year just before the championship, using a “forgetting factor” as described in section 3.2. I will
then use these indicators to compute the predicted result of the championship, and I will compare it
to the actual result and to the predicted outcome compute with the ELO model (when ELO rankings
exist).

A quick reminder might be useful here; the ELO ranking system was designed, from the start, to be able
to estimate the probability of the outcome of a game between two players, and in this system estimating
the outcome and ranking players is intimately linked as they both depend on each other: points are
added (respectively subtracted) when you defeat a player who has a better ranking (respectively when
you lose against a player with a lesser ranking), and the rankings are used to estimate the expected
outcome of a game. There is no such relationship for intrinsic indicators. One advantage of the intrinsic
predictors is that, as soon as they have been computed, they enable to compare any players even if
they belong to completely different periods. They are only based on the conformance of moves (the
“quality of play” is intrinsic to a player) and are thus completely independent of the possible “drifting
through years” problem of the ELO indicator.

4.1. Complexity indicators

I present in Table 4 the correlations between the magnitude of the error made by the player with the
following indicators.

D/t: Depth vs Time: describes complexity as a function of the depth reached regarding time use to
reach it.

Stab: Stability: depends on the mean delta in the evaluation function between two consecutive depths
in the search (see section 3.1).

JumpV: Jump Value: depends on the largest difference in the evaluation function between two
successive depths in the search.

JumpD: Jump Depth: depends on the depth where the difference between two successive evaluations
are the largest.

JD x JV: Jump Depth times Jump Value: product of the previous two indicators. (see section 3.1).

The correlations were computed using Pearson’s ρ20.

These indicators were computed for all the moves played by each World Champion, and were also
aggregated for all moves played by all World Chess Champions (the Champs line). They were also
computed for all the moves of all the games present in the database (the All line). The Others line is
the complement of the All line and the Champs line (i.e., all moves present in the database played by
players who were not World Champions).

19This means that both of them have been at least once World Champions, as we only have all data for players who have
been World Champion. To be able to predict scores for all World Championships, all the games of all players who played
once in a World Championship would have to be added to the database. This could be the subject of a later study. Moreover,
some players do not have active matrices for the year before their World Championship, so these championships were not
taken into account either.

20Pearson’s ρ is the covariance of the two variables divided by the product of their standard deviations. The possible
values range from –1 to +1. –1 is a perfect negative linear correlation, +1 a perfect positive linear correlation and 0 represents
no linear correlation at all.
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Table 4

Correlations of complexity indicators: Depth vs time,
Stability, Jump Value, Jump Depth and a composite

of Jump Value and Jump Depth

The first thing to notice is the fact that the D/t indicator is almost not significant. The correlation is
extremely low, even if it is always positive, for all players. Apparently, the branching factor of the
tree does not seem to be a very good indicator of what some authors call “the complexity” of the
position. However, there is no indicator which is extremely significant. The best one seems to be
the composite JumpxDepth indicator, which is equal to 0.312 for World Champions, while it is only
0.101 for the other players. The most plausible interpretation is that World Champions usually play the
“right moves” when the positions are stable, and make mostly mistakes in unstable positions, while
“ordinary” players are more prone to make mistakes in all kind of positions. The only players having an
indicator over 0.4 are Botvinnik and Capablanca, which were famous for their positional and consistent
play.

A lesson to learn from these indicators is probably that on the one hand, it would be interesting to
collect and save more data during the search, such as the value of the evaluation for all depths of the
search (and not only the mean and the max), to try to compute other indicators, as the ones computed
here, while interesting, do not seem to carry an extremely high significance. On the other hand, it is
also possible that there is no such thing as a simple “complexity indicator” of a position that could
be correlated with the errors made by the players, and that the complexity of the position depends on
many other, less evident, factors.

4.2. Cumulative conformance

The cumulative conformance section is partitioned into four subsections: correlation with the outcome
of a game (4.2.1), conformance of play in World Championships (4.2.2), conformance of play during
a whole career (4.2.3) and predicting the results of World Championships matches (4.2.4).
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4.2.1. Correlation between cumulative conformance and the outcome of one game

In section 3.2 I have defined different possible indicators regarding the conformance of moves. Below,
I am going to correlate these indicators to the outcome of games using again Pearson’s ρ.

First, it is interesting to have an idea of the distribution of the conformance for all the positions evaluated
during this study. We only keep positions after game turn 10 and positions where the move to play
is not forced. This leaves around 1,600,000 positions (respectively 1,350,000 for Guid and Bratko
who eliminate positions with an evaluation lower than –2.00 or higher than 2.00). The conformance is
equal to 0 for 980,000 moves (respectively 842,000), which is a large majority. In Fig. 3 the number
of positions for each conformance, up to 1.99, is plotted (conformance is measured in centipawns, so
it starts at 0.01 and goes up to 1.99 by 0.01 steps). The class after 1.99, which is not plotted, contains
all positions with a conformance greater than 2.00; there are around 53000 such positions.

For each game and each type of conformance, three different kinds of conformance (as defined in
section 3.2) are computed. We quickly summarize them below.

� Raw conformance δ = vb − vp is just the raw difference between the evaluation vb of the best
move and the evaluation vp of the move made by the player.

� Guid and Bratko conformance is defined in a similar way, but the positions with an evaluation
higher than +2 or lower than –2 are not considered.

� Ponderated conformance is defined by δ′ = δ/(1 + vb/k1) for vb > 0 and δ′ = δ/(1 + vb/k2) for
vb < 0, where k1 and k2 are suitable constants. In subsection 3.2.3, after a statistical analysis of
the distribution of errors, k1 = 1.44 and k2 = −3.53 are chosen.

In the rest of this section, each time the word “conformance” is used, it can represent any of these three
meanings, except when explicitly stated otherwise. We are interested in the cumulative conformance
for White (respectively Black) during one game defined by pw(x) (respectively pb(x)):

pw(x) = nb moves white(δ ≤ x)

total moves white

pb(x) = nb moves black(δ ≤ x)

total moves black
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Fig. 3. Distribution of conformance, excluding first and last class.
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Fig. 4. Correlation of accumulated conformance indicators for raw conformance, G&B conformance and different values of
k1 and k2 for ponderated conformance.

total moves white (respectively Black) is the total number of white moves in the game which are taken
into account: this value is simply the number of white moves in this game minus the opening moves
and minus the moves which are forced (there is only one move possible)21. nb moves white(δ ≤ x)
(respectively Black) is the number of moves with a conformance less than or equal to x, taken only in
the moves taken into account as defined above.

Then p(x) = pw(x) − pb(x) is the difference between White’s and Black’s conformance for a given
game. There are around 26,000 games, and thus 26,000 p(x) for each x. Now, we wish to know
for which value of x p(x) has the best correlation with the outcome of the game. Thus, for each x

we compute Pearson’s ρ by correlating for each x the 26,000 p(x) with the outcome of the 26,000
corresponding games (+1 if White wins, 0 for a draw and -1 if White loses). An optimization was
quickly performed using a Nelder and Mead (1965) simplex algorithm22 to find the best correlation
possible, and the optimal values found are k1 = 0.75 and k2 = −3.3.

Figure 4 represents the correlations of the accumulated conformance indicators starting at conformance
0. The best correlation is found for d ≤ 0.3 for the raw and ponderated conformances, and for d ≤ 0.2
for the G&B conformance. It is interesting to notice that the choices made for k1 = 1.44 and k2 =
−3.53 in subsection 3.2.3 work remarkably well when compared to the optimal curve k1 = 0.75 and
k2 = −3.30. The decision to use two different slopes depending on the sign of the evaluation function
is also validated when we compare the previous curves to the curves defined by k1 = −k2 = 1.25 and
k1 = −k2 = 3.00.

It is important to try to understand why there is a “bump” in the curve representing correlation (i.e., why
the optimal correlation is reached around δ ≤ 0.30 and not somewhere else). My interpretation is the
following: having a better conformance for “perfect” (d = 0) moves is of course extremely important
because the “perfect” moves class is by far the largest and overshadows the others. However, having
a better conformance here does not tell us anything about the distribution of the other moves, and
even if there are less moves in the other classes, there are still some of them, especially in the class
closest to 0. Thus “adding” those classes to the conformance indicator gives more information about

21For Guid and Bratko conformance, all positions with an evaluation over 2.0 or below -2.0 are also removed.
22We are making the assumption that the function is locally convex around the optimum, which is quite reasonable here.
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the distribution of the moves and “captures” important information. However, after a point, adding new
classes which contain a small number of moves adds less meaningful information, and the correlation
decreases.

There is still an other point to discuss: how is the outcome of the game correlated to the mistakes made,
in other words what happens when we correlate the outcome of the game to p′(x) defined by

p′
w(x) = nb moves white(δ ≥ x)

total moves white

p′
b(x) = nb moves black(δ ≥ x)

total moves black

p′(x) = p′
w(x) − p′

b(x)

First, let us notice that nb moves white(δ ≥ x) + nb moves white(δ ≤ x) = total moves white. So:

p′
w(x) = nb moves white(δ ≥ x)

total moves white

= total moves white − nb moves white(δ ≤ x)

total moves white

= 1 − nb moves white(δ ≤ x)

total moves white

= 1 − pw(x)

Thus Pearson’s ρ for p′(x) is23 −ρ(p(x)). Thus the curve representing the correlation of p′(x) will be
exactly the opposite of the one of p(x), with the same extrema at the same positions.

This result might seem paradoxical. Intuitively, we might think that making big errors should be quite
strongly correlated to the result of the game. This is of course true: in Fig. 13 in subsection 4.4.1 we
will see that the result of the game is very strongly correlated to the highest evaluation reached in the
game. But here the accumulated conformance indicator(s) is not measuring this kind of correlation.
Accumulated conformance is in fact measuring the combination of two things at the same time: on the
one hand, it has to take into account how often a player is losing a game when he24 is making a (big)
mistake, but it also depends on the probability of making big mistakes. A player who loses always
when making a 50cp mistake, but only makes such mistakes one game out of one hundred will lose
less often than a player who never loses games when he makes a 50cp error, and loses them only when
he makes a 100cp error, but makes such mistakes one game out of fifty.

It is important to remember that I have only be maximizing the correlation of the difference of the
accumulated conformance indicator with the result of the game, which is not the same thing as “fitting”
the value of the difference of the conformance between two players with the result of the game. As
Pearson’s ρ is invariant under linear scaling, it is possible using a classical least square method to find
α and β such as r = βd + α is the best approximation of the actual result of the game (here d stands
for the difference of the conformance indicators of the two players). This will of course not change
Pearson’s ρ, so this computation can be done independently of the optimization of k1 and k2, and we

23Pearson’s ρ is semi-invariant under affine linear transformations, i.e., ρ(ax + b) = sgn(a)ρ(x).
24For brevity, we use “he” and “him” whenever “he or she” and “him or her” are meant.
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Fig. 5. α (left) and β (right) values as a function of the difference of the accumulated conformance indicators of the two
players.

can compute α and β for all possible values of x such as δ ≤ x. We expect25 α to be rather close to 0,
while β should increase with x.

In Fig. 5 we have plotted the values of β and α as a function of x. Let us remember that the optimal
value of x is 0.3 for ponderated and raw conformance, and 0.2 for Guid and Bratko conformance;
the optimal values of (α, β) are: Raw (α = 4.3 10−2, β = 4.00), Guid and Bratko (α = 6.7 10−2, β =
3.37), and Ponderated (α = −7.0 10−3, β = 3.64). The values of α show that there is a small positive
bias regarding raw conformance (and Guid and Bratko conformance). The correlation has always been
computed by subtracting Black’s value from White’s value, so this shows that, for identical raw values
of the conformance indicator, White wins more often than Black26. A quick statistical analysis of the
26,000 games shows that the average score of a game is 0.12 (White is winning 56% of the points).
It is common knowledge that, in chess, White wins slightly more often than Black, and the usual
explanation is that White’s positions are usually “better” as White plays first. This explanation is of
course correct27, but there might be another factor.

When plotting the difference of the raw accumulated conformance indicator for White and for Black, it
is always positive (see left part of Fig. 6). White is playing 61.1% perfect moves (x = 0), while Black
is only playing 60.2% perfect moves. The difference even rises for larger x and is maximal around
x = 0.25 where it reaches almost 2%. So, Black is in a way, making more mistakes than White. Why
it is so is more difficult to interpret. We have already seen (subsection 3.2.3) that players are making
more serious mistakes when they are in unfavorable positions; as Black is usually starting with a slight
disadvantage, the same kind of psychological bias might encourage them to take more risks, and thus
to make more mistakes. On the right side of Fig. 6, we see that the distributions of White’s and Black’s
conformance are different. White is performing better at 0 and slightly above, while Black is better
below 0. This figure also confirms that while the level of play remains consistent when the evaluation
of the position is positive, it is degrading fast for negative ones. We also understand why ponderated
conformance corrects the bias: it is “stretching” differently the positive and the negative side of the
curve because it is using two different constants to “bend” the distributions. The fact that the difference

25The output of games used for computing the correlation was -1/0/+1, not 0/0.5/1, which does not change Pearson’s ρ
either, as it is also invariant under linear scaling of the value being correlated

26On the opposite, the ponderated conformance corrects the bias almost perfectly (α 	 0 for x = 0.3), which is explained
later.

27Plotting the position evaluations reached by White and Black shows that they follow an almost normal distribution, but
White’s distribution is centered slightly over 0, while Black’s distribution is centered below 0, and plotting them as a function
of the move number shows that Black usually starts in an inferior position.
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(left), and percentage of moves with an accumulated raw conformance δ ≤ 0.3 as a function of the position evaluation (right).

between White and Black is maximal around x = 0.25 might be another reason why the accumulated
conformance indicator has the best correlation around this value.

In conclusion, the advantage of the accumulated conformance indicator is that it is a scalar, and it is
thus easy to consider it as a ranking. The player with the best indicator is just supposed to be the best
player. However, this discussion should remind us that cumulative conformance is not a beast which
is easily tamed, and it is much more difficult to interpret it than it might seem at first glance. A second
important thing to remember is that we have “fitted” the model to the data using only games played
by world class champions; it is extremely possible that results and parameters would be different for
club players, as the distribution of their moves is very different; thus some classes with high δ which
are marginal here could have a much higher importance.

4.2.2. Conformance of play in World Championships

In this subsection we are working on many games at once. The conformance is computed for all the
moves in all these games at the same time; we are using here World Championships games, in the
same way as the previous work by Guid and Bratko concentrated exclusively on these games.

The left part of Fig. 7 gives for each championship since 1886 (1) the actual result, (2) the expected result
using the accumulated conformance indicator and (3) the expected result using simply the percentage
of “perfect moves” (appropriate α and β as defined in the section above are used to scale properly the
indicator). The number of games, or the time controls were not identical for all these events, but they
were mainly similar. The results for the FIDE World Championships played in k.o. mode from 1998 to
2004 are not taken into account, as these time controls were criticized for lowering the quality of play.

The correlation of the actual result with the indicators is adequate, but visually it is not so clear that the
ponderated conformance is much better than the simple “perfect move” percentage. The ponderated
conformance is usually closer to the actual result, which is often overestimated by the “perfect move”
percentage. However, the ponderated conformance sometimes “misses” results, such as the result of
the last WCH (Carlsen-Anand 2013), which is grossly underestimated.

In the right part of Fig. 7, we plot the difference in conformance between the two opponents for four
World Championships28. This curve tells us why ponderated conformance at δ ≤ 0.3 is partly missing

28It is impossible to print in this article all the results available for all players and all World Championships. These results
will however be made freely available online, along with the full database.
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its target for the 2013 Championship. The difference between Carlsen and Anand is extremely high
for δ = 0 and then falls steeply, and is small around δ ≤ 0.3. A careful visual study of all the curves
for the 41 World Championship hints to a possible interpretation; it looks like the result depends first
on the difference of the indicator for δ = 0. However, if this difference becomes “small”, then the
result seems to be determined by the difference for higher values of δ. This remark has to be taken
with extreme caution and requires further investigation, but it is not impossible, as this indicator is an
aggregator, and its interpretation is complex.

In Fig. 8 we plot the performance of winners (left) and losers (right) during these four WCH. The
performance by José Raul Capablanca in 1921 is definitely remarkable29: 63% of his moves were
exactly those chosen by the computer (0cp), 81% were at a score less than 10cp of the move chosen,
90% at a score less than 20cp and 95% at a score less than 30cp. It took years to find other players able
to perform so well in a WCH. It is however interesting to notice that the “conformance” of players has
steadily raised. In 2013, Magnus Carlsen scored respectively 75% at 0cp, 86% at 10cp, 95% at 20cp
and 97% at 30cp. For all championships from 2000 to 2013, all winners scored better than Capablanca
at 0cp, and most of them scored better at 10cp, 20cp and 30cp. Kasparov lost the 2000 WCH while
his performance was his best ever in a WCH, Kramnik was simply better.

29It is however useful to remember that the 1921 match against Lasker lasted only 11 games: Lasker was not at the top of
his form and was completely outperformed by Capablanca; the difference is one of the largest computed.
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Table 5

Accumulated conformance predicted score (ACS
), Covariance predicted score (COVS

), Markovian predicted
scores (MS), actual scores (AS) and ELO predicted scores (ELOS) when available for World Championships

Championship ACS
COVS

MS AS ELOS

Euwe-Alekhine 1935 57% 60% 61% 52%
Alekhine-Euwe 1937 53% 51% 57% 62%
Smyslov-Botvinnik 1957 50% 49% 51% 56%
Botvinnik-Smyslov 1958 45% 48% 49% 54%
Botvinnik-Tal 1961 49% 51% 52% 59%
Petrosian-Botvinnik 1963 51% 58% 57% 57%
Petrosian(2660)-Spassky(2670) 1966 49% 65% 45% 52% 48%
Spassky(2690)-Petrosian(2650) 1969 48% 33% 54% 54% 56%
Fischer(2785)-Spassky(2660) 1972 54% 53% 63% 63% 67%
Kasparov(2710)-Karpov(2700) 1985 47% 46% 53% 54% 51%
Kasparov(2710)-Karpov(2700) 1986 50% 51% 51% 53% 51%
Kasparov(2720)-Karpov(2720) 1987 48% 48% 48% 50% 50%
Kasparov(2770)-Karpov(2710) 1990 53% 55% 54% 52% 59%
Kasparov(2820)-Anand(2720) 1995 51% 54% 50% 58% 64%
Kramnik(2730)-Kasparov(2810) 2000 51% 48% 59% 57% 39%
Anand(2800)-Kramnik(2785) 2008 50% 42% 52% 54% 52%
Carlsen(2840)-Anand(2780) 2013 54% 54% 60% 65% 58%

4.2.3. Whole career

Figures 16 and 17 display the conformance indicator for all World Champions for their whole career,
respectively for d = 0 (Fig. 16) and d ≤ 0.3 (Fig. 17). Players perform differently depending on the
bound set on move conformance. For example, Fischer has outstanding records for d = 0, while his
performances for d ≤ 0.3 are more ordinary30.

4.2.4. Predicting the results of World Championships

Below we compare the score predicted for World Championships by the accumulated conformance
predictor (ACS

) to (1) the actual score (AS) and to (2) the score predicted using ELO tables (ELOS).
This indicator can only be computed for the World Championships where both players were at least
once World Champion, because only World Champions have all their games evaluated. The available
results are presented in Table 5 in the ACS

column. Column AS contains the actual score of the WCH and
ELOS the predicted result of the championship according to the ELO ranking of both players when it
was available (column COVS

contains covariance predicted score and column MS Markovian predicted
scores, see subsections 4.3.3 and 4.4.3). The accumulated conformance predictor ACS

is computed
by taking the result of the games played by both players the year before the WCH and applying the
parameters giving the best correlation (δ = 0.3, α = −0.007, β = 3.64, k1 = 0.75, k2 = 3.3).

For the 11 World Championships for which the ELO prediction is available, the mean difference
between the actual score and the ELO predicted score is 5%. For the accumulated conformance
predictor, the mean difference between the actual score and the accumulated conformance predicted

30From a close examination of all the curves and all the results for all World Championships (not presented here) a possible
interpretation regarding the outcome of the game is that the difference for d = 0 is the most important regarding the outcome
of a match if this difference is large. However, when this difference is small, it looks like the difference for d ≤ 0.3 becomes
more important. If this interpretation is correct, then Robert Fischer certainly dominated chess in his own time.
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Table 6

Statistical results for the covariance indicator

score is 6% on all championships and of 5% on the 11 World Championships for which the ELO
predictor is available. So, the accumulated conformance predictor is giving on the whole good results,
on par with the ELO predictor. We will further discuss this predictor when we will compare the three
predictors.

4.3. Gain and distribution covariance

The gain and distribution covariance section is partitioned into three subsections: correlation with the
outcome of a game (4.3.1), conformance of play during a whole career (4.3.2), and predicting the
results of World Championship matches (4.3.3).

4.3.1. Correlation with the outcome of a game

In this subsection we are going to see how computing the expected result of a game by using Ferreira’s
distribution method (presented in section 3.3) fares. Thus, for each game, I compute the vectors RW (δ)
and RB(δ) of the distribution of δ for each player for the given game, and the convolution of the two
distributions, which gives us the distribution of RW−B. Then I compute the scalar product of this vector
with the vector describing the expected gain, which is in Ferreira’s paper e = (0, · · · , 0, 0.5, 1, · · · , 1).
The result should be the expected outcome of the given game.

The first goal here is thus to evaluate the correlation of this covariance indicator with the outcome of the
games, as we did in subsection 4.2.1 for the accumulated conformance indicator. It can be done for raw
δ (that is what Ferreira is doing in its paper), but it can also be extended to G&B conformance and to
ponderated “bi-linear” conformance. Results are available in Table 6, where (k1 = 1.44, k2 = −3.53)
are the values found in subsection 3.2.3 through linear regression and (k1 = 0.37, k2 = −3.70) are the
optimal values found when optimizing the values of k1 and k2 with, here again, a Nelder-Mead simplex
to get the best possible correlation.

The table also holds the mean (x̄) of the estimated result (values are in [−1, 1]), its standard deviation
(σx), and the values of β and α which have been computed in exactly the same way as in the previous
section. The mean of the actual game outcomes is 0.12 (56% for White) and the standard deviation is
0.75.

We can deduce a plethora of things from these results. First, while the mean is approximately correct
(it is almost 0, with a slight bias for White, as in the previous section), the standard deviation is much
too small. This was not much of a concern regarding the accumulated conformance indicator in the
previous section, which did not claim to represent the actual outcome of the game, but it is here a hint
that something is not correct, as the interpretation of the scalar product of the covariance vector with
the gain vector e was supposed to be an estimation of the outcome of the games, and not to be only
correlated with it. Thus, we have to apply a linear scaling function, with coefficients β and α which
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are quite similar to the ones found for the accumulated conformance indicator in the previous section.
Second, the best optimal correlation found (0.825 for ponderated conformance) is less than the best
correlation found in section 4.2 for the optimal accumulated conformance indicator. We should have
expected the opposite: the accumulated conformance indicator is a scalar value, and thus captures less
information than this indicator, which “represents” a player’s style by a vector instead of a scalar.

The first thing to do is to seriously reconsider the values of vector e. As a quick experiment, we set
coefficients in e according to the function:

e(δ) = 0.5 (1 + th(aδ))

Here, a is a suitable constant to determine. Using again a Nelder-Mead optimization but on three
parameters (k1, k2 and a), we find the optimal values k1 = 1.20, k2 = −3.41 and a = 1.16 with
an optimal correlation of 0.875, which is this time better than the one found for the best accumu-
lated conformance indicator. In Fig. 9, we have the curve describing the shape of the coefficients of
vector e.

In order to validate these coefficients, a second optimization was performed, on 21 variables, two for
k1 and k2 and 19 for fitting 19 points of a spline. Coefficients were set to 0.5 at 0 and to 1.0 at +4,
and the 19 variables gave the value of the coefficient at (0.2, 0.4, · · · , 3.6, 3.8). The other values were
interpolated. The shape of the curve is quite different, however the correlation is only slightly better
(0.879), and the mean, the standard deviation, α and β are similar (β is even higher). This means that,
on the one hand, the correlation is not very sensitive to the parameters, and on the other hand that this
indicator also needs to be “stretched” in order to predict the scores, just like the conformance indicator.

This is not really surprising. I have here mainly followed Ferreira’s presentation and interpretation
found in Ferreira (2012). In the paper, Ferreira links directly the distribution Rp1−p2 to the expected
score of the game by the formula presented also here in section 3.3. This is however a little far-fetched.
Rp1−p2(x) is the probability that the score evolves by x after a sequence of two moves: one white move
followed by one black move. For example, if the score is S, then the probability that it remains S after
one white move followed by one black move is just Rp1−p2(0), so Rp1−p2 is highly centered around
0 (after a pair of moves, the score does not change much). The distribution describing the evolution
of the score after a sequence of 4 moves is the convolution of Rp1−p2 with itself, and the distribution
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describing the evolution of the score after 2n moves is Rn
p1−p2 (the convolution of R by itself n

times).

For the sake of simplicity, we approximate in the next few lines R by a normal distribution of param-
eters μ as mean and σ as standard deviation (in Fig. 10 we have an example of the distribution of
Rw−b; it is not normal, however when n becomes larger, it takes the shape of a normal distribution,
thanks to the central theorem limit). Then Rn is a normal distribution of parameters μn = nμ and
σn = √

nσ: the distribution “shifts” to the right if μ is positive (p1 is the strongest player), and to the
left if μ is negative (p2 is the strongest player), and it also “flattens”, i.e., it is much less centered
around μn. If we consider that a victory is having a score S > b after n moves, then its probability is∫ +∞
b Rn = (1 − erf( b−nμ√

2nσ
))/2. Respectively, a draw would be

∫ +b
−b Rn = (erf( b−nμ√

2nσ
) + erf( b+nμ√

2nσ
))/2 and

a defeat
∫ −b
−∞ Rn = (1 − erf( b+nμ√

2nσ
))/2.

If we compute the limit when n → +∞ we see that all the density of the distribution goes to either side
depending on the sign of μ: if player p1 is the strongest (respectively weakest) μ is positive (respec-
tively negative) and, at infinity, all games end in wins (respectively defeats) for White. Intuitively, the
fundamental flaw in the hypothesis is that a chess game is finite and thus ends after the score reaches
some given limit on either side, something we are not taking into account here, thus taking simply the
limit is not correct either.

Instead of fitting the model to the data by using parameters k1, k2 and the elements of the gain vector,
it is possible to compute the correlation of the estimated gain (here31 0.5

∫ +b
−b Rn0 + 1

∫ +∞
b Rn0 ) with

the actual result of the game as a function of n0 and b. The results are displayed in Fig. 11, for
n0 = 0, · · · , 95 and b = 0.0, 0.2, · · · 7.6, 7.8. They are excellent, with a maximal value for ρ of 95%,
much higher than any other value we ever had.

There are many tuples (n0, b) for which the correlation is around 95%.

31The value of the integrals can easily be computed from the actual discrete distributions by performing n0 discrete
convolutions.
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In the left part of Fig. 12 we display the optimal value of b as a function of n0. As predicted by the
normal distribution approximation, b grows almost linearly with n0. The correlation is rising fast and
94% is reached for n0 = 29 and b = 2.2.

4.3.2. Whole career

The gain covariance representation is only able to provide results for head to head confrontations. It
is not a scalar value and thus cannot be plot like the aggregated conformance indicator. However, as
all results are available for all World Champions for all their active years, it is now possible to predict
the outcome of a match between any World Champion from any active year with any other Champion
taken in any active year; it is even possible to predict the result of Fischer 1970 against Fischer 1971.

A first experiment was done using the most basic settings, i.e., setting n0 to 0 (which is exactly Ferreira’s
interpretation). This “Battle Royale” which consisted in predicting the result of around 300,000 possible
match combinations, was performed in a few minutes by the computer. The result is a 14 megabytes
database which gives the predicted outcome of the games between any two World Champions for any
year.

Now, for each player, the “best year” was found by searching for the year where the player had the
largest number of victories against all other players and all other years. The results were as follows:
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Table 7

Head to head match result predictions between different World Champions in their best year using the Covariance indicator
with n0 = 0

Ca An Kr Ka To Fi Kh Po Bo Ka Ka Ca La Pe Ta Sm Eu Al Sp St

Carlsen 50 50 51 51 52 52 52 52 53 53 53 53 54 54 54 54 54 54 55
Anand 50 50 50 51 51 51 52 52 52 52 53 53 53 53 53 53 54 54 55
Kramnik 50 50 50 51 51 51 52 52 52 52 53 53 53 53 53 53 53 54 55
Kasparov 49 50 50 50 51 51 51 52 52 52 52 53 53 53 53 53 53 53 55
Topalov 49 49 49 50 50 51 51 51 51 52 52 52 52 52 53 53 53 53 54
Fischer 48 49 49 49 50 50 50 51 51 51 51 52 52 52 52 52 52 53 54
Khalifman 48 49 49 49 49 50 50 51 51 51 51 52 52 52 52 52 52 53 54
Ponomariov 48 48 48 49 49 50 50 50 50 51 51 51 51 51 52 52 52 52 53
Botvinnik 48 48 48 48 49 49 49 50 50 50 51 51 51 51 51 51 52 52 53
Kasimdzhanov 47 48 48 48 49 49 49 50 50 50 51 51 51 51 51 51 51 52 53
Karpov 47 48 48 48 48 49 49 49 50 50 50 51 51 51 51 51 51 52 53
Capablanca 47 47 47 48 48 49 49 49 49 49 50 50 50 51 51 51 51 51 53
Lasker 47 47 47 47 48 48 48 49 49 49 49 50 50 50 50 50 51 51 52
Petrosian 46 47 47 47 48 48 48 49 49 49 49 50 50 50 50 50 51 51 52
Tal 46 47 47 47 48 48 48 49 49 49 49 49 50 50 50 50 50 51 52
Smyslov 46 47 47 47 47 48 48 48 49 49 49 49 50 50 50 50 50 51 52
Euwe 46 47 47 47 47 48 48 48 49 49 49 49 50 50 50 50 50 51 52
Alekhine 46 46 47 47 47 48 48 48 48 49 49 49 49 49 50 50 50 50 52
Spassky 46 46 46 47 47 47 47 48 48 48 48 49 49 49 49 49 49 50 51
Steinitz 45 45 45 45 46 46 46 47 47 47 47 47 48 48 48 48 48 48 49

Alekhine (1921), Anand (2010), Botvinnik (1945), Capablanca (1918), Carlsen (2013), Euwe (1934),
Fischer (1972), Karpov (1988), Kasimdzhanov (2013), Kasparov (2000), Khalifman (2013), Kramnik
(2007), Lasker (1907), Petrosian (1962), Ponomariov (2013), Smyslov (1964), Spassky (1965), Steinitz
(1872), Tal (1981), Topalov (2006).

Some results might seem surprising. For example, it is usually supposed that Botvinnik had been
playing at his peak when he was World Champion (from 1948 to 1963). However, when looking
carefully, 1945 was an exceptional year for him: he won the USSR Championship with an amazing 15
out of 17 possible points, at a time when there were almost no international competitions, and where
the USSR Championship was probably the strongest possible competition. So it is quite possible that
1945 is indeed the year he played at his best. A second quite surprising results is Tal’s best years. But
there again Tal reached his peak ELO rating in 1980, far from the years he was World Champion.

Then we extracted from the database the results of the head to head predictions for these players taken
this particular year. The results are displayed in Table 7. The results are not exactly symmetric as
playing as White and playing as Black give different results as explained above.

A second similar experiment was done, with different parameters. Here n0 = 32 and b = 2.4, which
is supposed to yield “better” results. These results are somewhat different from the previous ones.
The best years are: Alekhine (1931), Anand (2011), Botvinnik (1945), Capablanca (1924), Carlsen
(2013), Euwe (1934), Fischer (1971), Karpov (1977), Kasimdzhanov (2013), Kasparov (2001), Khal-
ifman (2013), Kramnik (2000), Lasker (1907), Petrosian (1962), Ponomariov (2013), Smyslov (1964),
Spassky (1970), Steinitz (1873), Tal (1967), Topalov (2005). The results are presented in Table 8. We
see that Fischer fell to almost the end of the ranking, while Capablanca almost reached the top.
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Table 8

Head to head match result predictions between different World Champions in their best year using the Covariance indicator
with n0 = 32 and b = 2.4

Ka Kr Ca Ca Ka An Pe Kh Ka Sm La Bo Eu To Ta Po Al Sp Fi St

Kasparov 51 51 52 52 53 53 53 53 54 55 55 57 58 60 60 61 64 66 69
Kramnik 49 50 51 51 52 52 53 53 53 54 54 57 57 59 60 60 64 65 68
Carlsen 49 50 51 51 52 52 53 53 53 54 54 57 57 60 60 60 64 65 69
Capablanca 48 49 49 50 51 51 51 52 52 53 53 55 56 58 58 58 62 63 66
Karpov 48 49 49 50 51 51 51 51 52 52 53 55 55 58 58 58 62 63 66
Anand 47 48 48 49 49 50 51 51 51 52 52 55 55 58 58 58 62 63 66
Petrosian 47 48 48 49 49 50 50 51 51 52 52 54 55 57 57 58 61 63 65
Khalifman 47 47 48 49 49 50 50 50 51 51 52 54 54 57 57 57 61 62 65
Kasimdzhanov 47 48 48 49 49 50 50 50 51 51 52 54 54 57 57 57 61 62 65
Smyslov 46 47 47 48 48 49 49 49 49 50 51 53 53 56 56 56 60 61 64
Lasker 46 46 46 48 48 48 48 49 49 50 50 53 53 55 56 56 60 61 63
Botvinnik 45 46 46 47 47 48 48 48 49 49 50 52 53 55 55 56 59 61 63
Euwe 43 44 43 45 45 45 46 46 46 47 47 48 50 53 53 53 57 58 61
Topalov 42 43 43 45 45 45 45 46 46 47 47 47 50 52 53 53 57 58 61
Tal 40 41 40 42 43 43 43 43 44 45 45 45 47 48 50 51 55 55 58
Ponomariov 40 41 40 42 42 43 43 43 43 44 45 45 47 48 50 51 54 55 59
Alekhine 40 40 40 42 42 42 43 43 43 44 44 44 47 47 49 50 54 55 58
Spassky 36 36 36 38 38 38 39 39 39 40 40 41 43 43 46 46 46 51 54
Fischer 34 35 35 37 37 37 38 38 38 39 39 40 42 42 45 45 45 49 53
Steinitz 31 32 31 34 34 34 35 35 35 36 37 37 39 39 42 42 43 46 47

There are some common factors in both rankings: according to the conformance indicator, the level
of chess has been increasing through the years. There are more “contemporary” players in the top of
this ranking than players from the previous generations. There are also important differences; this is
probably telling us that this indicator is somewhat “flawed” for the same reasons as the aggregated
conformance indicator: it does not take into account the “context” of the move: making a small
mistake when the game is already lost or won has not the same significance as making it when the
game issue is not decided yet, while this indicator is “averaging” them. A longer study is necessary
to assess exactly why some players are more “unstable” than others. However the example of Fischer
is somewhat significant: let us remember that, with the aggregated conformance indicator, Fischer
was also “topping” the rankings regarding his ability to find the exact “best” move, but was much
more “ordinary” when considering aggregated conformance for δ ≤ 0.3. This might mean that he
was playing perfectly very often but could also make “larger” mistakes more often than some other
players. The question again is: under what circumstances was he making such mistakes? This problem
is exactly what I expect to correct with the Markovian predictor.

4.3.3. Predicting the results of World Championships

Below, we compare the score predicted for World Championships by the Covariance predictor to (1) the
actual score and to (2) the score predicted using ELO tables as we did for the accumulated conformance
indicator in subsection 4.2.4. The results are also presented in Table 5 in column Covs. The predictor
is computed using n0 = 32 and b = 2.4.

The mean difference between the actual score and the accumulated conformance predicted score is
8% on all championships and of 9% on the 11 World Championships for which the ELO predictor is
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available. So, in a quite paradoxical way, the covariance predictor is less efficient than the accumulated
conformance predictor, even if it is better correlated to the result of individual games.

4.4. The Markovian predictor

The Markovian predictor presented in section 3.4 relies on transition matrices which represent for
each value of the evaluation function the probability of the value of the evaluation function in the next
step. This solves the problem presented in the previous sections regarding the “context” of a mistake.
However, to operate properly, the Markovian predictor requires a large amount of data to build matrices
which are statistically significant. Thus it is not possible to use it and/or validate it on a single game,
because there are simply not sufficient data. The Markovian predictor is designed to evaluate a player
on a collection of games and not on single games, which is quite different from the previous two. In the
next three subsections we explain first how to compute efficiently transition matrices (4.4.1), then we
compute the Markovian predictor on whole careers (4.4.2) and finally we use it to compute predictions
for World Championships matches (4.4.3).

4.4.1. Computing efficiently transition matrices

There are two antagonist objectives when building transition matrices. On the one hand, the more
classes (rows) we have, and the better is the modeling of the stochastic process. On the other hand,
it is important to have “sufficient” moves played in each class (row of the matrix), in order to have a
significant statistical estimation of all the parameters of this class.

As matrices are computed for each year the player was active, it is mandatory to set a lower bound to
the number of moves played during one year to declare the player “active”. This is not as simple as it
seems. Some players (such as Botvinnik for example) used to play a low number of games between
championships. Some retired for long periods (Fischer retired for 18 months from mid 68 to mid 70).
After examining the careers of different players, the lower bound for the number of moves played was set
to 500, which seems to make a proper distinction between years of activity and years of semi-retirement
(Fischer played some demonstration games in 1969 that cannot be considered as significant).

The second parameter to choose is the value of the upper and lower bounds binf and bsup. There again,
the larger the value, the better the prediction of the process should be. However, here again, it is
important to have sufficient positions when the evaluation of the current game is below binf and above
bsup. A statistical analysis of the games of the players considered shows that it is difficult to find many
moves played below binf if binf is too large. There are two main reasons: on the one hand, world class
players usually do not lose their games; on the other hand, when they are in this kind of situation, they
seem to resign pretty soon, which reduces the number of moves available. The same goes on a lesser
extent for bsup; even if their opponents are less strong, they usually resign pretty fast when the position
becomes bad against a world class player. The side effect of choosing bsup too low (respectively binf

too high), is that the expected percentage of won (respectively lost) games will be higher, while the
expected percentage of drawn games will be lower.

The underlying interpretation of the stationary vector is that the last component of the station-
ary vector represents games won and that the expected gain should be 1 for this class32, that the
“middle” elements correspond to draw with unbalanced material, while the first component repre-
sent games lost. We are thus using e = (0, 0.5 · · · , 0.5, 1) as the gain vector, and we compute the

32This is of course not true as we will see later: around only 90% of games are won when a player has once a position
better than 1.8, not 100%.
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expected output of the game by making the scalar product of the stationary vector π with the gain
vector e.

Let us notice first that we cannot use, to compute the values of the e vector, the same optimization
method as in the previous section for the covariance gain vector. The optimization in the previous
section can be performed because we can compute for each game the expected result, compare it to
the actual result and perform a least squares method to reduce the discrepancy. The Markovian method
works only on a large set of games, because it requires a large amount of data. It is impossible to
compute one matrix for one game. We could have performed an optimization by computing the matrix
on a large number of games, and then compare the expected average computed outcome with the actual
one. However, we decided not to perform this optimization step, for different reasons.

� On the one hand, the Markovian process and the computation of the stationary vector takes into
account the idea that a high value (low value) leads usually the game to a higher value (respectively
lower value) and ultimately to one of the extremal class. Thus the probabilities represented in the
stationary vector by the “not extremal” classes are really the probabilities of not going to one of
the extremal class when t → +∞, and thus they represent a draw with more or less unbalanced
material.

� On the other hand, the gain expectancy associated to a class cannot be estimated in an intrinsic
way: it depends, not only on the player, but also on his opponents, as we can only estimate it from
the player’s games. Moreover, in a game between two players, what vector do we choose: player
one’s vector, player two’s vector or an average of the two? To solve this last problem we could try
to find a general “gain expectancy” vector, either by trying to make a least square regression on
actual data, or by deducing it from many games played by the computer in autoplay. But using this
interpretation would defeat the very idea that different human players have different capacities,
and should thus have different “gain vectors” if we choose to interpret them that way.

� Last, but not least, not performing any “fitting” of the model to the data guarantees that the
Markovian model remains, in a way, “pure”, as it is completely independent of the players on
which the study is performed. The only thing that depends on the player is its Markovian matrix.

This choice will be discussed in subsection 4.4.3, when I will compare the “pure” Markovian model
to the other predictors regarding its capacity to predict the outcome of a set of games.

It is possible to try to have an idea of the estimation of the induced error. In Fig. 13, we see for some
selected players the expected value of the result as a function of the evaluation of the best position
reached by the player during the game (the statistics are computed on all games). For example, if we
consider Emmanuel Lasker, he won on the average 0.65 points when, during a game, he reached at
least once a position valued 0. He won 0.85 points when he reached at least once a position valued
1.00 (100cp), 0.94 points for 2.00, 0.96 points for 3.0033. So we make an approximation of 0.06 points
when setting bsup to 2.00, and an error of 0.04 points when setting it to 3.00.

These values are approximately the same for all the World Champions considered in this study, except
for Wilhelm Steinitz, who is clearly below. We also notice that they are well over the “All Players”

33Intuitively, this curve represents the capacity of a player to “grab opportunities” and to “win” a game as soon as a “good
position” is reached. However it is important to remember that it depends on the opponents of a given player during his career
(and also on the engine doing the evaluation, but this induces only a shifting of the curve). So this estimation is in no way
“intrinsic”.
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Fig. 13. Expected value of gain as a function of the highest evaluation reached in the game.
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Fig. 14. Average number of positions by year as a function of the evaluation of the positions.

curve34. The difference between 2.0 and 3.0 is small and thus a reasonable choice seems to be +2 as
bsup. The same study with quite identical results can be done for binf . +2/–2 is also the value chosen
as the limit of won/lost games by Guid and Bratko in their study, and these values give us sufficient
moves in the extremal classes to have statistical consistent samples.

The last value to choose is the grain g, which is the size of each class, and which thus sets also the
number of classes (rows and columns of the matrices). The statistical analysis of position evaluations
showed that choosing a single g was a poor idea. Moves made are usually made when the evaluation
is close to 0, and their distribution is “Gaussian”.

Fig. 14 represents the distribution of the evaluation of the positions of Vassily Smyslov during his
extremely long and competitive career. binf and bsup were set to –2/+2, and g was set to 10 centipawns.
-210 represents all positions with an evaluation of –200 or below, –200 the positions with an evaluation
between –200 and –190 and so on. There are 151,489 positions over 60 years, or an average of almost
2500 positions by year (5 times the limit of 500 moves).

34The “All Players” curve is the statistics for all players in the study, which include all World Champions and all the
opponents they played against.
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Fig. 15. Average number of positions by year as a function of the evaluation of the positions, using logarithmic size classes.

The positions evaluated as 0 are a class of their own as it is the positions which are draws, and there are
lots of them. This is understandable as players often keep on playing in some positions that computer
programs, especially with endgame databases, identify early as draws. Some classes are ridiculously
small; for example the 200 class contains only 8 positions/year, and this is only on the average. A
full statistical analysis for all players and all years demonstrated that with this distribution, there were
some classes which were empty during “active” years.

Thus the number of classes was reduced to 19, and the width of each class was computed in order to
better balance the number of elements by class. As the distribution looked Gaussian, the size of classes
were set to follow a logarithmic function. The three special classes (above bsup, below binf and 0) are
kept unchanged, while a scaling factor is applied to the size of classes equal to:

f = e−v/100 − e−bsup/100

e0 − e−bsup/100 for v > 0

A similar symmetric factor was applied for v < 0. The results are presented in Fig. 15. The central
class (positions evaluated to 0) and the classes representing positions over bsup or below binf are classes
of their own. The classes closest to zero on either side are 10cp wide, and the width of classes grows as
we get further from 0, with the last classes being 50cp wide. This new distribution gives classes with
a minimal number of around 50 elements, which is a significant sample.

A last improvement was made to the system. In order to stabilize the matrices, and to prevent jumps
from year to year, the positions of the previous years are taken into account, but with an exponential
forgetting factor of 2 (positions of the previous year count as half, position of n − 2 count as one
quarter, etc.). It would have probably been better to use a sliding time window, but unfortunately dates
in the database are often reduced to the year and do not mention the month.

It is now possible to compute the transition matrices, which are square 19x19 matrices. Taking again
as an example Fischer and Spassky in 1971, the new stationary vector is now:

v = (0.10, 0.02, 0.01, 0.01, 0.02, 0.02, 0.02, 0.02, 0.02

0.11, 0.03, 0.03, 0.04, 0.04, 0.04, 0.03, 0.02, 0.07, 0.36)
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Fig. 16. Strength at 0cp.

This represents a 36% win for Fischer and a 10% win for Spassky35.

A last important comment: as with any statistical methods, data are aggregated here solely based on
some specific criteria (the value of the evaluation function), disregarding all other parameters. For
example, the material still present on the board is not taken into account, while it seems pretty clear
that the variations in the evaluation function are not of the same nature at the beginning of a game
and at the end of a game. It would be interesting to try to create more complex classes, using the
material present on the board as a second criteria. This is probably difficult to do; even if only three
main subclasses are used (opening, mid-game and ending), this would subdivide each class into three
classes, and the problem of having sufficient samples would arise again.

35The example was really chosen at random.



38 J.-M. Alliot / Who is the Master?

 76

 78

 80

 82

 84

 86

 88

 90

 92

 94

1890 1900 1910 1920 1930 1940 1950 1960 1970 1980

Steinitz
Lasker

Capablanca
Alekhine

Euwe
Botvinnik
Petrosian

Tal

 76

 78

 80

 82

 84

 86

 88

 90

 92

 94

1950 1960 1970 1980 1990 2000 2010

Smyslov
Fischer

Spassky
Karpov

Kasparov
Kramnik

Anand
Carlsen

Fig. 17. Strength at 0-30cp.

4.4.2. Whole career

As in subsection 4.3.2, a “Battle Royale” was performed, and for each player, the “best year” was
found by searching for the year where the player had the largest number of victories against all other
players and all other years. The results were as follows: Carlsen: 2013, Kramnik: 1999, Fischer: 1971,
Kasparov: 2001, Anand: 2008, Khalifman: 2010, Smyslov: 1983, Petrosian: 1962, Karpov: 1988,
Kasimdzhanov: 2011, Botvinnik: 1945, Ponomariov: 2011, Lasker: 1907, Spassky: 1970, Topalov:
2008, Capablanca: 1928, Euwe: 1941, Tal: 1981, Alekhine: 1922, Steinitz: 1894.

The results are displayed in Table 9. Here again, the results are not exactly symmetric as playing
as White and playing as Black give different results as explained above. It is not straightforward to
deduce an absolute ranking from it; for example, Tal is performing consistently better than Euwe
against stronger players, but is losing to Euwe (with a small margin).
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Table 9

Head to head match result predictions between different World Champions in their best year

Ca Kr Fi Ka An Kh Sm Pe Kp Ks Bo Po La Sp To Ca Ta Eu Al St

Carlsen 52 54 54 57 58 57 58 56 60 61 59 60 61 61 64 66 69 70 82
Kramnik 49 52 52 55 56 56 57 55 59 60 58 60 60 60 63 65 68 70 83
Fischer 47 49 51 53 57 56 57 56 59 60 60 61 61 62 64 68 70 73 85
Kasparov 47 49 50 53 54 54 54 53 57 58 56 56 58 58 60 62 66 68 82
Anand 44 46 48 48 54 52 53 53 57 56 57 57 59 59 62 64 69 71 86
Khalifman 43 45 44 47 47 50 51 52 53 54 55 55 56 56 60 62 64 67 79
Smyslov 43 45 45 47 49 51 50 51 53 55 54 54 54 55 59 63 64 68 82
Petrosian 43 44 45 47 49 50 51 52 53 54 54 55 55 56 59 63 63 67 80
Karpov 44 46 45 48 48 49 50 49 51 52 52 52 52 52 56 58 60 63 76
Kasimdzhanov 41 43 42 45 45 48 48 48 50 52 52 52 54 53 56 60 62 65 80
Botvinnik 40 41 41 44 45 48 46 48 49 49 50 54 52 52 56 60 60 64 80
Ponomariov 42 43 41 45 44 47 47 47 49 49 51 51 52 52 55 58 59 62 77
Lasker 41 41 40 45 44 46 47 46 49 49 48 50 51 50 54 58 59 63 78
Spassky 40 41 40 43 42 45 47 46 48 47 49 49 50 51 53 58 57 61 75
Topalov 40 41 39 44 42 45 46 45 49 48 49 49 50 51 54 57 57 61 75
Capablanca 37 38 37 41 39 42 42 42 45 45 45 47 47 48 47 53 54 59 76
Tal 35 36 34 39 37 39 39 38 43 41 41 43 43 43 44 48 49 54 72
Euwe 32 33 32 36 32 37 37 38 41 39 41 42 43 44 44 47 52 56 75
Alekhine 31 31 29 34 30 35 33 35 38 36 37 39 38 40 40 43 47 45 69
Steinitz 20 19 17 20 16 22 19 22 25 22 22 25 24 27 27 26 30 27 33

According to this predictor too, it is clear that the level of chess has been increasing through the years.
A group of 4 players (Carlsen, Kramnik, Fischer, Kasparov) is ahead of the pack, while a group of 3
(Euwe, Alekhine and Steinitz) is trailing below (Steinitz being way below the others). The in-between
players are close to each other. The results are not exactly the same as those found with the covariance
indicator (Fischer for example has a better ranking here), however they are very close.

4.4.3. Predicting the results of World Championship using the Markovian model

Below, we compare the score predicted for World Championships by the Markovian predictor to the
actual score and to the score predicted using ELO tables as we did for the accumulated conformance
indicator in subsection 4.2.4 and for the covariance predictor in subsection 4.3.3. The results are also
presented in Table 5 in column Ms.

The difference between the actual score and the Markovian predicted score is 3.6% on all Champi-
onships and of 4.4% on the 11 World Championships for which the ELO predictor is available. The
Markovian predictor is thus the best of the three, even if the sample of available data is too small to
have a definitive conclusion.

It would have been interesting to do a more thorough comparison of the three predictors, but this was
out of reach of this study, as much more computing power is required.

5. CONCLUSION

Statistical studies give correlation information, they do not directly provide causality, and interpreting
them requires some perspective.
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The cumulative conformance indicator presented in this article measures the capacity to play “like” a
very strong computer program, even if its interpretation, as discussed in subsection 4.2.1, is a little bit
more complex. Believing that this indicator is a measure of the real “strength” of a player is plausible, as
I have demonstrated along this article that conformance was highly correlated with the game outcome,
and we know that computer programs are currently much stronger than human beings. However, it is
important to remember that the indicator has been built and verified only on world class players, and
extending it to lesser players would require more experimentation. Moreover, we have seen that this
indicator has some drawbacks, as it requires a delicate fitting to the data, and does not take into account
the context of the moves played.

The distribution vector is in a sense “richer” than the scalar cumulative conformance indicator. However,
it requires also to be fitted to the data, and its results regarding its ability to predict the results of matches
seem less good than the other two.

The Markovian predictor gives very interesting prediction results which are better on this limited
sample than the two other predictors and even better than the usual ELO predictor. It is the “purest”
of the three, as it does not require any specific fitting, and the Markovian interpretation is apparently
the “soundest” of the three. As it is an intrinsic predictor which does not depend on the evaluation of
other players, it could be a possible replacement of the usual ELO predictor, even if a clear drawback
is the fact that it is a composite predictor, which enables only to compare two players, but not to build
simply a total order between players. However, it could be possible to build a ranking by simulating
all possible confrontations between players of the same class, and averaging the results.

There remains a plethora of things to do. Below we mention seven of them.

� It is necessary to evaluate much more games, and this is definitely possible. A rough estimation
done with Chessbase shows that there are certainly less than 500,000 regular time games which
would have to be evaluated in order to assess all games where both players are above 2500 ELO.
This is 25 times the number of games assessed in this study, but it is definitely within our grasp.
On a Xeon E5-2680 v2 @ 2.80GHz processor, this would require around 500,000 hours of CPU
time to have the quality of evaluation of this study which used old HE 6262 AMD processors.
500,000 hours is not much regarding the capacity of HPC centers: it would represent 40 hours
for the CALMIP EOS computer, which was ranked 183 in the TOP 500 list as of 06/2014, and
only 10 minutes on the Tianhe-2 (the speedup is completely linear with the number of cores as
the problem is fully parallel). Even evaluating the complete Chessbase database after removing
games with fast time controls is now possible.

� The database must be checked again. Properly filtering the database is a difficult problem. Finding
time controls is usually difficult, and it is sometimes necessary to guess them from the name of
the tournament. Also, cleaning up the history of the games to suppress move repetitions would
probably be beneficial. Moreover there are little glitches (such as players who have exactly the
same names, while they are not the same player) which should be solved before going further.
Cooperating with people developing chess databases would definitely be a clear advantage.

� Results should be compared by using different chess engines to evaluate moves, to see what results
are “engine dependent” or “engine independent”. It is almost certain that some of them depend
on the program used, as the evaluation function is different from program to program. However,
what is probably more important is the similarity in the ranking of moves. Further experiments
are required, even if there has already been such studies (Guid and Bratko, 2011), which mainly
conclude that the ranking between chess programs is usually consistent.
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� More data should be gathered. It would have been beneficial to store more information during
the search. This would have enabled to compute other indicators (such as Sullivan’s complexity)
and test other approaches, such as Haworth and Regan’s.

� The conformance indicator, gain distribution vector or Markovian matrices should probably be
computed separately for White and for Black, as players seem to play differently when they are
playing as Black or as White. This is an aside, but interesting result, of this study.

� Some of the problems found in this study might be a consequence of the structure of the evaluation
functions in chess, which cannot be mapped easily to the probability of winning a game. So, on
the one hand, a parallel statistical work regarding evaluation functions could be performed in
order to better understand this mapping. On the other hand, applying this methodology to a game
such as Othello/Reversi with an engine using an evaluation function returning the probability of
winning would also provide useful information.

� Results might depend on the fact that the model has been fitted36 to a particular type of players,
namely world class players, and even more generally to human beings. The psychological biases
that appear when playing as Black, or when playing a little recklessly in inferior positions would
not appear in games between computers. So it would be extremely interesting to gather games
played by computers at blitz level, and to see how the results are modified.

However, the intermediate results show that the level in chess has raised through the years, and that
the young players of our days are extremely strong. This is probably to be expected: Magnus Carlsen
was born in 1990, which means that he had at his disposal for training during almost all his life a
small computing device at home which was stronger than any existing player ever, and databases
containing all the games ever played. The drawback is probably that the current chess games are
sometimes considered as “dull” by some commentators: there are very few mistakes made, and a
single mistake is usually sufficient to lose the game. They probably look more and more like com-
puter games, and the brilliance of play like the one of Misha Tal is probably now only an echo
of the past. In comparison, the performance of players like Fischer are all the most impressive, as
they are on par with this new generation, while they were far from having the same tools at their
disposal.

It is also important to stress a last important point: the Markovian method presented here could be,
in theory, used for any two-player game where an oracle (i.e., a computer program playing “much”
better than human beings) is available. This currently covers a very large number of two-players
games, as computer programs have become continuously stronger in the previous years, and there is
no reason to believe that this trend is going to change. Thus it would be possible to use an identical
“rating” system for all such games, that would have the same advantages (and drawbacks). Validating
the Markovian model on other games such as reversi, checkers, or draughts is definitely something
to do.
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