Comparison of some hematological parameters between male and female patients infected with COVID-19

Hayder H. Abeda,*, Ahmed Ghdhban Al-Ziaydi, Ihab Abbas Tahera and Ahmed K. Al Dulaimic

aChemistry and Biochemistry Division, Faculty of Medicine, Al Muthanna University, Samawah, Iraq
bDepartment of Medical Chemistry, College of Medicine, University of Al-Qadisiyah, Qadisiyah, Iraq
cLaboratory Division, Al-Shafaa Hospital, Anbar Health Directorate, Ramadi, Iraq

Abstract.
BACKGROUND: COVID-19 is a highly contagious virus that is rapidly spreading across the world. As the number of COVID-19 patients is quickly rising, and certain nations and areas, such as the third world countries, lack the medical resources, it is critical to track and monitor a patient’s status using blood parameters on regular testing. The aim of this study is to compare the serum D-dimer levels, Ferritin, CRP, WBCs, Lymphocytes, and Neutrophils in male and female patients infected with COVID-19.

OBJECTIVE AND METHODS: The study procedure includes evaluating the D-dimer level, Ferritin, CRP, WBCs, lymphocytes, and neutrophils in 116 patients infected with COVID-19 (48 Females and 68 Males).

RESULT: The result of this study shows a significant increase in the D-dimer level in males 1618 ± 247.7 ng/ml compared to females 684.5 ± 53.69 ng/ml and a significant increase in Ferritin level in males 525.6 ± 69.55 µg/L compared to females 254.1 ± 33.73 µg/L. However, no other significant change is seen in the other parameters (CRP, LDH, and WBCs, L, and N) although all of these parameters are abnormal, compared to the normal reference values.

CONCLUSION: This study concludes that there is a significant increase in the D-dimer and Ferritin concentrations in male patients compared to female patients, who were infected with COVID-19. Also there are no significant differences in other parameters (CRP, LDH, WBCs, L, and N) between male and female patients.

Keywords: COVID-19, haematological parameters, D-dimer, ferritin

1. Introduction

In December of 2019, a new Coronavirus infectious disease (COVID-19) has been found in Wuhan, Hubei Province [1]. After evaluating the throat samples from patients, the “Chinese Center for Disease Control and Prevention” has confirmed that these cases are caused by a new kind of Coronavirus [2]. COVID-19 is a highly contagious virus that is rapidly spreading across the world, forcing the World Health Organization to declare it as a ‘Pandemic’, as of March 12, 2020 [3]. The number of COVID-19 patients is quickly rising across the world, and certain nations and areas, such as the Third World countries, lack the medical resources to treat this pandemic. It is critical to track and monitor a patient’s status using his/her blood parameters by regular testing [4]. Aside from the clinical symptoms and pulmonary computed tomography (CT) findings [5], a majority of verified COVID-19 patients have displayed laboratory changes in a variety of serological markers, including kidney and liver function tests, coagulation parameters, and inflammatory, biochemical, and hemocytometric parameters. For COVID-19 detection, complete blood count (CBC) is the most appropriate and effective during laboratory examination [6]. In certain
Table 1

<table>
<thead>
<tr>
<th>Type of test</th>
<th>Mean ± SEM of male</th>
<th>Mean ± SEM of female</th>
<th>Significantly different? (P < 0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>57.29 ± 2.013</td>
<td>58.38 ± 2.545</td>
<td>NS (0.7370)</td>
</tr>
<tr>
<td>D-Dimer (ng/ml)</td>
<td>1618 ± 247.7</td>
<td>684.5 ± 53.69</td>
<td>S** (0.0022)</td>
</tr>
<tr>
<td>Ferritin (µg/L)</td>
<td>525.6 ± 69.55</td>
<td>254.1 ± 33.73</td>
<td>S** (0.0024)</td>
</tr>
<tr>
<td>CRP (mg/L)</td>
<td>51.79 ± 4.250</td>
<td>41.81 ± 3.717</td>
<td>NS (0.0961)</td>
</tr>
<tr>
<td>LDH (U/L)</td>
<td>875.2 ± 78.49</td>
<td>782.3 ± 89.34</td>
<td>NS (0.4396)</td>
</tr>
<tr>
<td>WBCs * 10⁹/mm³</td>
<td>12.08 ± 0.8446</td>
<td>10.13 ± 1.111</td>
<td>NS (0.1570)</td>
</tr>
<tr>
<td>N * 10⁹/mm³</td>
<td>76.30 ± 2.072</td>
<td>79.38 ± 1.112</td>
<td>NS (0.2461)</td>
</tr>
<tr>
<td>L * 10⁹/mm³</td>
<td>19.66 ± 2.122</td>
<td>16.46 ± 0.957</td>
<td>NS (0.2299)</td>
</tr>
</tbody>
</table>

NS: Non-significant, S** high Significant, N: Neutrophils, L: Lymphocytes.

people, severe pulmonary disorder and extra-pulmonary
disease can become life-threatening events, as also res-piratory failure. The D-dimer levels seem to have in-creased in almost half the number of patients, and ab-normal D-dimer levels are associated with a poor prog-nosis [7]. A simple blood test that provides information
on the inflammatory process, such as leucocyte count and
other features, such as, lymphocyte predominance,
neutrophil, the neutrophil-lymphocyte ratio (N/L ratio),
C-reactive protein (CRP) as an inflammatory marker,
collateral organ damage (acute liver failure, acute re-nal failure), and disease severity, can be useful in the
diagnosis and monitoring of disease conditions [8]. The
purpose of this study is to compare the D-dimer levels,
Ferritin, CRP, WBCs, N, and L, in male and female
COVID-19 patients.

2. Material and methods

2.1. Subject

This cross-sectional study was carried out in the De-
partment of Health, Alshifa Hospital, Al-Anbar, Iraq,
from June 2021 to January 2022. The present study
included 116 patients (48 Females and 68 Males),
who were infected with COVID-19 from two to four
days. The consent form was signed by all the hu-
man volunteers None of the patients were vaccinated
against COVID-19. SARS Cov-2 Qualitative Real
Time-Polymerase Chain Reaction was used to confirm
COVID-19 infection in patients (RT-PCR). This study
excluded patients who did not have SARS-CoV-2 or
had tested negative for it. Also patients with chronic
disease were excluded.

2.2. Data collection and laboratory tests

Blood was collected from patients and used directly
in routine lab tests. WBCs, lymphocytes (L) and neu-
rophils (N) were analyzed using the CBC Horiba ABX
Micros 60 instrument (Japan), D-Dimer, CRP, and Fer-
ritin using the SPX200 chemical analyzer instrument
(Japan).

2.3. Statistical analysis

All Curves, Tables, and results were analyzed using
the Graph Pad prism Program (Version 6), which
utilized the independent T test.

3. Results

This study included 116 patients, who consisted of
68 males and 48 females, who were in the mean age of
(57.29 ± 2.013) and (58.38 ± 2.545) years, for males
and females, respectively. There was no significant age
difference between them and the p-value was equal to
0.7370, as shown in Table 1.

The results show a significant change in the D-dimer
values between males and females, with values equal to
1618 ± 247.7 ng/ml and 684.5 ± 53.69 ng/ml, respectively,
whereas, the p-value is equal to 0.0022, as shown in Ta-
ble 1. The results of the Ferritin show a significant dif-
fERENCE, 525.6 ± 69.55 µg/L and 254.1 ± 33.73 µg/L,
in males and females, respectively, and a p-value equal
to 0.0024, as shown in Table 1. There are no signifi-
cant differences in C-reactive protein between males
and females, with values equal to 51.79 ± 4.250 mg/L
and 41.81 ± 3.717 mg/L, respectively, with a p-value of
0.4396, as shown in Table 1. Lactate dehydrogenase
(LDH) results show no significant difference in the val-
ues in males and females, 875.2 ± 78.49 U/L and 782.3
± 89.34 U/L, respectively, whereas, p-value is 0.4396,
as shown in Table 1. As a result, it can be seen that there
is no significant difference in WBCs between males
and females, (12.08 ± 0.8446) × 10^3/mm^3 and (10.13 ± 1.111) × 10^3/mm^3, respectively, as shown in Table 1. The results also show no significant difference in neutrophils (N), with values of (76.30 ± 2.072) × 10^3/mm^3 and (79.38 ± 1.112) × 10^3/mm^3, and a p-value of 0.2461, as shown in Table 1, whereas, Lymphocytes (L) show a non-significant difference in male and female patients, with values of (19.66 ± 2.122) × 10^3/mm^3 and (16.46 ± 0.9575) × 10^3/mm^3, respectively, and a p-value of 0.2299, as shown in Table 1.

4. Discussion

The virus’s extended incubation time and high contagiousness, together with modern worldwide air travel, are some of the primary factors that have aided the fast spread of SARS-CoV-2 [9]. In our linked and globalized society, this has had an enormous influence on the health systems and global economies.

Some limitations, such as, a lack of reliable data on the prevalence a certain gender, by age or comorbidities by age and gender, or the assumption of risk factor independence, are expected to have little impact on the findings. Finally, given the age range, gender, and comorbidities associated with COVID-19, the equation provided here may be used to forecast even a single patient’s risk of dying from COVID-19.

Increased incidence of SARS-CoV-2 infection among younger adults is expected to contribute to COVID-19 community transmission, especially to people who are at increased risk of severe disease, such as the elderly [10]. Targeted mitigation methods, such as, age-appropriate messaging on the ‘preventive measures to be taken’, via social media, must be prioritized, to minimize infection and transmission among younger individuals. There is no significant age difference between males and females in this research.

One of the tests used to diagnose thrombosis in patients was the D-dimer level. According to research, increased fibrinogen and D-dimer concentrations were associated with a poor prognosis in the early stages of COVID-19 sickness; and approximately a three- to four-time increase in D-dimer levels was associated with a poor prognosis [11,12]. Furthermore, underlying conditions such as cancer, diabetes, stroke, and female pregnancy could cause the D-dimer levels to rise in COVID-19 patients [13]. Measuring the amount of D-dimer concentrations and coagulation parameters from the start of the COVID-19 illness could help regulate and manage the condition [14].

The D-dimer concentration measurement is a laboratory test that is used to assess COVID-19 patients. As thrombosis can develop in multiple organs, leading to organ failure in severe COVID-19 cases, D-dimer monitoring will be a useful method that can be utilized in clinical practice to detect COVID-19 infection [15]. A COVID-19 patient’s problems also increase when the D-Dimer levels rise. To avoid complications and reduce interventions, it is necessary to continuously monitor the D-dimer levels and label ‘anticoagulation’ as a management tool for COVID-19 disease. The findings of this study show that the D-dimer level increases twice as fast in male patients than in female COVID-19 patients, in the early stages [16].

Ferritin is an important modulator of immunological dysregulation, particularly in severe hyperferritinemia, and it contributes to the cytokine storm through direct immunosuppressive and pro-inflammatory activities [17]. In recent times, serum ferritin has been discovered to be one of the indicators of mortality in COVID-19 patients [18]. Serum ferritin may be a simple and effective laboratory test, which can serve as a marker of SARS-CoV2 infection for diagnosing and monitoring the inflammatory process in COVID-19 patients [19]. The results indicate a considerable rise in ferritin in COVID 19 patients. It increases twice as much in male patients as compared to female patients.

CRP is a helpful inflammatory marker and indication that is involved in host resistance to invading infections as well as inflammation [20]. In individuals infected with 2019-nCoV, CRP is strongly linked with acute lung damage [21]. The findings revealed an increase in CRP in both male and female groups, with no significant differences between them. CRP levels of greater than 40 mg/L have previously been found to be predictive indicators for the progression of pneumonia to respiratory failure in MERS-CoV-infected people [22].

The lactate dehydrogenase enzyme (LDH) is an intracellular enzyme that converts pyruvate to lactate during anaerobic glycolysis [23]. Serum lactate dehydrogenase is routinely tested in a range of illnesses, including cancer, and inflammation and high LDH levels in the blood have been related to a poor prognosis. Although studies have indicated that those with severe COVID-19 have higher blood LDH levels, no research has looked into how this influences the severity and mortality of COVID-19 [24]. The findings of this study corroborated with a prior research on LDH elevation in COVID-19 patients, indicating that there was no significant difference in LDH elevation in male and female COVID-19 patients.
According to several studies, severe COVID-19 is linked to an increase in the quantity of white blood cells [25]. One in every four COVID-19 positive individuals, on the other hand, may develop some type of leukopenia, with lymphopenia, accounting for a majority (63.0%) [26]. Although some data suggest that thrombocytopenia, neutropenia, and lymphopenia have a predictive significance in the SARS-CoV-2 infection, further research is needed [27].

This study has found a significant increase in WBCs in both male and female groups. This increase is associated with an increase in neutrophils, which is consistent with other researches that confirm the use of parameter tests that confirmed an increase in neutrophils, for detecting infection with COVID19 patients [28].

5. Conclusion

This study concludes that there is a significantly higher level of increase in D-dimer and Ferritin concentrations in male patients compared to female patients infected with COVID-19. No significant differences in other parameters (CRP, LDH, WBCs, N, and L) are seen, although all of these parameters are abnormal, compared to the normal reference values.

Conflict of interest

The authors declare that they have no conflict of interest.

References

