Fundamenta Informaticae 28 (1996) 55-85 55
IOS Press

WHY DENOTATIONAL?

Remarks on Applied Denotational Semantics*

Andrzej Blikle*
Institute of Computer Science
Polish Academy of Sciences
Ordona 21, 01-237 Warsaw

Abstract. This is an essay where the author expresses his views on applied denota-
tional semantics. In the author’s opinion, whether a software system has or does not
have a sufficiently abstract denotational semantics should be regarded as a pragmatic
attribute of the system rather than merely as a mathematical attribute of its descrip-
tion. In a software system with denotational semantics structured programming is fea-
sible and for such systems there is a routine method of developing program-correctness
logic. All that may not be the case if denotationality is not ensured. On the other
hand, a non-denotational semantics can be always artificially made denotational on the
expense of lowering its level of abstraction. This leads to an important pragmatic ques-
tion: to what extent and in which situations can we sacrifice denotationality and/or
abstraction of a semantics? All discussions are carried on an algebraic ground but the
paper is not very technical and contains a short introduction to the algebraic theory of
denotational semantics.

Everything which is evident should be given special attention at the begz'nm'hg in order
to avoid all possible misunderstandings in the future.

a popular wisdom

1. Introduction

This essay has been addressed to readers interested in the applications of mathematical
semantics in software engineering and is devoted to the discussion of the attribute of de-
notationality. In the author’s opinion, whether a software system has or does not have -
a sufficiently abstract denotational semantics should be regarded as a pragmatic attribute
of the system rather then merely as a mathematical attribute of its description. Denota-
tionality in system design is like structurality in programming: it makes the final product
easy to understand and to prove correct and therefore constitutes a prerequisite of a sound
engineering style. ,

Our main discussion is preceded by some clarification of concepts. In Sec.2. we point out
that the word semantics has been used in the literature in at least three different mean-
ings and we try to convince the reader that such attributes of a semantics as denotational,

* A short conference version of this paper appeared earlier in R.Janicki, W.W.Koczkodaj eds. Computing
and Information, Proc. Int. Conf. on Computing and Information, ICCI’89, Toronto, North-Holland 1989.
The reported research has been sponsored by the Polish Academy of Sciences under grant CPBP 02.17

56 A. Blikle | Why Denotational?

operational and algebraic should be regarded as orthogonal rather than as alternative or con-
trasted. In Sec.3. we define our notation and in Sec.4. we briefly introduce the reader into
an algebraic framework of denotational semantics. That framework is then used throughout
the paper. : o

The main part of our discussion starts in Sec.5. from an argument that a software system
with denotational semantics provides an adequate ground for structured programming and
for a systematic development of a program-correctness logic. Then we show that this need
not to be the case if denotationality is not ensured (Sec.6.) This is followed by the analysis
of such properties of a semantics that can make the semantics non-denotational. We discuss
the trade-off between denotationality and abstraction (Sec.7.) and we show that a non-
denotational semantics can be always artificially “made denotational” at the expense of
lowering its level of abstraction (Sec.8.) This leads us to an important pragmatic question:
to what extent and in which situations can we sacrifice denotationality and/or abstraction
of a semantics? A few typical cases of ‘spoiled’ denotationality are discussed in Sec.9. and
Sec.10. One of them is a copy-rule mechanism. We complete the discussion with an example
of a structured operational definition, in the style of G.Plotkin, of a denotational semantics of
a simple programming language (Sec.11.) The last Sec.12. contains some concluding remarks.

2. About the Concept of Semantics

This section is devoted to the clarification of the concept of semantics and to the discussion of’
the relationship between three common attributes of a semantics: denotational, operational
and algebraic. We shall argue that these attributes are orthogonal rather than alternative
or contrasted.

Let us start from a remark that the issue of semantics is not restricted — as is frequently
thought — to programming languages, but applies to all kinds of software including system
software, tools and applications. In fact each software system contains some programming
language used for the communication with the system. However, for the sake of simplicity,
in all examples of this paper we analyze a toy programming language. Such a language can
be made much simpler than a toy operating system, a toy data-base management system or
the like.

In any software system we can always identify some syntazr, which is used to formulate
our requests to the system, some denotations, which are the meanings of these requests and
some semantics, which assigns denotations to syntax. In other words, in the mathematical
model of a software system we can always identify three following components:

e a set of syntactic objects Syn,
e a set of denotations Den,
e a function of semantics S : Syn — Den

Unfortunately in the current literature the word semantics is used ambiguously to mean four
different things:

1) the functions S,

2) the definition of that function,

3) the underlying theory,

4) or even the denotations themselves, like e.g. in: “...the semantics of commands are
state-to-state transformations”

Case 4) is, of course, only a linguistic sloppiness. Case 3) can be easily recognized from
+ a context and therefore does not cause problems. Cases 1) and 2), however, if not distin-
guished properly, may lead to a confusion. For instance, if an author says that: “we call a
semantics denotational if it is compositionally defined and tackles recursion with the help of
fized points”, it is not clear if he is talking about a function — which is “compositionally

A. Blikle | Why Denotational? 57

defined. ..” — about its definition — which “tackles recursion...” — or, maybe, about both
at the same time? ~

In this paper by a semantics we always mean a function and when we want to talk about
its definition, then we say that explicitly, unless the context indicates clearly what e mean.
Below we briefly explain our understanding of the attributes denotational, operational and
algebraic. We start from the attribute of denotationality.

Syn usually represents a context-free language described either by a context-free grammar,
or by BNF equations, or by a set of syntactic domain equations or by a signature of an
algebra. In each of these cases one may construct a unique many-sorted algebra over Syn.
We say that S is denotational if it has the property of compositionality, i.e. if one can
construct such a many-sorted algebra over Den that S becomes a homomorphism. As we
shall see in the sequel (Sec.7.) that understanding of denotationality is a little too weak for
applications. In fact, a denotational semantics must be also sufficiently abstract in order to
be of a practical use. That is, however, a more pragmatic issue.

In the literature the term denotational semantics is usually associated with two specific
techniques of constructing the algebra of denotations: reflezive domains and continuations
(see e.g. [29], [13] or [24]). These techniques have been introduced in the early 1970-ties
by the pioneers of denotational semantic Dana Scott and Christopher Strachey [25], [27] in
order to construct a denotational model of a rather exotic programming mechanism where
an untyped lambda-calculus had been mixed with unrestricted goto’s. That mechanism
appeared in THE programming language of these days — Algol-60.

Reflexive domains and continuations have attracted the attention of researchers so much
that for many years it became customary to assume that every denotational semantics must
involve these concepts. In fact, however, D.Scott and Ch.Strachey have always emphasized
that the most relevant attribute of a denotational semantics is compositionality (cf. [27]):

In this approach the semantical functions give mathematical values to expressions
— wvalues related to some given model. The values of expressions are determined
in such a way that the value of a whole expression depends functionally on the
values of its parts — the exact connection being found through the clauses of the
syntactical definition of the language.

The idea of compositionality has been later formalized on an algebraic ground by a group of
American authors known as ADJ, see e.g. [31]. It has been also pointed out by Andrzej Blikle
and Andrzej Tarlecki [9] that reflexive domains are needed only if we wish to describe self-
applicable functions, i.e. functions that can assume themselves as arguments. Such functions
appear e.g. in Algol’60 — due to the admission of typeless procedural parameters — or in
Lisp — due to dynamic recursion. However, since self-applicability has turned out to be
an unsafe mechanism, it has been abandoned in all contemporary programming languages.
Therefore, the denotational models of such languages may be conveniently constructed in a
framework where the domains of denotations are usual sets possibly with a cpo ordering.

Continuations have been abandoned in the applications as well, since it has turned out
that even such anarchic jumps as in Algol-60 can be described without continuations (cf.
3], 191)-

A set-theoretic continuation-free style has been assumed, therefore, in the 1980’s in the
majority of projects devoted to the development of software-specification systems based on
denotational semantics such as e.g. MetaSoft [6], RAISE [21] or BSI/VDM [18]. Readers
interested in the technical details of set-theoretic approaches to domains are refered to [30]
which describes such an approach for BSI/VDM and to [1] where a domain theory and a
corresponding type theory have been constructed for MetaSoft.

The discussion which follows in this paper applies essentially to all styles of denotational
semantics. However, it refers mainly to — and it has been stimulated by — the mentioned
above recent developments of that theory and its applications.

58 A. Blikle | Why Denotational?

The attribute of denotationality may be associated not only with a function of semantics
but also with its definition. When we say that a programming language Pascal has been
given a denotational semantics, we mean that the semantics of Pascal has been given a
denotational definition, i.e. a definition which expresses the compositionality of S explicitly
by the equations of the form:

Slop(syn, ..., synn)] =|| op || (Slsym],.. ., S[synn]) (1)

where op is an operation in the algebra Syn and || op || is the corresponding operation in
Den. Usually the operations op and || op || are not explicit in these equations but implicit
in (meta)expressions which appear on both sides of (1). For instance, if we write:

S[comll; comy)(sta) = S[comy)((S[com](sta))
where com stands for a command and sta for a state, then the operation || ; || defined by:
Il 5 || (S[comi], S[com,])(sta) = S[comq]((S[com](sta))

appears on the right-hand side of the former equation only implicitly.

Since a denotational form of a definition of semantics quarantees that the semantics itself
is denotational, a non-denotational semantics cannot be given a denotational definition. If,
therefore, a designer of a software system chooses a denotational form of a definition, then
he/she may be sure that the semantics of the system will become denotational. If a definition
is not denotational, then one may still be able to construct a denotational semantics (cf.
Sec.11.)), but in that case one has to prove that the semantics has indeed this property and
such a proof may be far from trivial. Also, in such a case there is always a risk that the
semantics may “come out of control” and become non-denotational.

Now let us briefly discuss the concept of operational semantics. In contrast to denota-
tionality, the attribute of operationality is not very sharp and applies in the first place to
the definition of S rather than to S itself. Moreover, that attribute has never been formal-
ized. We can only point to some techniques and/or metalanguages which are regarded as
related to the operational style. For instance the Vienna Definitional Language (VDL) [19],
the structured operational semantics (SOS) [23] or the natural semantics [15] belong to that
group.

In general the definition of semantics is called operational if it describes some algorithm
of “executing” the syntax. A code of an interpreter is an example of a very operational
definition. Another such example — much more abstract in fact — may be a definition
written in G.Plotkin’s SOS [23]. Also definitions written in the so called Danish dialect of
VDM [2] are to a large extent operational in that sense — although they are denotational
at the same time (!) — since they usually describe an abstract interpreter.

In contrast to the attribute of denotationality, where we can always formally decide
whether a given definition is or is not denotational, whenever we talk about operational-
ity we can only argue about the degree to which our definition is operational in a given
context. ‘

In this paper we do not discuss much of the idea of operational semantics. We only wish
to express a claim that operational should not be contrasted to denotational. In author’s
opinion a definition of a software system must be always operational to some degree, that
degree depending on several factors such as e.g. the stage of the system development, the
target programming language where the system is to be implemented, the expected reader
of the definition, etc.

The attribute algebraic — as used today in the literature to name a certain equational-
axiomatic style (cf. e.g. [11]) — again refers to the definition of S, rather than to S itself, -
and again is not very sharp. Usually an algebraic definition consists of a set of equational
axioms which identify a class of the algebras of denotations Den. The corresponding syntax

A. Blikle | Why Denotational? 59

is common for all these algebras and is implicit in their common signature. For any Den the
function of semantics is the unique homomorphism from the algebra of ground terms over
that signature into Den. An algebraic definition in this sense guarantees that the defined
semantics is denotational. | i

In the sequel we shall try to convince the reader that a semantics should be always suffi-
ciently denotational and that it should be described at an appropriate level of operationality,
the latter depending on the current application. The author also believes that the algebraic
framework is most appropriate for the description of software whether or not we are using
axiomatic techniques and independently of the degree of operationality of the used semantics.

Whenever in the future we use the term software system or programming language we
always mean a triple which consists of a syntax Syn, of a denotation Den and of a seman-
tics S.

3. Basic Notation

Most definitions of semantics which we discuss in this paper are written in a so called model-
oriented style typical for the Danish dialect of VDM and for MetaSoft. In that style the
algebras of syntax and of denotations are constructed within some set theory, rather than
described axiomatically as e.g. in OBJ [12] or in ACT-ONE [11]. Below we briefly introduce
a notation which is used in our definitions. For more details we refer the reader to [5].

For any sets A and B:

A|B denotes the union of A and B,
A — B denotes the set of all total functions from A into B,

A = B denotes the set of all partial functions from A into B,

A = B denotes the set of all mappings from A into B, i.e. partial functions
defined over a finite subset of A,
A°* denotes the set of all finite strings (including the empty string) of the
elements of A.

Domain equations are written in the form e.g.:
sta : State = Identifier — Integer

by which we mean that each state is a total function from identifiers to integers and that
a typical element of the set State is denoted by sta possibly with indices. By f: A — B

and f : A= B we denote the fact that fis a total resp. partial function from A to B. In
our paper the formula a : A is used synonimously with a € A. It can be read as “a is of
type A”, which in some software specification languages means more than to be an element
of A (cf .Sec.9.) By dom.f we denote the domain of the function f. For curried functions
like f: A— (B — (C — D)) we write f: A— B — C — D. We also write f.a for f(a)
and f.a.b.c for ((f.a).b).c. For uniformity reasons each many-argument non-curried function
is regarded as a one-argument function on tuples. Consequently we write f.{ai,...,a,)
for f(ai,...,an). Formally this should have led us to writing f.(a) rather than f.a, but
we keep the latter notation as more natural and simpler. We also assume — for a better
readability of semantic clauses — that the syntactic argument of a function of semantics is
always enclosed in square brackets. E.g. we write C.[z := z + 1] rather than C.z := z + 1.
Iff:A=Bandg: B>C,then feg: A= (C where fog = {(a,c)|(I)(f.a=b& g.b=¢)}.
In the definitions of functions we frequently use conditional expressions of the form b — ¢, d

which stand for:
if b then c else d fi

60 A. Blikle | Why Denotational?

This construction may be nested in which case the expression b; — (a1,(by — ...(b, —
n,yQns1) .- .)) 18 written in a column:

L

by — ay,

b, — a,,
TRUE— @p41

Sometimes in conditional expressions we are nesting “local constant declarations” of the
form Let ¢ = exp; in exp or Let z; = exp; for ¢ = 1,...,n in exp. The scope of such a
declaration is the expression ezp.
For any partial function f: A= B, by f[b/a], where a € A, b € B, we denote a function
f[b/a] : A= B such that:
flb/al.e =(z=a— b, f.2)

By [b1/a1,...,bn/a,] we denote a total function on {ai,...,a,} which assigns b; to a; for
i=1,...,n. Of course, all alsmust be mutually distinct.

4. Denotational Semantics in an Algebraic Framework

As we have already mentioned in Sec.2., a denotational semantics may be understood as
a homomorphism between two many-sorted algebras. This section is devoted to a short
introduction of a mathematical theory of such semantics. More on an algebraic framework
of denotational semantics in our style may be found in [8] and a general introduction to an
axiomatic setting of algebraic semantics is [11].

By a signature we mean a quadruple:

Sig = (Sn, F'n, sort, arity)
where Sn is a nonempty set of sort names, Fn is a nonempty set of function names and:

sort : Fn — Sn
arity : Fn — Sn®*

are functions which associate the sorts of the results and of the arguments respectively
with any function name. By an algebra over the signature Sig, or shortly by a Sig-algebra,
we mean a triple Alg = (Sig,car, fun) where car and fun are functions interpreting sort
names as nonempty sets and function names as total functions on these sets respectively.
More precisely, for any sn € Sn, car.sn is a set called the carrier of sort sn, and for any
fn € Fn with sort.fn = sn and arity.fn = (sny,...,sn,), fun.fn is a total function
between corresponding carriers, i.e.

fun.fn:car.sny X ... X car.sn, — car.sn

If arity.fn = (), then fun.fn is a nullary function, i.e. it accepts only the empty tuple “()”
as an argument. The fact that fis a nullary function with values in A is denoted by f :— A
and the unique value of fis denoted by f.(). Nullary functions are also called constants.

In applications, and also in the examples, algebras are treated a little less formally and are
defined as collections of carriers and operations between them. In that case it is understood
that the signatures are implicit in the notation used.

Two algebras with the same signature are called similar. Given two similar algebras
Alg; = (Sig,car;, fun;)for i = 1,2, we say that Alg, is a subalgebra of Alg,, if for any
sn € Sn,

cari.sn C carg.sn

A. Blikle | Why Denotational? 61

and for any fn € Fn, fun;.fn is the restriction of fun,.fn to the carriers of Alg,. By a
homomorphism from Alg, (a source algebra) into Alg, (a similar target algebra) we mean
an H that assigns to any sort sn € Sn a function:

e

H.sn : cary.sn — cary.sn | ‘ (2)

called the sn-component of H, such that for any fn € Fn with sort.fn = sn if arity.fn =

(sn1,...,8n,) with n > 0, then for any tuple of arguments (ay,...,a,) € car.sny X ... X
car.sn, we have:
H.sn.(fun;.fn.{ay,...,a.)) = funy.fn(H.sny.aq,..., H.sn,.a,) (3)

By H : Alg, — Alg, we denote the fact that H is a homomorphism from Alg, into Alg,.
With every many-sorted function which satisfies (2) we may associate an Sn-sorted rela-
tion =gin Alg,:
=g .sn C cary.sn X cary.sn

called the kernel of H and defined as follows: for any a;,a; € car.sn,
a; =g.snay, If H.sn.ay = H.sn.a,.

Formally the kernel is a function =g which to every sort sn € Sn; assigns a binary relation
=g .sn in cary.sn. It is a well known fact that each =g .sn is an equivalence relation. The
many-sorted relation =g is said to be a congruence in Alg,, if for any fn € Fn; with
arity;.fn = (sni,...,sn,) and sort;.fn = sn and for any a;,b; € cary.sn;, i =1,...,n:

if a;=g.sn; b fori=1,...,n
then funi.fn.ay,...,a,) =p.sn fun;.fn.(b,...,b,)

The property described above is called the eztensionality property of an equivalence relation.
In the sequel we shall frequently refer to the following well-known fact:

Proposition 4.1. If H is an arbitrary many-sorted function which satisfies (2) then =y is a
congruence in Alg, iff one can construct such an algebra Alg, over the many-sorted family
of carriers {cary.sn|sn € Sn} that H becomes a homomorphism from Alg, into Alg,.

An element of an algebra is said to be reachable if it can be constructed from the constants
of the algebra by means of the operations of the algebra. An element which is not reachable
is called junk. For instance, in an algebra of integers (Int,1,+) all positive integers are
reachable and all non-positive are junk. A subset of car.sn which consists of all reachable
elements is called a reachable carrier of the sort sn. All reachable carriers are closed under
the operations of the algebra and therefore, if none of them is empty, then they constitute
a subalgebra of that algebra. We call it the reachable subalgebra. It is the (unique) least
subalgebra of a given algebra. If all the elements of an algebra are reachable, i.e. if the
algebra has no junk, then it is called a reachable algebra. The following well-known fact is
important for the theory of denotational semantics:

Proposition 4.2. If H : Alg, — Alg, is a homomorphism and Alg, is reachable, then:

1) the image of Alg, in Alg, is the reachable subalgebra of Alg,,
2) H is a unique homomorphism between Alg, and Alg,.

If for a given algebra Alg there is exactly one homomorphism into any algebra with the
same signature, then we say that Alg is initial, or — precisely speaking — that it is initial
in the class of all algebras similar with Alg. An algebra is called unambiguous if each of
its reachable elements may be constructed from the constants of that algebra by using the
operations of the algebra in exactly one way. For a more formal definition of the ambiguity

of algebras see [8].

62 A. Blikle | Why Denotational?

Proposition 4.3. An algebra is initial iff it is reachable and unambiguous.

For instance, the algebra (Int*,1,4) of positive integers is reachable but not unam-
biguous, hence not initial, since e.g. 4 may be constructed as ((1 + 1)+ 1)+ 1) or as
((1 4+ 1)+ (1 + 1)). If, however, we replace “+” by “+1” (successor), then the new algebra
is initial.

On an algebraic ground a denotational model of a software system is represented by
a triple (Syn,Den, S) where Syn is a reachable algebra of syntaz, Den is an algebra of
denotations and

S :Syn — Den (4)

is a unique corresponding denotational semantics. The algebra of syntax is always reachable
— syntax junk makes no practical sense — but does not need to be unambiguous. The
admission of ambiguous syntax distinguishes our approach from some other algebraic ap-
proaches to denotational semantics. It allows us to regard the algebra of syntax as a close
approximation of so called concrete syntaz rather than merely as an abstract syntaz. For a
discussion of that problem see [8].

Now, let us explain the introduced concepts in the context of a toy programming language.
That language constitutes a core for many examples which we discuss in this paper. Let
the syntax of our language be defined by the following CF-grammar written in the form of
a fixed-point set of equations [4]:

ide : Ide {z,y,2} (identifiers) (5)
exp : Faxp {1} | Ide | {(} Ezp{+}Ezp{)} (expressions)
com : Com Ide{:=}FEzp | Com{;}Com (commands)

An alternative less formal but simpler notation may be:

ide : Ide x|y |z (6)
excp : Ezxp 1 | Ide | (Ezp + Ezp)
com : Com Ide := Exp | Com

The carriers of the corresponding algebra Syn are the three sets (formal languages) defined
above and the operations, which are implicit in this grammar, are the following:

set_x i > Ide (and the same for y and z)

set_1 : — Ezp

make_exp : Ide — FEzp

plus : Fzp x Exp — Ezxp

asg : Ide x Exp — Com

follow : Com x Com — Com

where

set_z.() =z
set_1.() =1
make_exp.ide =1ide (transforms ident. into expr.) 7
plus.(expy,exp;) = (exp; + exp;) (7)
asg.(ide, exp) =1ide := exp

~ follow.{comy, comz) = comy; com;
In order to define the corresponding algebra of denotations we first define a domain of states:
sta : State = Ide — Integer |
and then we define three carriers of Den:

ide : Ide = {z2,y,2} (the denotations of identifiers)
eva : Fvaluator = State — Integer (the denotations of expressions)
eze : Executor = State — State (the denotations of commands)

A. Blikle | Why Denotational? 63

Observe that the denotations of identifiers are the identifiers themselves. Now we define the
operations of Den. Since Den is to be a homomorphic image of Syn, for each operation
op from Syn we define an operation || op || in Den, such that when || op || is applied to the
denotations of the arguments of op, it gives the denotation of the corresponding value of op:

|| set-z || : — Ide (and the same for y and 2)

|| set-1 || : — Fvaluator

| make_exp || : Ide — Ewvaluator

| plus || : Evaluator x Fvaluator — Evaluator

| asg || : Ide x Evaluator — Ezecutor

|| follow || : Ezecutor X Ezecutor — Ezecutor

where

||setz|].() =z
l|set-1]-() =1.0
|make_ezp||.ide.sta = sta.ide
|plus||-(evay, evas).sta = (eva,.sta) @ (evas.sta)
||lasg||.(ide, eva).sta = stal(eva.sta)/ide]

|| follow]||.(exe;, exes).sta = exes.(exey.sta)

In these equations 1.0 denotes the number which corresponds to the numeral (name) “1”
and @ denotes the arithmetical operation of addition (we are distinguishing here between
the syntactic element ‘+’, which is just a symbol and the corresponding arithmetical opera-
tion @). The equations are written in an implicit lambda-notation. For instance, the third
equation can be read as follows: ||make_expl| is a function that given an identifier ide returns
an evaluator ||make_exp||.ide which given a state sta returns that integer which has been
stored under ide in sta.

As is easy to prove, the algebra Syn is reachable and therefore a homomorphism S :
Syn — Den is unique if it exists. The proof of the existence of S is, however, not quite
trivial (cf. [8]) since the grammar which underlies (6) is ambiguous and therefore so is Syn.

Our homomorphism is a many-sorted function and therefore it may be regarded as a triple
of functions (I, E,C) where:

I : Ide — Ide
E : Ezrp — FEvaluator
C : Com — Ezxecutor

The definitions of these functions are of the form (3) and therefore are implicit in the cor-
respondence between || op || and op. Hence we do not need to write them explicitly. In a
more traditional approach, however, these functions are usually defined explicitly whereas
the definitions of || op |’s are implicit. In such a case we write:

I.[ide] = ide

E.[1].sta = 1.0

E.[ide].sta = sta.tde

E.[(expy + exp,)].sta = E.[exp].sta @ E.[exp;].sta
C.[tde := exp].sta = sta[(E.[ezp].sta)/ide]
C.[comy; comy].sta = C.[com,].(C.[com,].sta)

where the syntactic arguments of the function of semantics are traditionally enclosed in
square brackets (cf.Sec.3.)

If we are developing a denotational model of a software system in a traditional order — i.e.
first Syn, then Den and finally S — then we have to prove that Sis indeed a homomorphism.
In real-life situations this need not be a simple task. Besides, we can easily make a mistake
and construct an S which is not compositional. In the sequel we shall see some typical

64 A. Blikle /| Why Denotational?

sources of such mistakes. If, therefore, we want to be sure that the mathematical model
of a software system becomes denotational, we should start the development of that model
from the algebra Den. In that case we can always develop a custom-made syntax Syn such
that the existence of the corresponding unique homomorphism (denotational semantlcs) 1s
guaranteed by the way in which Syn has been developed. A systematic method of software
design along these lines has been described in (8].

5. Why Denotational?

The role of denotationality in software engineering is similar to the role of structurality in
programming. Both improve the readability, the comprehensibility and the maintainability
of a final product and both allow for the decomposition of a large task into a number of
independent subtasks. Also in both cases the non-convinced may give thousands of “clever
examples” where the principle of denotationality, respectively structurality, has been violated
in the derivation of a “smart” program. It has been known for years, however, that in large-
scale applications an anarchic cleverness brings always more disasters than benefits.

Readability is, of course, a property of a definition of semantics. The advantages of writing
the definitions of semantics in a denotational form are widely known — even if not widely
appreciated — and therefore we shall not discuss them here. This section is devoted to a
claim that the decision whether the semantics itself, i.e. the function S : Syn — Den, is to
be compositional, should be regarded as a design decision since it implies relevant properties
of the software system in question.

Claim 5.1. The denotationality of semantics allows structured top-down programming in
the corresponding syntax.

Consider an arbitrary software system represented by a denotational model
S : Syn — Den

where for the sake of simplicity we assume that the algebras Syn (of syntax) and Den (of
denotations) are one-sorted and that Syn and Den denote the corresponding unique carriers.
Each programming task in our system consists of the construction of a syntactic object
syn € Syn which for a given prespecified denotation den € Den satisfies the equation:

S.[syn] = den

Of course, if den is to be programmable at all (i.e. if it is to be a denotation of some syntax),
it must belong to the reachable part of Den, since the image of Syn in Den is always reachable
(Fact 4.2.) This means that there must be deny,...,den, in Den, syn,,...,syn, in Syn and
an operation
op:Syn x...x Syn — Syn

such that:

1) den =|| op || .(deny,...,den,) and

2) S.[syn;] = den; fori=1,...,n.

This means in turn that the task of finding a program for den may be split into the subtasks
of finding programs for each of den;. These subtasks may be assigned to independently
working groups of programmers, and when programming in the groups is completed, the
denotationality of S guarantees that

op.(syna,...,syn,)
realizes the global task, i.e. that
S.[op.(synq,...,syn,)] =| op || .(deny,...,den,) = den

A. Blikle | Why Denotational? 65

Of course, the problem of splitting den into the “right” den;’s need not to be easy since in
general there exist splits where den;’s are not reachable. A correct split, however, always
exists. As we shall see in an example which comes in Sec.6., if S is not denotational, then
it may be impossible to split some programming tasks into independently programmable
subtasks.

Claim 5.2. For each software systems with denotational semantics there is a systematic
(although not algorithmic!) method of deriving a sound and a relatively complete set of
program-correctness proof-rules.

Below we give a rough, half-formal, justification of that claim. A full discussion, which
requires the introduction of many technical arguments, would go outside the scope of the
present paper. ’ '

To say that a program is correct is to say that its denotation possesses a certain property.
Mathematically the properties of denotations are represented by n-ary total functions on
denotations called predicates:

pred : Predicate = Deny X ... X Den,, — Bool

where Bool = {true, false} and where Den; = Den for i = 1,...,n. Of course, in general we
may deal with more than one domain of predicates.

In order to expand the language of a software system by claims about programs we add
the domains of predicates to the algebra of denotations and we define some constructors on
them. These constructors identify a class of properties that we want to express by means
of predicates, such as e.g. partial or total correctness of sequential programs, liveness and
deadlock freeness of concurrent systems etc. As we shall see in an example which follows, this
may also require the introduction of some auxiliary carriers. The new algebra of denotations
corresponds to a language in which besides writing programs one can also express their
properties.

When we are done with the extended algebra we proceed to establishing proof rules which
most frequently are lemmas of, roughly, the following form:

for any reachable pred and any reachable deng,...,den, :
pred.(|| op || -(denq, ..., den,)) = true
iff 8
there exist predicates predy,...,pred, such that (8)

1) pred;.den; = true, 1 =1,...,n
2) ®.(pred,pred,,...,pred,)

where ®.(pred,pred;,...,pred,) expresses a certain relationship between predicates. We
establish such a lemma for each operation op : Syn x ... x Syn — Syn of the algebra of
syntax (notice that || op || denotes the counterpart of op in Den). Of course, if op :— Syn,
then ¢ = 0 and “iff” is followed only by ®.pred.

Lemmas constructed in that way can be used in structured-inductive proofs of programs’
correctness. Each of them enables the reduction of a global correctness problem — for a
compound object — to a number of local correctness problems — for the components of
that object. Of course, we can also develop a formalized proof system (a logic) in which our
lemmas become inference rules. The “if” part of each lemma guarantees the soundness of
such a rule and the “only if” — a relative completeness in the sense close to that of [10].

In general, by a completeness of a logic we mean the fact that every true statement
which can be expressed in the language of that logic can be proved. In the case of a logic
of programs we can only expect a so called relative completeness, since in every concrete
situation the applicability of each of our lemmas depends on the following three factors:

(i) that the required pred;’s are reachable, i.e. expressible in our logic,
(ii) that we are able to express condition 2) of (8) in our logic,

66 A. Blikle | Why Denotational?

(iii) that we are able to prove that condition in our logic, i.e. that we can prove it on the
ground of the corresponding theory of data (such as e.g. the theory of integers, of
records, etc.)

e I

Now, let us discuss an example. Consider the programming language defined in Sec.4.
We shall construct a corresponding Hoare-like proof-system for the partial correctness of
commands. First we expand the algebra Den of our language by two new carriers: Condition
— which constitutes an auxiliary carrier — and Predicate. The new algebra has five carriers:

ide : Ide = {z,y,2}

eva : FEvaluator = State — Real
exze : FErecutor = State — State
con : Condition = State — Bool
pred : Predicate = Fzecutor — Bool

Then we define the constructors of conditions and predicates. As the constructors of condi-
tions we choose e.g.:

|less|| : Ewaluator x Evaluator — Condition
land|| : Condition x Condition — Condition
etc., where:

lless]|-(evaq, evas).sta = evay.sta < evas.sta
|land]|.(con1, cons).sta = cony.sta & con,.sta

Of course, in both definitions ‘=" denotes the equality in Bool. For predicates we define just
one constructor, which corresponds to the property of partial correctness of commands. This
constructor is of the type:

||lparcor|| : Condition x Condition — Predicate
and sincecommands in our language represent total functions, is defined as follows:

||parcor||.(cony, cony).exe =
(Vsta € State)[if con,.sta = true then con,.(eze.sta) = true]

Now we can formulate our lemmas. For a better readability we assume that:
pre con; :ere post con;

stands for ||parcor||.(coni,con,).exe = true. We formulate one lemma for each of our two
constructors of commands — “follow” and “asg” — introduced in Sec.4.:

J

for any con,, cony, and any ere;, exes :
pre con; : follow.(exe;,exe;) post con,
iff \
there exist conditions cony;, and congy such that 9)
1) pre con; : exe; post conyy ' ‘
pre cony; :exe; post con,
2) (Vsta)(if coniy.sta = true then conys.sta = true)

for any cony, con, and for any ide, eva:
pre cony :asg.(ide,eva) post con, '
ifF (10)
(Vsta)(if con,.sta = true then con,.sta[(eva.sta)/ide] = true)

Observe that the form of (10) is such as if the syntactic operation asg were nullary, which
is, of course, not the case. In our example we have not introduced predicates for identifiers

A. Blikle | Why Denotational? 67

and evaluators, and therefore we do not introduce any statement that corresponds to 1) of
(8), and in the clause corresponding to 2) of (8) we refer directly to ide and eva rather than
to the predicates on them.

It should be also noticed that in (9) and (10) we have omitted an explicit assumption
about the reachability of predicates. This makes our lemmas a little stronger than in the
general case (8). In order to make them exact analogues of (8) we should have assumed that
our con.s are reachable, which in this particular case is not necessary. On the other hand
all the predicates that appear in our lemmas are of the form:

llparcor||.{con,, cony)

and hence they are not quite arbitrary.

As has been already said earlier, our lemmas may be used in the construction of a program-
correctness logic — in this case a Hoare’s partial-correctness logic. Assume that the expanded
syntax of our programming language includes the following syntax of formulas and of cor-
rectness statements:

for : For = FEzp{less}FEzp | For{and}For (formulas)
cst 1 Cst = {pre}For{:}Com{post}For (correctness statements)

This syntax has an obvious semantics and the proof rules which correspond to (9) and (10)
are the following:

pre for; :com; post fory

pre fori2 :com, post forg

f07'11 = fOT'12

pre for; :com;;comy post for,

fory = for;lexp/ide]

pre for; :ide:= exp post for,

In these rules the operator ‘=’ corresponds to a usual implication, but in a more realistic
case where conditions are partial- or three-valued functions this is a so called superpredicate
“stronger than”, cf. [7] and [16]. Of course, fori[exp/ide] denotes a formula which results
from for; by substituting exp for all free occurrences of ide. Each “enumerator” expresses
a conjunction of metaformulas from which one may infer the “denominator”. Observe that
since in these rules we are talking about formulas rather than about conditions we have now
implicitly introduced the assumption about the reachability of the involved predicates.
Readers interested in the mathematical problems related to the construction of logics for
the denotational models of software may find more technical material in [5], [7] and [16].

6. Why Not Non-Denotational?

In the former section we have discussed some advantages of denotational semantics. Here
we show that these advantages may disappear if a semantics is not denotational. Consider
as an example our little programming language of Sec.4. which we now modify by setting:

com : Com = Ide{:=}Ezp | {(}Com{;}Com{)}

and C.[(comy; comy)] = (11)
fai.comy # fai.comy— C.[comy]e C.[com;] '
TRUE — nullsta

where

68 A. Blikle | Why Denotational?

fai.com = first assignable identifier in com, i.e. the left-hand side

identifier in the first assignment of com,

nullsta = a function that transforms any state to [0.0/x,0.0/y,0.0/z]

Similarly to our notation for 1.0vs. 1 (Sec.4.) 0.0stands for the number “zero”, whereas “0”
denotes the corresponding syntax (symbol).

In the new version of the language the syntax has been modified by introducing paren-
theses into compound commands (since otherwise the definition (11) of the semantics of
commands would be ambiguous) and the semantics has been modified by making the ef-
fect of commands dependent on fai’s. The latter modification makes our semantics not
denotational since now C.[(comi; com2)| depends on more than just C.[com,] and C.[com.).
We prove that fact by showing that the equivalence relation =¢is not a congruence (cf. -
Proposition 4.1.). Indeed:

Cllz:=1y:=2)] =C.(y:=2;z :=1)] but
Cll(z:=1y:=2)5y = (¢ +y)) # C[((y := 252 :=1);9 = (z + y))]
Although our semantics is not denotational, its definition is still in a structural inductive
form, hence it is easy to understand and implement. Why then should we bother about
the non-denotationality? As we are going to see, structured programming and structured-
inductive proofs are not possible in the new language.

Consider first the problem with structured programming and take as an example a task
of writing a program com that loads 2.0to z and to y, i.e. a program which satisfies the
equation:

C.[com].sta = sta[2.0/z,2.0/y] (12)
Now assume that we want to split this task into two new ones, described by two following
specifications:

C.[com,].sta = sta[1.0/z,1.0/y]
C.[com,).sta = sta[(E.[(z + y)].sta)/z, E.[(z + y)].sta)/y]

If we assign these subtasks to two programmers, then the first has a choice between at least
two following commands (we use a simplified intuitive notation for commands):

either (z:=1;y:=1) or (y:i=1; z:=1)
and the other has a choice between at least the following commands:
either (y=(z+y);z:=y) o (z:=(c+y);y:=12)

As is easy to see, unless our programmers communicate about the syntax of their target
programs, they cannot guarantee that com,;com;, will satisfy (12). Hence in our language
top-down structured programming is not feasible.

Now consider the problem of structured-inductive proofs. First observe that in the new
language none of the two implications in (9) — i.e. the “if” and the “only if” — is true.

Indeed, although
pre true : C.[(z:=1;2:=1)] post =0

is certainly satisfied, there are no intermediate assertions which can be used in a proof of
that fact based on (9), since

‘ precon :C.[z:=1] post z =0
- is false for any con € Condition. Similarly, although both
pre true : C.[z:=1] post z =1
prez=1 :C.z:=1] postz =1
are true, the statement
pre true : C.[(z:=1;z:=1)] post z =1

1s not true.

PROGRAM ONE:

A. Blikle | Why Denotational?

PROGRAM TWO:

69

type type
object =record object =record
no,size : integer; : no,size I integer;
end end
item =record item =object
no,size : integer;
end;
var : var
T : object; T : object; -
y o item y : item
begin begin
=y Ti=y
end end

Figure 1 Two non-equivalent Pascal programs

It is also not very easy to modify the logic of Sec.5. to the new language. The major
problem consists in the fact that in the present case we do not have — and we cannot have —
an algebra of denotations. We cannot apply, therefore, the routine way for the construction
of logic described in Sec.5. In fact, we cannot use here any of the known techniques of formal
logic, since all these techniques are inherently based on the assumption that the underlying
language of terms and formulas has a denotational semantics. In the usual formal logic —
whether classical, algorithmic, temporal or any other — we never talk about the properties
of (the syntax of) formulas. And here we should have to do that in order to formulate a
proof rule for ”;”.

In the opinion of the author the only rational way of solving the problem consists of
“repairing” a non-denotational semantics by making it denotational and then applying the
method of Sec.5. We shall discuss this solution in Sec.8.

Our example of a non-denotational programming language has been made a little artificial
in order to be sufficiently simple. Similar examples may be shown, however, on a more natural
ground. Take, for instance, Pascal and its concept of a type. As we can read in [14]: “A data
type determines a set of values which variables of that type may assume...”. This suggests
that types in Pascal are just the sets of values. If we assume that, then the type definitions
of the programs on Figure 1 have equal denotations. At the same time, however — according
to the standard of Pascal — the first program generates a type error whereas the second
does not. This leads to a conclusion that the equivalence relation which corresponds to our
semantics is not a congruence, hence that our semantics is not denotational.

Our example should not be understood as an argument that Pascal cannot be given
a denotational semantics. That example only indicates that in the context of Pascal the
interpretation of types as sets is too abstract to be denotational. Two next sections are
devoted to a general discussion of the relationship between the denotationality and the
abstraction of a semantics.

7. Denotationality Versus Abstraction

Each semantics describes the effect of the execution of syntax. Of course, such an effect may
be described in a more or less detailed way. For instance, the effect of the execution of an
imperative program may be described by the set of sequences of memory states generated
by all executions of that program, or — more abstractly — by a corresponding input-output -
function on states, or — even more abstractly — by a function on states truncated to the
global variables of the program. The more abstract is a semantics, the less information is

70 A. Blikle | Why Denotational?

carried by denotations. The class of all semantics of a given syntax may be viewed as a
spectrum preordered by a reflexive and a transitive relation of abstraction. On one end of
that spectrum we have the least abstract semantics — which maps each syntactic object
identically onto itself — and on the other end, the most abstract semantics, which maps all
syntactic objects of the same sort onto a common denotation.

Of course, both extremes of our spectrum are trivial. A good semantics should provide
all the relevant information about the effect of the execution of a piece of syntax,
but at the same time it should hide all the irrelevant details of the execution itself. Of
course, what is relevant and what is not depends on the current application. We should also
be aware of the fact that if a semantics is to be denotational, then the abstraction levels
of its components (e.g. of I, E, C, in the example of Sec.4.) must be mutually balanced.
For instance, if the denotations of expressions do not carry enough information in order
to compute the denotation of commands in which they appear, then the semantics is not
denotational.

In Sec.6. we have seen two examples of non-denotational semantics. In the first example
the denotations of commands do not include an information about fai’s, although that
information is relevant when we execute compound commands. It seems intuitively rather
clear that since we have made the execution of commands dependent on fai’s, we should
have put an appropriate information on fai’s into the denotations, i.e. we should have made
our semantics less abstract. In the example with Pascal, the set-theoretical meaning of a
type is not sufficiently informative since each compiler of Pascal discriminates between two
compound types with different names, unless they have been explicitly declared to be equal.
The compilers of Pascal compare the definitions of types rather than their set-theoretical
interpretations. We need, therefore, more information about a type — more than just the
corresponding set of values — in order to predict the effect of the execution of a program
where that type has been used. Again, in order to make our semantics denotational we have
to make it less abstract.

This section is devoted to a formal discussion of a trade-off between denotationality and
abstraction. Let us start from introducing a few basic concepts. Consider two, not necessarily
denotational, semantics of the same syntax:

S : Syn — Den
S" : Syn — Den’

where Syn = (Sig, car_s, fun_s) and Sig = (Sn, Fn, sort, arity). We assume that if S or
S’ are not denotational, then Den respectively Den’ are just families of sets rather than
algebras. If for any sn € Sn and any syn;, syn; € car_s.sn:

S'.sn.syn; = §'.sn.syn, implies S.sn.syn; = S.sn.syn, (13)
i.e. if =¢ C =gin a componentwise way, then we say that:
S’ is less abstract than S

We also say that S’ is adequate for S, since S’ bears — in a certain sense — at least as
much information as S. Whenever we change a semantics by enriching denotations, the new
semantics becomes less abstract (i.e. more informative) than the former.

We say that S and S’ are equally abstractif =g:==g. Of course, equally abstract semantics
need not be equal. However, if § and S’ are equally abstract and one of them is denotational,
then so must be the other. In other words: we cannot adequately repair non-denotationality
without a loss of abstraction.

Proposition 7.1. For any S there exists a maximally abstract $’ which is both denotational
and adequate for S.

A. Blikle | Why Denotational? 71

Proof:

Let =*be the transitive closure of the union of all congruences which are less abstract than
(which are the subsets of) =g. This relation is the largest congruence included in =5. The
corresponding homomorphism S’ : Syn — Syn/ =* is the maximally abstract denotational
semantics which is adequate for S. 0

Of course, the semantics S’ constructed in this proof is not the unique semantics that
satisfies Proposition 7.1. There are many such semantics, but all of them are equally abstract
with S'.

When we construct a semantics we should care not only about its global level of abstrac-
tion, but also about a balance between the abstraction levels of the semantics assigned to
different sorts of Syn. If syntactic objects of sort sn; are used in the construction of syntac-
tic objects of sort sny, then on one hand the denotations of sort sn; should be sufficiently
informative in order to enable the calculation of the denotations of sort sny, but on the other
hand they should not carry more information than necessary, i.e. they should be as abstract
as possible. In order to express that claim in a more formal way we introduce a few technical
concepts.

Let Syn be a many-sorted algebra of syntax. By a contezt of arity (sn;) and sort sn, we
mean a function of the type

ct car.s8.8ny — €ar_s.8Nny

(where car_s.sn;’s are the carriers of Syn) which represents a ‘term with a hole’ like e.g.
(cf.Sec.4.):

(Acom)(com;z :=1) :Com — Com

(Aezxp)(y :=ezp;z:=1) :Ezp — Com

(Mide)(y :=ide+ z;z:=1):Ide — Com

(Mide)(ide + z) :Ide — Ezp

For a more formal definition of that concept, based on the notion of derived operators, see
e.g. [28]. Now, let
S : Syn — Den

be an arbitrary — not necessarily denotational — semantics. Two syntactic objects syn;
and syn, of the same sort sn; are said to be context-equivalent w.r.t. a sort sny, in symbols

syny CE.(sny,sny) syn,

if one of them may be replaced by the other in any context of sort sn, without changing the
meaning of the whole phrase, i.e. if for any context ct : car_s.sn; — car_s.sny

S.sng.(ct.syny) = S.sny.(ct.synsy)

Given two sorts sn; and sn, we say that the semantics S.sn; of car_s.sn, is sufficiently abstract
w.r.t. the semantics S.sny of car_s.sn,, if any two syntactic objects of the sort sn; which are
context-equivalent w.r.t. sng, have the same meaning, i.e. if for any syn;, syn, € car_s.sn;:

syny CE.(sny, sny) syn, implies S.sny.syn; = S.sny.synsy (14)

For instance, we say that the semantics of expressions of a programming language is suffi-
ciently abstract w.r.t. the semantics of commands, if any two expressions which are context-
equivalent in commands have the same denotation.

If in (14) the opposite implication holds, then we say that S.sn; is sufficiently informative
w.r.t. S.sn;. '

Proposition 7.2. A semantics S is denotational iff any two of its components S.sn; and
S.sn; are sufficiently informative w.r.t. each other.

72 A. Blikle | Why Denotational?

The proof of that proposition is quite routine, but since it requires the formalization of the
concept of a context we omit it.

In many software systems there exists a sort — usually called ‘programs’ — such that
the syntactic objects of that sort may be executed without any context, whereas the objects
of all other sorts — e.g. expressions, declarations or commands — can be executed only in
the context of programs. The user of such a system is, of course, mainly interested in the
execution of programs and in the semantics he wants to see the effect of that execution at an
abstraction level adequate for the intended applications. For instance, in a general-purpose
programming language an adequate abstraction level for programs may be represented by I/O
functions, whereas in a programing language for controlling robots — by sets of sequences
of states. The designer of the system should, therefore, choose an adequate abstraction
level for the semantics of programs in the first place, and then he should ‘tune’ to it the
abstraction level of all other component semantics in such a way that the whole semantics
becomes denotational and maximally abstract.

If in a semantics S all its components S.sn;, including the component for programs, are
sufficiently abstract w.r.t. the semantics of programs, then R.Milner [20] calls S fully abstract.
For instance, the semantics of our toy programming language of Sec.4. is fully abstract, if
we assume that commands play the role of programs, but a semantics of a programming
language with blocks, where the denotations of blocks include an information about local
variables, is in general not fully abstract. In the latter case we can construct two blocks
which have different denotations although they are interchangeable in any program.

The term ‘full abstraction’ has not been chosen very adequately with respect to what
the word ‘full’ means in colloquial English. When we say ‘fully abstract’” we could have
expected that the semantics in question is ‘as abstract as it can be’. In fact, however, it
is only sufficiently abstract with respect to the semantics of programs. If, therefore, the
semantics of programs is little abstract, then the other semantics may be also little abstract.
For instance, a trivial semantics

S*:Syn — Syn

which maps syntax identically into itself (the supersctipt ‘s’ in S° stands for ‘syntaz’) is
fully abstract. Since it is also denotational and adequate with respect to any other semantics
of the same syntax, we can formulate the following trivial proposition about the reparation
of non-denotational semantics:

Proposition 7.3. For any semantics S : Syn — Den there exists another semantics
S’ : Syn — Den’ such that:

1) §’ is denotational,
2) S" is adequate w.r.t. S,
3) S’ is fully abstract.

Of course, 3) above makes only sense if the common signature of Syn and Den contains
a sort of programs. For the sake of further investigations (in Sec.8.) we slightly generalize
the concept introduced by R.Milner and say that a given semantics S is fully abstract w.r.t.
a given sort sn if all S.sn;’s are sufficiently abstract w.r.t. S.sn. We also assume that the
concept of full abstraction is applicable to any semantics rather than only to denotational
semantics, as it was the case with Milner’s definition.

8. Repairing Semantics

In this section we discuss the problems of repairing non-denotational or not fully abstract

semantics. We start from non-denotationality. »
As Proposition 7.3. indicates, the repalrablhty problem for non-denotational semantics

should be formulated with a a certain care, since otherwise it may become trivial. Even if

A. Blikle | Why Denotational? 73

we request that besides satisfying (1)-(3) of that proposition the new semantics preserves all
the information that was carried by S, we can still find a trivial solution, namely

S . Syn — Den x Syn

where ‘d + s’ stands for ‘denotations plus syntaz’ and where S%+.syn = (S.syn,syn). The
semantics S is as little abstract as S° of Sec. 7., i.e. =ga+s==gs. The latter is denotational
at the expense that it says nothing about the execution of programs. The former says
everything that S does, but it adds the whole syntax to that information. If we want to use
S4+¢ in order to tell a programmer what his program is supposed to do, we have to give him
that program explicitly. The semantic $%t* is therefore as useless as S°.

Although of no value for applications, $%** indicates a certain way of searching for
the most abstract denotational semantics which is adequate for S (cf. Proposition 7.1.)
In fact, we can always try to repair S by a semantics S", (‘r’ stands for ‘repair’) where
S”.syn = (S.syn, A.syn) and where A.syn provides the lacking information which makes S”
denotational. In the worst case A.syn = syn, but frequently we can do much better.

Consider as an example the non-denotational language described in Sec. 6. and let, a
little informally, S = (I, E, C). In this semantics C is not sufficiently informative w.r.t.
itself since the denotations of commands lack the information about the first assignable
identifier and therefore the denotation of a compound command cannot be “computed”
from the denotations of its subcommands. In order to repair S we have to add the missing
information to the denotations of commands. This leads to a semantics S™ = (I, E, C"),
where I and F are the same as in S and where:

C" : Com — Ezxecutor x Ide

C".[ide := exp] =
((Asta)sta[E .[ezp)].sta/ide], ide) (15)

C".[(comy; comy)] =
let (exe;, ide;) = C".[com;] for i = 1,2 in
idey # ide; — (exe; o exey, ide;) (16)
TRUE — ((Asta)nullsta, ide;)

The semantics S7 is, of course, both adequate for the former one and denotational. We can
also show that it is a maximally abstract such semantics. Indeed, assume that S’ = (I', E’, C")
is denotational, inherently more abstract than S” and adequate for S. By these assump-
tions I' and E’ must be equally abstract with I and E respectively. Therefore C' must be
inherently more abstract than C7, i.e. there must be two commands com; and com, such

that:
1) C".[com;] # C".[com,] and
2) C'.[com;] = C'".[com,)]

Let C7.[com;] = (exe;, ide;) for 1 = 1,2. From the adequacy of C' for C and by 2) we may
conclude that C.[com;] = C.[com,], i.e. exe; = exe;. Therefore, by 1), ide; # ide;. In that
case:

C.[(comy ; ides :=1)] # C.[(coms ; idey := 1)]
and hence, again by the adequacy of C’ for C,
C'.[(comy ; idey :=1)] # C".[(coms ; ideg := 1))

which in the virtue of 2) contradicts the denotationality of S’.
It is also not difficult to show that our semantics S is fully abstract w.r.t. commands.
One should only prove that any two identifiers, any two expressions and any two commands

74 A. Blikle | Why Denotational?

which have different denotations can be discriminated by a certain command-context. An
easy proof is left to the reader.

It should be stressed that although in our example the most abstract denotational se-
mantics that adequately repairs S turned out to be fully abstract, it does not need to be so
in general. In fact, S” is fully abstract because the original semantics S was so. Assume,
however, that we repair a semantics which is similar to that of Sec. 6., but where the de-
notations of expressions include also their syntax. In that semantics E is not sufficiently
abstract w.r.t. C and that property will be preserved in the corresponding most abstract
S”, since on the way from S to S” we are lowering the level of abstraction.

The denotationality and the full abstraction of a semantics may be both repaired (or
spoiled) either by lowering or by raising the abstraction level. It is so since both these
properties require a certain balance between the abstraction levels of the components of
a semantics. Let us illustrate this claim by an example where we compare four different
semantics.

Assume first that we extend the syntax of the language defined in Sec. 4. by a new sort
called programs:

prog : Program = {begin} Com {end}

For the extended syntax we define four different semantics:

1. Semantics S, denotational and fully abstract, which results from the (natural) semantics
defined in Sec. 4. by setting:

P : Program — Executor
P.]begin com end] = C.[com]

2. Semantics S™, not denotational but fully abstract, which results from the semantics
of (1) by assuming that C™® has been spoiled as in (11), by making the denotation of
a compound command dependent on first assignable identifiers. This semantics is not
denotational since C™ is not sufficiently informative with respect to itself; C™¢ does
not give enough information for predicting the effect of the execution of a command in

the context of another command.
3. Semantics $™/¢, denotational but not fully abstract, which results from the semantics

of (1) by assuming the following:

C™® . Com — Ezecutor x Ide
P™® . Program — Ezecutor

C™e [ide := exp] =

((Asta)sta[(E.[exp].sta)/ide], ide)
C™e [(comy; comy)] =

let (exe;,ide;) = C’”f“.[com,-] for i=1,2In

(ezej @ exey, idey)

P"'* [begin com end] = first.(C™/*.[com])

Here the denotations of commands include the information about fai’s, but unlikein (15)
this information is irrelevant for the “executional effect” of commands. The semantics
Snfa is not fully abstract since C™/* is not sufficiently abstract with respect to P™fe.

Indeed, C™/® gives more information then one needs to calculate the denotations of

programs.)
4. Semantics S”, denotational and fully abstract, which results from the semantics defined

at the beginning of this section (i.e. C” is defined by (15) and (16)) by setting the
semantics of programs as follows: ,

P" : Program — Erecutor x Ide

PT.[begin com end] = C".[com]

A. Blikle | Why Denotational? 75

(Eze, Exe)
d&fa

(Fze, Eze) S (Eze x Ide, Eze)

nd&fa ‘ d&nfa
den. and impl.

(Eze x Ide, Exze x Ide)
d&fa

\

Figure 2. A diamond of semantics

If by Sy — S, we denote the fact that S; is inherently less abstract than S;, then our four
semantics constitute the diagram of Fig. 2, where in parentheses we indicate the current
domains of the denotations of commands and of programs, respectively.

Let us analyze this diagram more carefully since it puts some light onto the nature of
denotationality and full abstraction. In our discussion we shall use an intuitive concept of an
implementation of a language (i.e. of its function of semantics) by which we do not mean the
literal code of an interpreter or a compiler, but rather the way in which software is executed,
e.g. whether we do or we do not care about fai’s.

When we pass from semantics S” to S™ we change the denotations of commands from
FEzecutor x Ide to Executor without changing their implementation. We loose the informa-
tion about fai’s, while the semantics (implementation) still needs it. This makes C" not
sufficiently informative w.r.t. itself, which makes $™ not denotational. Full abstraction is
preserved.

In passing from S™ to S we change the 1mplementat10n of commands without chang-
ing their denotations. We recover the denotationality of semantics by making- it (and the
implementation) independent on fai’s. The semantics of commands becomes sufficiently
informative w.r.t. itself. Full abstraction is preserved.

On the way from S™ to S™/* we change the implementation of commands and the de- .
notations of programs. Full abstraction is spoiled by the overhead of information in the
denotations of commands. We keep there the information about fai’s although that infor-
mation is not used anymore by the semantics (and the implementation) of commands and
programs. Observe that the semantics $™/* which is inherently more abstract than a fully
abstract semantics S” is not fully abstract itself. Denotationality is preserved since new
denotations provide all information that is needed to make semantics compositional: the
semantics of programs does not refer to fai’s.

Finally, when we pass from S™°® to S we only change denotations. We repair the full
abstraction of $™/® by removing the overhead of information from the denotations of com-
mands. Of course, the removal of an unnecessary information does not spoil denotationality.

As we already said earlier, both non-denotationality and non-full-abstraction reflect a
lack of ballance between the abstraction levels of the components of a semantics. In addition
to that our analysis indicates that they also reflect an imballance between the amount of
information which is needed by the implementation and which is included in the denota-

76 A. Blikle | Why Denotational?

tions. There are, therefore, two strategies of repairing semantics. One consists of tuning the
implementation to what we are willing to talk about in semantics, e.g.:

e we repair denotationality by passing from 5™ to S, or
e we repair full abstraction by passing from 5™/ to S”

and the other one consists of tuning the denotations to what the implementation needs, e.g.:

e we repair denotationality by passing from $™ to S, or
e we repare full abstraction by passing from $™/¢ to S.

The choice between these strategies is, in each concrete case, a pragmatic issue. We change
denotations whenever we feel that the executional effect of software meets our expectations
and that all we want to do is to describe that effect in a denotational resp. fully abstract
way. We change implementation if we decide that the current denotations adequately express
the intended effect of the execution of software, but the implementation does not meet that
expectation.

In the case of S™ the designer of the language should probably conclude that the denota-
tions of commands are adequate and therefore he should correct his semantics by changing it
to S —i.e. by changing the implementation — rather than to S”. The case where the other
strategy seems to be more appropriate is that of Pascal (Sec. 6.) In that case the designer
should change the denotations rather than the implementation. Pascal types should not be
regarded as sets since they have to be compared during the execution of programs, and the
comparison of sets may be computationally too expensive, if computable at all. Readers
interested in a denotational model of Pascal types are refered to [5]).

To complete our discussion let us emphasise that the problem of repairing a semantics
is inherent to the traditional style of constructing denotational models of software, where
syntax is given in the first place and semantics is defined for it later. As was already pointed
out in Sec. 4., when we design a software system from a scratch, a safe systematic way of
constructing a denotational semantics consists in starting the designing process from the
algebra of denotations. In that case we have no syntax around and therefore we have no
chance of making the constructors of denotations dependent on syntax, hence of making the
future semantics not denotational. Once the algebra of denotations is ready, we derive an
appropriate syntax for it and the derivation method guarantees that the resulting semantics
is denotational. E.g. it is technically impossible to construct S™® in using that method.

Now let us briefly comment on the construction of a logic for the non-denotational lan-
guage defined in Séc. 6. As we have mentioned there, the only rational way of tackling the
problem of logic in such a case seemed to first repair the non-denotationality of the semantics
and then to construct the logic in the usual way, i.e. as described in"Sec. 5. For the sake of
the present discussion let us assume that we repair the semantics S™ by changing it to 7,
since otherwise — i.e. in the case of § — the logic has been described already in Sec. 5. For
simplicity we omit programs in our investigations. |

Let us start from defining explicitly two constructors of command denotations for which
we intend to develop our proof rules. Let

llasg||” : Ide x Evaluator— Executor x Ide
|follow||” : Ezecutor x Ide — Ezecutor x Ide

be defined by:

llasg||".(ide, eva) = (||asg||.(ide, eva), ide)
||follow|| {(exey, ider), (ezey, idey)) =
- idey #-ide; — (exe; @ ezey, tde;)
ide; = ide; — ((Asta)nullsta, ide,)

A. Blikle /| Why Denotational? 77

In order to construct a Hoare-like logic of partial correctness for the new semantics we have
to modify the concept of partial correctness in such a way that it captures also an information
about fai’s. Let:

||parcorfai|] : Condition x Condition x Ide — Predicate

|parcorfail|.(cony, cony, ide).(eze, ide.) =
(Vsta € State)[con;.sta = true implies con,.(eze.sta) = true] and ide = ide,

and let
pre con; : exe post con, fai ide

stand for
|parcor fai||.(cony, cong, ide).(exe, ide.) = true

Let allzero € Condition where:
allzero.sta = true iff (Vide)(sta.zde = 0.0)

The modified rules are as follows:
for any con; and (eze;,ide;) for i =1,2:
pre con; : || follow|".{(exe1,1de;).(exes, tdey)) post con, fai ide;
iff
there exist conditions conyy, conyp such that :
— pre con; : exe; post conyy fai idey (17)
— pre conyy : exey; post con, fai idey
—if id61 7£ idez
then (Vsta)(conyy.sta = true implies conys.sta = true))
— if i1de, = ide,
then (Vsta)(con,.sta = true implies allzero.sta = true))

for any con;, con, and for any (ide, eva) :
pre con; : ||asg||".(ide, eva) post con, fai ide
iff |
(Vsta)(cony.sta = true implies cong.stal(eva.sta)/ide] = true)

(18)

For the sake of brevity we shall not transform these rules into formalized inference rules as in
Sec. 5. Let us only mention that although the rules developed here correspond in some sense
to the language of Sec. 6., they are not formally applicable to that language. The reason is
that :

pre con; : exe post cony fai zde

describes a property of (eze, ide) rather than of eze, whereas eze, rather than (eze, ide),
are the denotations of commands in the language of Sec. 6. We can also see quite clearly
now that neither for S7, hence also nor for §™¢, there exist predicates on executors that
could be used in the proofs of their partial correctness. This means that there is no logic
of structured-inductive proofs of the partial correctness of commands for the language of

Sec. 6. ‘ :

9. On the Borderline of Denotationality

No theory can capture all the reality. In some applications a very orthodox attitude to the
principle of denotationality may lead to overcomplicated or to non-implementable models.
In such cases a pragmatic solution may consist of adding a non-denotational supplement -
to a denotational core of the model. As long as the bulk of the system is described in

78 A. Blikle | Why Denotational?

a compositional way, such a style may be still acceptable. Below we discuss two typical
examples. A third, rather singular, is discussed in Sec. 10.

Our first example is related to types in programming languages. As we have mentioned
already in Sec. 5. and Sec. 6., types that we want to think about may be sets with a non-
computable equality relation, whereas types that we implement are usually less abstract
objects, e.g. some equivalence classes of expressions with a computable equality relation.
The former are called domain types and the latter are called symbolic types. Each domain type
may be, in general, represented by many symbolic types, but each symbolic type represents
exactly one domain type. The reader is referred to [5] for an example of the use of symbolic-
versus domain types in the semantics of Pascal, and to [1] for a more general treatment of
that problem. ‘ ,

There are two different strategies of constructing a mathematical semantics of a pro-
gramming language with types. One — which is probably most common today — consists
of assuming that the domain types appear explicitly in the semantics, i.e. are assigned to
variables, whereas the symbolic types are implicit. In that case, whenever we compare the
types of two variables we check if a certain equivalence relation between the definitions of
these types is satisfied. That strategy is most frequently associated with the technique of
partitioning a semantics into a static semantics and a dynamic semantics, which is typical
for VDM (see e.g. [2]). The corresponding semantics is then in general not denotational
(cf.Sec. 6.)

The second strategy is dual to the former and consists of assuming that symbolic types
are explicit in the semantics, whereas domain types are implicit. In that case variables are
typed by symbolic types and whenever we compare the types of two variables we compare
the corresponding symbolic types rather than their definitions. This makes our semantics
denotational. In addition to the definition of semantics we define in that case a function

D : SymbolicType — DomainType

which tells the user what the symbolic types stand for. Of course, our language should have
the following adequacy property:

"If in the execution of a program a variable v has been declared to be of a type
symtype, then everywhere in the scope of that declaration the value of v belongs
to D.symtype.”

In general SymbolicType and DomainType constitute two algebras over the same signa-
ture. That signature usually contains several sorts which correspond to different classes of
types, such as e.g. scalartypes, recordtypes, filetypes, etc., plus a sort posessing the same car-
rier Bool in both algebras. The latter sort is needed in order to define an equivalence relation,
a subtype relation, etc. between types. Now, if we forget about the boolean sort, then D is
usually a homomorphism, hence it may be regarded as a denotational semantics of symbolic
types. However, in the full algebra of types D is not a homomorphism since two non-equal
symbolic types may denote the same domain type. The (partial) non-compositionality of D
is inherent to the difference between symbolic- and domain types and therefore it cannot be
avoided.

The definition of D may be regarded as a non-denotational supplement of the main
definition of semantics. This fact is not very harmful since it neither affects the feasibility
of structured programming in the language nor the construction of the corresponding logic.

Another typical situation where we may wish to slightly relax the principle of denota-
tionality corresponds to the case where we modify an existing syntax by introducing some
notational conventions. For instance, we may wish to allow for the optionality of paren-
theses in expressions while introducing some priority rules for operators. In that case th
mathematical model of our system is usually described by the following diagram: .

SynE 5 Syn o Den

A. Blikle | Why Denotational? 79

where SynE denotes the extended syntax and P is a preprocessing function. In general P
is not a homomorphism in the strict sense of the word since SynE may have a different
signature than Syn. However, P is usually a homomorphism in a generalized sense, namely
a homomorpism over a morphism of signatures. We shall not go here into any technical
details, but explain our remark on a simple example. Consider two syntaxes of arithmetic
expressions described by the following equational grammars (cf.[4]):

SynE Syn

EzpE = Cpn |Cpn{+}EzpE Ezp = {z}

Cpn = Fac | Fac{*}Cpn |(Ezp{+}Ezp)
Fac. ={z} |(EzpE) |(Ezp{}Ezp)

Each of these grammars defines unambiguously an algebra of syntax (cf. [8]). The former has
three carriers: ExpE — ertended erpressions, Cpn — components and Fac — factors. The
latter has only one carrier, Exp — expressions. Notice that SynE imposes a priority of *
over +. Now, the preprocessing P is a many-sorted function that mapps all the three carriers
of SynE into the unique carrier of Syn. Formally, it is represented by three functions:

E : ExpE— Fzp
C : Cpn — Exp
F : Fac — Fzp

defined by the following equations:

E.[cpn] = C.[epn]

E.[cpn + expe] = (C.[cpn] + E.[expe])
C.[fad] = F.[fac]
C.[facxcpn] = (F.[fac]* C.[cpn])
F.[z] =z

F.[(expe)] = F.[ezpe]

Observe that although P = (E, C, F) is not a homomorphism in a strict sense, it certainly
has a compositional character and in fact is not very far from a usual homomorphims.

The moral of our two stories is that if the major mechanisms of a system are described
within a denotational model, then some “peripheral” information may be given in a not
strictly compositional way. Of course, what is peripheral and what is not is an informal
question and therefore in all such cases the designer has to rely on his/her own professional
experience and common sense. Little non-denotationalities are not too harmful, but it is
clear that a too rich pre- or post-processing of the “main semantics” may completely destroy
the compositional effect of the latter.

10. Copy-Rule Semantics

A copy-rule semantics has been known for many years as a technique for providing a math-
ematical semantics of a typeless lambda-calculus in which a function may take itself as an
argument. In applications this allows one to formalize such programming mechanisms as e.g.
Algol-60 procedural parameters or Lisp dynamic recursion. The idea of copy rule is rather
simple (cf.[17]), and corresponds closely to the way in which the original informal semantics
of Algol-60 was described. A procedure declaration assigns the text of the procedure body
— rather than the corresponding state-transition function — to the procedure name in the
environment. At the call time this text is retrieved, and its denotation is applied to the
current state.

80 A. Blikle | Why Denotational?

Copy-rule semantics is not denotational. A denotational semantics of lambda-calculus
may be defined using Scott’s model of reflexive domains [25] or one of its later versions,
e.g. information systems [26]. Although mathematically very elegant, these models are
not simple and therefore — at least in the opinion of some authors — not very convenient
in applications. Consequently, the majority of software specification systems, such as e.g.
BSI/VDM [18], MetaSoft [5, 1] or RAISE [21] are based on set-theoretic domains rather
than on Scott’s models. In all such systems one cannot define a denotational semantics of
Algol-60 or of Lisp, but one can give them a copy-rule semantics.

Although the use of self-applicable functions in software systems is certainly not recom-
mendable, and the problem of giving a mathematical semantics to Algol-60 or Lisp is today
only of a historical nature, it may be of some interest to know what is the price of using a
copy-rule semantics. As we shall try to argue, that price — measured by the loss of deno-
tationality and abstraction — does not seem very high, especially if the only alternative are
reflexive domains.

Let us analyze an example of a programming language with self-applicable procedures,
i.e. a language in which every procedure may take any other procedure — even itself — is
an actual parameter. To simplify our example we assume that every procedure has exactly
one parameter which is always a procedure, and that all variables in a procedure body are
global. The syntax of our language is the following:

ide : Ide = al|b|..]|z identifiers
exp : Ezp = Ide |(Ezp + Exp) | ... expressions
dec : Dec = proc Ide(Ide) = Com | Dec; Dec declarations
com : Com = Ide:= Ezp |call Ide(Ide) | Com; Com | ... commands
pro : Pro = begin Dec: Com end | Pro; Pro programs

States in our language are triples consisting of an environment, used for storing procedures,
a store, for storing values and a message which is either an OK-message or an error message:

sta : State = Environment x Store x Message
env : Environment = Ide &= Procedure
sto : Store = Ide = Value
mes : Message = {OK, ERROR}
prc @ Procedure = Ide x Com
~wval : Value = Integer | ...

Observe that procedures are pairs consisting of an identifier (formal parameter) and a com-
mand (body). The functions of semantics have the following signatures:

. Ide — Ide

: Fzp — Store — Value

: Dec — Environment — Environment
Com — State = State

: Pro — Store = Store

TQoE~

Below we analyze only the interesting semantic clauses i.e. the clauses for declaratlons for
calls a,nd for single-block programs. All others have the usual form.

' D.[proc idey,(ideys,) = com].env = env[{idey,, com) [ide,,)
D.[decy; decy).env = D.[dec;].(D.[decy].env)

A procedure declaration assigns the corresponding prbceduré i.e. both the formal parameter
and the body, to the procedure name in the current environment. Semicolon is 1nterpreted
in the usual way.

A. Blikle | Why Denotational? 81

C.[call ide,,(ideyy)]-(env, sto, mes) =
mes = ERROR — (env, sto, ERROR),
NOT ide,, € dom.env— (env, sto, ERROR),
NOT ide,, € dom.env— (env, sto, ERROR),
let (idesp, com) = env.ide,, in
let prc = env.ide,, in
TRUE — C.[com].{env|[prc/ides,], sto, mes)

After all necessary error checks a procedure call applies the denotation C.[com] of the cor-
responding procedure body to a state in which the current environment has been modified
by assigning the value of the actual parameter to the formal parameter. We recall that all
identifiers in the procedure body are global and therefore there is no need to rename them.

P.[begin dec : com end].sto =
let env = D.[dec].]] in
C.[com].(env, sto, OK)

The execution of a program consists of three steps. First an environment is created by
applying the declaration part of the program to an empty environment. Then a state is
created by combining that environment with the current store and the OK message. Finally,
the denotation of the command part of the program is applied to that state.

As is not difficult to see, our semantics has the following two properties:

1) E and C are not sufficiently informative w.r.t. D, since the denotation of a declaration
depends on the syntax rather than on the denotations of its components.

2) D is not sufficiently abstract w.r.t. P, because the denotation of a program depends
on the denotation of a procedure body rather than on that procedure body itself.

By 1), our semantics is not denotational, and, by 2), it is not fully abstract. If we assume
that the implicit part of the language follows the usual style of e.g. Algol-60, then 1) and 2)
are the only violations of denotationality and full abstraction, respectively. What does that
mean for the user of the language?

From a formal viewpoint, our language does not provide a fully adequate framework for
structured programming (cf. Sec.5.) For instance, it is impossible to define a programmer’s
task of writing a declaration of a procedure (ide, com) by giving only ide and C.[com| and it
is not worthwhile to do the same with a program begin dec : com end by giving D.[dec] and
C.[com]. However a “local structured programming” is possible. A project coordinator may
split the task of writing a compound command with a given denotation into the subtasks of
writing subcommands (and/or subexpressions) with appropriate denotations or to split the
task of writing a compound program into the tasks of writing a sequence of subprograms.
Moreover, he/she may split the task of writing a program begin dec : com end into a task of
writing dec with a given denotation C.[com;} of the procedure body and a given denotation
C.[com]. Both these tasks may be further structurally decomposed.

Regarding the logic for our language, the related problems and their solutions are similar
to the former. We can infer the properties of a compound command from the properties
of its component expressions and commands, and the properties of a compound program
from the properties of its subprograms. We cannot infer the properties of a (denotation of
a) declaration from the properties of its components, but we can infer the properties of a
program from the properties of the components of its declaration. Readers interested in a
detailed discussion of Hoare-like logics for different copy-rule schemes are referred to a very
elegant paper [22].

82 A. Blikle | Why Denotational?

11. Operational Definition of a Denotational Semantics

As was mentioned in the Introduction, a denotational semantics may have a non-denotational
definition. In this section we briefly discuss a typical example of such a definition written in
the style of structured operational semantics (SOS) introduced in G.Plotkin [23].

Consider our little programming language and its semantics as defined in Sec.8. We shall
discuss an SOS-definition of the semantics of commands C. For that sake we introduce a
few auxiliary concepts. Let:

pcom : Pseudocommand = Com | {nil}
conf : Configuration = Pseudocommand x State
TerminalConf = {nil} | State

A configuration may be interpreted as a global memory state of a von Neuman machine
where we store both data and programs. By a transition relation between configurations we
mean the least transitive and reflexive relation

— C Configuration x Con figuration

with three following properties:

(tde = exp,sta) — (nil, sta[(E.[exp].sta)/ide]) (19)

(comy, sta) —> (com}, sta’)

(comy; comy, sta) — (com}; com,, sta')

(comy, sta) — (nil, sta’)

(21)

(comy comy, sta) — (comn,, sta’)

The latter two formulas should be, of course, read as top-down implications. The transition
relation describes a way in which our machine transforms a global state when executing a
program. If confy — conf, holds, then we say that conf; reduces to conf,. A sequence of
configurations:

confy — confy — ... — conf,

is called a computation. If conf, is a terminal configuration, then the above sequence is called
a terminating computation. Below we show a simple example of a terminating computation:

pseudocommand state
(x:=1;y:=2;z:=x+y, sta)
y:=2;z:=x+y, sta[1.0/z])
(z:=x+y, sta[1.0/z,2.0/y])
{ nil, sta[1.0/z,2.0/y,3.0/z2])

Properties (19) and (21) imply — by structural induction — that for each non-terminal
configuration.(com, sta) there is exactly one terminal configuration (nil, sta’) such that:

(com, sta) — (nil, sta’)
This proves the existence of a function of semantics:

C : Com — State — State
C.[com].sta = sta’ iff (com,sta) — (nil, sta’)

A. Blikle [Why Denotational? 83

Now, (19) and (21) imply (respectively) two following properties of C:

C.[ide = exp].sta = sta[(E.[exp].sta)/ide]
C.[comy comy].sta = C.[com,].(C.[comy].sta)

This means that our function is a component of a homomorphism (I, F, C) between Syn
and Den as defined in Sec.4.

Some authors prefer the SOS style as more appealing to the intuition than denotational
equations. When defining a denotational semantics in the SOS style one has to remember,
however, about two proof obligations: :

1. that the corresponding function of semantics exists and is total,

2. that the function of semantics has the compositionality property.

Of course, in practical situations both these proofs may be far from trivial.

12. Final Remarks

In the Introduction we have formulated a claim that the semantics of a software system
should be denotational, unless we agree to give up structured programming and structured-
induction correctness-proofs. We have discussed some arguments that denotationality does
guarantee these possibilities, and an example indicating that this may not be the case if
denotationality is not ensured. At the same time, however, we have shown that the principle
of denotationality may be always trivially insured by adding syntax to denotations. Doesn’t
that mean that denotationality is merely a property of the definition of a system rather than
— as we have claimed earlier — a property of the system itself?

Each software system is a tool used for the construction of some applications (programs),
and therefore an adequate mathematical model of a system should provide a ground for a
convenient description and validation of these applications. Whether a model is sufficiently
adequate depends, generally speaking, on two factors: on the choice of denotations and on
the compositionality of semantics. Compositionality is important but it is not a goal in itself.
It is worth of a care only if denotations adequately express the behavior of programs and of
its components. And once we fix denotations, the compositionality of semantics becomes a
property of a system rather than of its definition.

Our requirement of denotationality should be understood as a pragmatic rule. By choos-
ing some “clever” denotations we may be able to construct an elegant algebraic model for a
mechanism which is neither elegant nor algebraic. We have seen a simple example of such a
situation in Sec.8. Some more interesting examples are related to the well-known technique
of continuations. Using that technique one may construct a denotational model of a very
unstructured programming language with most anarchic goto’s. Formally, such a language
guarantees the feasibility of structured programming but this is on the price that the denota-
tions of programs are even more difficult to read, decompose and analyze than unstructured
flowcharts. By the use of continuations the principle of denotationality is “cheated” in a
very subtle way by putting all the conceptual mess of a language deep into denotations.

One of the advantages of a formal mathematical semantics is the possibility of discovering
awkward mechanisms of a software system at the stage of its design rather than at the
stage of its use. It has been rather generally agreed that a complicated definition of a
mechanism should be regarded as a warning that the use of such a mechanism may be
not easy. However, the simplicity of a definition — especially if this is a local simplicity,
as e.g. in the case of a continuation-style definition of goto’s — does not guarantee a
sufficient simplicity of applications. The latter may be adequately estimated by analyzing
the corresponding proof rule. Therefore the construction of a program-correctness logic
should be regarded as an inherent part of the process of system design. Whenever we cheat -
on the subject of denotationality too much, the price to be paid is the complexity of proof-
rules.

84 A. Blikle /| Why Denotational?

Acknowledgements

The author expresses his thanks to Marek Gondzio, Beata Konikowska, Jacek Leszczylowski,
Peter Mosses and Wiestaw Pawlowski for many relevant comments about the early drafts of
this paper. Special thanks are addressed to Andrzej Tarlecki who suggested the inclusion of
Proposition 7.1.

As was already mentioned at the front page a short conference version of this paper
appeared earlier in R.Janicki, W.W.Koczkodaj eds. Computing and Information, Proc. Int.
Conf. on Computing and Information, ICCI’89, Toronto, North-Holland 1989. A year later
a full version of the paper was submitted to Formal Aspects of Computing, where it was
accepted but never published, since in the meantime the author decided to take over his
family business and that for four years has stopped him to give a final touch to the paper.
Today the author expresses his thanks to CIiff Jones, the Editor in Chief of FAC, for the
permision of publishing this paper in the present volume. The referees of FAC are also
acknowledged for their thorough and constructive criticism.

Last but not least the authors thanks the referee of the present edition of the paper for
a very thorough reading of the paper.

References

(1] M. Bednarczyk, A. Borzyszkowski, and W. Pawlowski. Towards the semantics of the
definitional language of MetaSoft. In D. Bjgrner, editor, VDM’90, VDM & Z: Formal
Methods in Software Development, 3rd VDM-Europe Symposium, Kiel 1990, pages 477
503. Lecture Notes in Computer Science, vol. 428, Springer-Verlag, 1990.

[2] D. Bjgrner and C.B. Jones. Formal Specification of Software Development. Prentice
Hall, Englewood Cliffs, NJ, 1982. :

[3] D. Bjgrner and C. B. Jones, editors. The Vienna Development Method: The Meta-
Language, volume 61 of Lecture Notes in Computer Science. Springer, Berlin, 1978.

[4] A. Blikle. Equational languages. Information and Control, 21:134-147, 1972.

[5] A. Blikle. MetaSoft Primer, Towards a Metalanguage for Applied Denotational Seman-
tics, volume 288 of Lecture Notes in Computer Science. Springer-Verlag, 1987.

[6] A.Blikle. A guided tour of the mathematics of metasoft. Information Processing Letters,
29:81-86, 1988. North-Holland.

[7] A. Blikle. Three-valued predicates for software specification and validation. In R. Bloom-
field, L. Marshall, and R. Jones, editors, VDM’88, VDM: The Way Ahead, Proc. 2nd
VDM-Europe Symposium, Dublin, September 1988, pages 243-266. Lecture Notes in
Computer Science, vol. 328, Springer-Verlag, 1988.

[8] A. Blikle. Denotational engineering. Science of Computer Programming, 12:207-253,
1989.

[9] A. Blikle and A. Tarlecki. Naive denotational semantics. In R.E.A.Manson, editor,
Information Processing 83, Proc. IFIP World Congress, Paris 1983, pages 345-355.
North Holland, 1983.

[10] S. A. Cook. Soundness and completeness of an axiom system for program verification.
SIAM Journal of Computing, 7:70-90, 1978.

[11] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1, volume 6 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, Berhn 1985.

(12] J. Goguen, J. Messeguer, and D. Plaisted. Programming with parameterlzed abstract
objects in OBJ. In D. Ferrari, M. Bolognani, and J.Goguen, editors, Theory and Practice
of Software Technology, pages 163-194. North-Holland, Amsterdarn, 1983.

[13] M. Gordon. The Denotational Description of Programming Languages. Springer-Verlag,
Berlin, 1979.

A. Blikle | Why Denotational? 85

[14] K. Jensen and N. Wirth. Pascal: User Manual and Report. Springer-Verlag, New York,
Heidelberg, Berlin, second edition edition, 1978.

[15] G. Kahn. Natural semantics. Raport de Recherche 601, INRIA Center Sophia Antipolis,
1987. : '

[16] B. Konikowska, A. Tarlecki, and A. Blikle. A three-valued logic for software specification
and validation. In R. Bloomfield, R. Jones, and L. Marshall, editors, VDM 88, VDM:
The Way Ahead, Proc. 2nd VDM-Europe Symposium, Dublin, September 1988, pages
218-242. Lecture Notes in Computer Science, vol. 328, Springer-Verlag, 1988.

[17] P. Landin. The mechanical evaluation of expressions. BCS Computer Journal, 6:308-
320, 1964. '

[18] P. G. Larsen, M. M. Arentoft, S.Bear, and B. Q. Monahan. The mathematical semantics
of the BSI/VDM specification language. In Proceedings IFIP’89 World Congress, San
Francisco, August 1989. North Holland, 1989.

[19] P. Lucas and K. Walk. On the Formal Description of PL/1, volume 6 of Annual Review
in Automatic Programming. Pergamon Press, 1969.

[20] R. Milner. Fully abstract semantics of typed lambda-calculi. Theoretical Computer
Science, 4:1-22, 1977.

[21] M. Nielsen, K. Havelund, K. R. Wagner, and C. George. The RAISE language. In
R. Bloomfield, L. Marshall, and R. Jones, editors, VDM — The Way Ahead (Proc. 2nd
VDM-FEurope Symposium, Dublin 1988), pages 376-405. Lecture Notes in Computer
Science, Springer-Verlag, 1988.

[22] E. Olderog. Sound and complete Hoare-like calculi based on copy rules. Acta Informat-
ica, 16:161-197, 1981.

[23] G. Plotkin. A structural approach to operational semantics. Arhus University, type-
script, 1981.

[24] D. Schmidt. Denotational Semantics. Allyn and Bacon, Boston, 1986.

[25] D. Scott. Data types as lattices. SIAM Journal on Computing, 5:522-587, 1976.

[26] D. Scott. Domains for denotational semantics. In M. Nielsen and E. M. Schmidt, editors,
Proc. ICALP 82, pages 577-613. Lecture Notes in Computer Science, Springer-Verlag,
1982.

[27] D. Scott and C. Strachey. Towards a mathematical semantics of computer languages.
Technical Monographs PRG-6, Oxford University, Oxford, 1971.

[28] A. Stoughton. Fully Abstract Models of Programming Languages. Research Notes in
Theoretical Computer Science. Pitman and John Willey & Sons Inc., 1988.

[29] J. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Lan-
guage Theory. MIT Press, Cambridge, MA, 1977.

[30] A. Tarlecki and M. Wieth. A naive domain universe for VDM. In D. Bjgrner, C. Hoare,
and H. Langmaack, editors, VDM’90; VDM and Z — Formal Methods in Software
Development, pages 552-579. Lecture Notes in Computer Science, Springer-Verlag, April -
1990.

[31] J. W. Thacher, E. G. Wagner, and J. B. Wright. Notes on algebraic fundamentals of
theoretical computer science. In Proc. of The 8rd Advanced Course on Foundations of
Computer Science, 1978.

