Fundamenta Informaticae 28 (1996) 37-64 37
IOS Press

*

Designing Dependencies

Howard A. Blair
School of Computer and Information Science

Syracuse Universily
Syracuse, New York, USA

Abstract. Given a binary recursively enumerable relation R, one or more logic pro-
grams over a language L can be constructed and interconnected to produce a depen-
dency relation D on selected predicates within the Herbrand base By, of L isomorphic
to R. D can be, optionally, a positive, negative or mixed dependency relation. The
construction is applied to representing any effective game of the type introduced by
Gurevich and Harrington, which they used to prove Rabin’s decision method for S2§,
as the dependency relation of a logic program. We allow games over an infinite alphabet
of possible moves. We use this representation to reveal a common underlying reason,
having to do with the shape of a program’s dependency relation, for the complexity of
several logic program properties.

Keywords: logic program, dependency relation, game, complexity

1. Introduction

Results on the expressive power of logic programs and the complexity or undecidability of
various logic program properties obviously depend to a considerable extent on representing
various relations with certain desired properties as models of a program, often where the
models themselves have additional properties such as being stable or supported, for example.
Since there is about as much variety in the proof techniques that have been used to obtain
these results as there is in the results themselves, it would be clarifying to have a reasonably
uniform means of obtaining them. -

Given a binary recursively enumerable relation R, one or more logic programs over a
language L can be constructed and interconnected to produce a dependency relation D on
selected predicates within the Herbrand base By, of L isomorphic to R. D can be, optionally,
a positive, negative or mixed dependency relation.

We introduce a game-theoretic approach through which many results having to do with
complexity, degrees of unsolvability and expressive power of logic programs can be obtained
in a uniform way. [10, 15]. After showing how the game trees of arbitra,ry effective Gurevich-
Harrington (GH) games can be represented as dependency relations in programs, we will
apply the games to give two results about the degree of unsolvability of certain logic program
properties. One is previously known, but a new and simpler proof is given, and the other
appeared only in a preliminary version of this paper {7].

The main contribution of this paper is to show that the game-theoretic approach taken
here is a useful, unifying device for complexity investigations. The argument for this point

*Research partially supported by the U.S. Army Research Office through the Mathematical Sciences
Institute of Cornell University.

38 H A. Blair/Designing Dependencies

is that two theorems, which at first sight appear to be quite different, the one having to do
with models of definite clause programs (where negations do not occur in program clause
bodies), the other having to do with the property of local stratification (which appears
to be intrinsically about dependencies on negations within the program), are fctually two
instances of the same underlying theorem about the degree of undecidability of the class of
winning strategies for the games.

One class of GH games have the feature that winning plays for one of the players
(player 0) correspond to well-founded sequences of dependencies among atoms in the ground-.
instantiated version of the corresponding programs. It will be seen that it is easy to control
the degree of unsolvability of the class of winning plays available to one of the players by
adjusting the parameters of the game. By using the correspondence and varying the logical
connection between the players, and hence varying the type of dependency relation embodied
by the overall program, the complexity of various properties of the program can be read off.

We first define the games and give an obvious preliminary representation of the games
as logic programs. Then, since what is logically expressed by a program’s clauses is to be
closely related to the program’s dependency relation, the third section discusses converting
" a definite clause program into a binary definite clause program, which is a convenient device
for coupling logical dependency to calling dependency.

We will then be in a position to see how to represent the game trees of GH games as
dependency relations in programs. Within such programs, certain subprograms represent the
players. By varying computable parameters within the player programs and by varying the
manner in which the player programs are connected, we will be able to read off diverse results
having to do with complexity and degrees of unsolvability associated with logic programs. It
will become clear that the various manners in which programs may be connected are simple
and do not have to hide encodings of complex properties. In particular, we will show that
two quite distinct complete II} properties of logic programs, namely unique fixed points of
Horn clause programs, and local stratification, owe their high degree of unsolvability to the
same underlying property.

We assume that the reader is familiar with the basics of the foundations of logic pro-
gramming. An excellent, widely available introduction the subject is by K. R. Apt, [2]. In
most cases readers who are insufficiently familiar with logic programming will have their
puzzlements cleared up with a few minutes’ perusal of Apt’s article.

2. Gurevich-Harrington Games

To present Gurevich-Harrington games [10] we follow an amalgamation of the approaches of

Yakhnis and Yakhnis [15] and Gurevich and Harrington [10].

Definition 2.1. (GH-games). There are two players, designated for convenience as 0 and
1. Thus, if p is a player then 1 — p is her opponent. Player 0 is assumed to play first. Moves
alternate between the players. To begin specifying a GH-game an alphabet ¥ is fixed. The
approach used in this paper permits X to be infinite, which extends the notion of game
originally presented in {10]. A play is an infinite sequence of elements of the alphabet £. A
finite (possibly empty) prefix of a play is a position. A move of a player consists of choosing
a letter o from ¥ and appending it (i.e. suffixing it) to the end of a position to form another
position. Let P be the set of all plays over the alphabet ¥. P may be considered as a tree
whose nodes comprise the set of all positions over £. A Gurevich-Harrington game (GH-
game) is specified by (1) a game tree G which is a subset of P, and (2) a subset W of P
which is called the winning set for player 0. The complement of W in G is the winning set
for player 1. (The descriptions of P, G and W regard a tree as a set of paths rather than
a set of nodes.) Game trees may contain leaf nodes. The notion of a play is extended to
include positions that occur as leaf nodes in a game tree.

H A Blair/Designing Dependencies 39

Yakhnis and Yakhnis reserved the term GH-game for those games whose winning sets are
Boolean combinations of basic sets of plays where a basic set of plays [C] has infinitely many
positions (finite initial segments) in the set C' of positions, called the kernel of [C]. We do
not need to require or exploit this restriction for our current purposes. r

Note that a game tree determines the possible moves available to the players in each
position. For this reason, we may think of a GH-game G’s game tree as the rules of G.
Conversely, a complete speciﬁcation of the possible moves available to the players from

every position that they can actually reach determines a game tree.

We want to focus on GH-games that can be played by deterministic and nondeterministic
computing procedures. Such games have recursively enumerable game trees. In other words,
there must be a uniform means of computably generating the possible moves available in
every position that could actually be reached by the players starting from the empty position.
A generate-and-test approach to find the possible moves is sufficient. This requirement is
distinct from the more stringent requirement that the n'® possible move available in each
reachable position be uniformly computable.

Definition 2.2. (Effective GH-games). Let G be the game tree of GH-game G. Let R be
the set of all pairs (o1 :-0n,0) such that oy, ..., 0,,0 are elements of the alphabet of G
and oy ---0,0 is a position in a play in G. We refer to R as the set of rules of G. We say
that G is effective iff the set of rules of G is recursively enumerable.

In the preceding definition we assume that the alphabet of G, X, is effectively given. Specif-
ically, we could identify ¥ with the set {0,1, ..., k} where k is the cardinality of ¥ if ¥ is
finite, otherwise we could identify ¥ with the set of natural numbers. It turns out that if
R is recursive [recursively enumerable], then the set of positions that can be reached by the
players is also recursive [recursively enumerable]. We leave this to the reader.

When not too much violence is done to the reader’s sense of grammar, we will refer to
the set of rules of G simply as the rules of G.

If player 0 moves first, positions in which player 0 moves, the collection of which is denoted
by Posg(0), are of even length, and positions in which player 1 moves, the collection of which
is denoted by Posg(1), are of odd length.

Before discussing the representation of games by logic programs with their dependency
relations, we formally introduce strategies. Conceptually, a strategy is a means by which
players can select moves. The next definition makes precise what is meant by a deterministic
strategy.

Definition 2.3. Let p € {0,1} be a player in game G. A deterministic p-strategy is a
function f : Posg(p) — X such that if o € Posg(p) then a- f(a) € 75 . The set of positions
in 7g consistent with a deterministic p-strategy f is inductively defined by:

i) the empty sequence A is consistent with f.
ii) if a is consistent with f and o € Posg(1 — p) then every child of « is consistent with f.
iii) if e is consistent with f and a € Posg(p) then o - f(a) is consistent with f.

A play is consistent with f if every position in the play is consistent with f. A deterministic
p-strategy wins G = (Tg,p, W) if every play consistent with f is in W. Player p wins G if
there is a winning deterministic p-strategy.

After we show how to represent game trees we will focus attention in this paper on a
class of games for which the winning strategy for player 0 involves entering into what we
call a well of a binary relation R which is a certain kind of well-founded subrelation of R.
The recursion-theoretic complexity of wells of recursive and recursively enumerable binary
relations can be controlled so as to vary up through the IT} sets. We will in turn use this
property of wells to control the complexity of the winning strategies in the games on which
we focus. This will enable us to unify two quite different II}-completeness results about logic
program properties.

40 H.A. Blair [Designing Dependencies

3. Games as Logic Programs

Next, we show how to represent an effective GH-game as a logic program where the players
are represented as procedures and positions are passed between players through calls of one
player by another.

Suppose G is an effective GH-game. The set of rules of G is a binary relation between
positions and members of the alphabet of G.

We want to be able to compute moves from various positions. The notion of compute
that we will need for logic programs is the obvious one in terms of least models, and was
formalized in cf. [5, 2]. Among the most elegant early treatments of computability in logic
programming is due to Andreka and Nemeti, [1]. However, in that paper, details concerning
computability over effectively presented Herbrand universes are not treated, the authors
having restricted their treatment to Herbrand universes, isomorphic to the natural numbers,
generated by a single constant and unary function symbol. The following slight elaboration
that incorporates auxiliary function and predicate symbols is a great convenience. '

Definition 3.1. Let the signature of L' be a subset of the signature of L. Let R be an
n-ary relation over the Herbrand universe U(L') of L’ and let S be the relation computed
by (P, p). That is, for all terms ty, ..., t, in the Herbrand universe U(L)

S(tl, ey tn) iff P l=p(t1, ey tn)
Then (P, p) computes R with respect to L' iff SNU(L')" = R.

The following lemma can be established by a variety of means; in particular, c¢f. [5, 6].
There are difficulties that arise when dealing with languages with infinite signatures, [6].
These difficulties are avoided with the technical restriction concerning finite signatures in
the following lemma. The statement of the lemma presupposes that the signature of the
language L has been effectively given.

Lemma 3.1. Let the signature of first-order language L' be a finite subset of the signature
of L. Let R be an n-ary recursively enumerable relation over the Herbrand universe U(L') of
L'. Then we can effectively construct a definite (Horn) clause program P with n-ary relation
symbol p such that (P, p) computes R with respect to L’

Computing with respect to L’ is useful when we do not want to have to keep track of the
extra tuples computed by a program due to the introduction of cons, nil, and the various f,
function symbols introduced in the construction of binary extenszonal equwalent programs,
discussed in section 4.

We immediately apply the lemma to computing the rules of G. All we need to do is
represent the set of rules of G as a binary relation on an Herbrand universe of a language
with a finite signature. It is important not to unnecessarily multiply the size of terms
representing positions, particularly when the alphabet of G is finite.

When the alphabet is infinite, three function symbols suffice. (Of course, we could get
away with just two, but that would uselessly complicate the narrative.) We use the binary
function symbol b, the unary function symbol s and the constant 0. We assume the symbols
of G’s alphabet ¥ are represented as natural numbers, and a natural number k is represented,
in turn, by the term

s(s(---8(0)--+))
k
which later on we will use in the abbreviated form s*(0).

Now, if ¢ € X, we will identify o with its numerical representation and just write o
instead. Let Fg be the set of function symbols {b, s, 0}. f ¥ = {yy, ..., px } is finite

H.A. Blair/Designing Dependencies 41

we can dlspense with numerical representations altogether and just use the elements of ¥ as
constants, in which case we take Fg to be the set of function symbols {b Ply onvy flE }

Fix a language for first-order logic, G, whose function symbols are those in Fe and
whose predicate symbols contain all those we will use below in specifying the repregentatlon
of the effective GH-game, G.

With these notational conventions we can represent the position oy --- 0, by the term
b(o,,b(0p_1, ..., b(01,0)---)). We use the list notation of PROLOG to abbreviate the
clumsy terms involving the symbol b. The above term representing a position is written
[0,, ..., 01]. A nonground term such as b(X,Y) is written [X|Y]. We write the sequence of
moves in a position backwards when representing the position as a list of moves because we
want to append moves to the “right” end of positions by extending finite sequences. Lists,
being syntactic terms, are much more easily prefixed with new elements than appended with
them. These representational conventions allow us to identify the rules of G, R, with a
binary relation on the Herbrand universe U(Gy) which we also denote by R.

We use the symbols p, p’ with and without subscripts to refer to positions and their
representations according to the above conventions. Similarly we use ¢ and p with and
without subscripts to refer to moves.

Since we have supposed that G is effective, R is recursive enumerable. Apply lernma 3.1.
We obtain a program P0Og in which a predlcate symbol r0 occurs such that (P0g,r0) com-
putes K with respect to Gy, and no function symbol occurs in POgr other than those in
Fa.

We follow the notational conventions of PROLOG, using lower case identifiers to denote
predicate and function symbols, and identifiers that begin with an upper case letter to denote
variables.

To represent game trees as dependency relations in programs where positions are passed
between players through calls of one player by another, we will need to carefully control how
a ground atom instantiating a literal occurring in the clauses representing one player may
depend on a ground atom instantiating a literal occurring in the clauses representing the
other player. The technique that we will use requires that most of the predicate symbols
occurring in one player’s representing clauses do not occur in the other player’s representing
clauses. To meet this requirement, we will make a “copy” Plg of the clauses in POg, where
the clauses of Pl are obtained from the clauses of POg by renaming predicate symbols as
necessary so that no predicate symbol that occurs in Plg also occurs in POg, since both
players need to be able to use the clauses for computing R to choose moves. In particular,
we assume that r0 is renamed to ri.

Definition 3.2. To represent G we collect into a program Pg the clauses of PO and Plg
together with the following two clauses

playerO(Position,Move) «+ rO(Position, Move)

A playeri([Move|Position],Movel)
playeri(Position,Move) « ri(Position, Move)

A playerO([Move|Position],Move1)

Pg is the definite clause representation of G.

The sense in which Pg represents G needs an explanation. The next proposition provides
such an explanation. After we introduce binary extensional equivalents in the next section,
we will be able to see the game tree of G represented in the dependency relation of a set of
clauses closely related to the the binary extensional equivalent of Pg.

In the statement of the proposition that follows we adopt the notation that if € is a {0,1}
valued-expression then playere is player0 if € = 0 and is playerl if ¢ = 1. We will continue
to use this and similar obvious notation in the remainder of the paper. ‘

42 H .A. Blair | Designing Dependencies

Proposition 3.1. Suppose G is an effective GH-game and p is a position in which player :
is to choose a move. Let p’ be a position in which player j is to choose a move. (¢ may or
may not equal j.) Then

there is a path in the game tree of G from p to p’ Beginning with move p
iff
Pc | {playerj(p,t)} | playeri(p,p), for any ground term t.
Hereafter, we assume we are working with a fixed language L for first order logic without
identity. We assume that L contains each of the function and predicate symbols that we
will use. Although it is not strictly necessary, it is a bit more natural to think of the binary
extensional equivalent programs, to be discussed in the next section, as being finite whenever

the program from which one is derived is finite. For this purpose, the signature of L needs
to be finite, and in fact we will use only finitely many function and predicate symbols.

4. Binary Logic Programs

Binary logic programs are definite clause programs with at most one atom occurring in the
body of each clause. Binary programs are important because for such programs entailment
and dependency coincide. This relationship will be made precise in proposition 4.1., below.

A difficulty with controlling dependencies in programs is due to the fact that if con-
junctions in clause bodies are replaced by disjunctions, then the dependency relation of the
resulting program is the same as that of the original, but the models of the resulting program
are, in general, vastly different. Another way to look at the difficulty is by considering a
clause such as

p(x) « qx,y), r(y)

contained in some program P which has a least model in which, for example, q(a,b) is false.
p(a) still depends on r(b), but this was perhaps not intended. We would like to control
dependencies through the semantics of the program. This is achievable by converting a
program P to a binary program which has the same least model as P with respect to the
predicates defined in P.

Definition 4.1. Let P be a normal logic program cf. [12], and let grd(P) be the set of
ground clauses which are instances of clauses in P. The relations refers positively to and
refers negatively to are defined by .

A refers positively [negatively] to B

iff
there is a clauseA « Ly, ..., L, € grd(P) such that B [-B]is L; for
somei € {1,...,n}.

Define the depends positively on relation to be the reflexive transitive closure of the referé
positively to relation, and let the depends negatively on relation be

(depends positively on) o (refers negatively to) o (depends positively on)

where R; o Ry denotes the composition of R; and R;. When only definite clauses occur in
P, we say, simply, refers to in place of refers positively to and depends on in place of depends
positively on.

Definition 4.2. Let ground atom A depend positively on ground atom B with respect to.
program P. Then the pair (A, B) is said to be a logical dependency iff PU {B} E A.
A program is dependency sound if every pair of ground atoms in the positive dependency
relation of P is a logical dependency.

H A. Blair | Designing Dependencies 43

Definition 4.3. A binary logic program is a program where each program clause either has
the form A « B or is a unit clause A, where A and B are atoms.

The following proposition shows how binary programs “equate” entailment and depgendency.
Proposition 4.1. Every binary program is dependency sound.

Definition 4.4. Let L be a first order language and let P, P; be definite clause logic pro-
grams over L. Let L' be a sublanguage of L and suppose the restrictions of the least models
of P, and P, to the Herbrand base of L' are the same. Then P, and P, are said to be
extensionally equivalent with respect to L'.

Definition 4.5. Let P be a definite clause program. Extend L to a language L’ by adjoining
a new function symbol f, for each predicate symbol p in L. f, has the same arity as p.
Corresponding to each atom p(ty, ..., t,) of L, the translation, f,(t1, ..., t,) is a term of
L'. In general, for each atom A of L, let ¢4 denote the translation of A. Corresponding to
P the binary extensional equivalent @) of P is defined as follows. Extend L' by adjoining a
new binary predicate symbol stack, a new binary function symbol cons and a new constant
symbol nil. Corresponding to each program clause

A« By, ..., B,
of P, form the clause
stack(cons(t4,Y),2) « stack(cons(tp,,cons(tp,, ..., cons(tg,,Y)...)),2).
@ also contains a bridging clause for each predicate symbol p:
p(X1, ..., ¥n) « stack(cons(f,(X1, ..., Xn),nil), f,(X1, ..., Xn))
Finally, @) contains the terminating clause
stack(nil,z).

Occasionally, it will be convenient to be able to ensure that the depends on relation within
binary definite clause programs is Noetherian.

Definition 4.6. A binary relation R on a set A is well-founded iff there is no sequence
{an}52, of elements of A such that

R(ahao)’ R(a27a1)a ceey R(ahai—l)’ R(ai-i-l, ai), ce

R is Noetherian (terminology borrowed from the literature of term-rewriting systems, cf.
[11]) iff the converse of R is well-founded.
A path in R from qag to a, is a finite sequence

QAp; A1y + vy Gp—1,0np (n > O)
of elements of A such that
R(ai-1,a;), forall1=0,...,(n=1)

Thus, R is Noetherian iff from any element a of A, every path in R that starts from a is
finite.

In the case of binary extensional equivalent programs, it will suffice to add a step-counter
argument to the stack predicate for the depends on relation to be Noetherian.

44 H.A. Blair | Designing Dependencies

Definition 4.7. The step-counter augmentation of a binary extensional equivalent program
@ is obtained by adding a step-counter argument to each of the clauses in () to obtain clauses

of the form

stack(s(S),cons(t4,Y),Z) « &
stack(S, cons(tp,, cons(tp,, ..., cons(tp,,Y)...)),2).

p(X1, ..., Xn) —
stack(S, cons(f,(X1, ..., Xn),nil), fo(X1, ..., Xn))

stack(0,nil, Z).

Proposition 4.2. The binary extensional equivalent of P is extensionaﬂy equivalent to P
with respect to the language of P.

Proof:
Use the bridging clauses. O

Proposition 4.3. Let) be the binary extensional equivalent of P and let A and B be
ground atoms in the language of P. Then

A depends on stack(nil,ig) iff @ = A and Bis A,

and similarly for step-counter augmentations.

The following proposition will be convenient when we come to considering programs with
unique fixed points.

Proposition 4.4. Suppose P is a binary program without unit clauses, and therefore with
an empty least model. Then P has no nonempty supported models iff the depends on relation
of P is Noetherian.

Proof:
If the depends on relation of P is not Noetherian then there is an infinite sequence of ground

atoms

Aoy oy Any .

such that A; depends on A;;; for all ¢ € IN. Since P is binary, Tp({Ai4+1}) contains A;, for
each ¢. Let I be the set of atoms in the above sequence. Then I C Tp(I). Hence, since Tp
is monotonic, there is a fixed point of Tp above I, which is, a fortiori, nonempty. Conversely,
if Tp has a nonempty fixed point then we have 1mmed1a,tely that the depends on relation is
not Noetherian since P has no unit clauses. O

5. Game Trees as Dependency Relations

In this section we complete the representation of the game trees of effective GH-games
as dependency relations of logic programs. The figure below depicts the structure of the \
dependency relation in the program that we will form from the binary extensional equivalent
of Pg, the definite clause representation of effective GH-game G. The idea is that dependency
flows through each of the player representations without being able to cross between them
except at selected entry and exit points.

Definition 5.1. Let Pg be the binary extensional equivalent of Pg. We modify P& by
replacing the terminating clause -
stack(nil, Z).

H.A. Blair | Designing Dependencies 45

S v
e S R
player 0 E player 1 E
cey] Pyl |
o o)

by the connecting clauses
stack(0,nil, fplayeri(Position, Move)) « player(: — 1)([Move|Position],Movel).

for 2 = 0,1. The resulting program is called the binary clause representation of G, and is

denoted by BRg.

For 7 = 0,1 let @); be the binary extensional equivalent of the program consisting of the
clauses in Pigp together with

player:(Position,Move) « ri(Position,Move)
A player(z — 1)([Move|Position],Movel)

The programs @)y and ¢, will be convenient for proving the next proposition which establishes
the correspondence between the game tree of G and the dependency relation of BRq.

Proposition 5.1. Suppose G is an effective GH-game with rules R and p is a position in
which player: is to choose a move. Let p’ be a position in which playery is to choose a move.
Then

there is a path in the game tree of G from p to p’ beginning- with move p
iff
.HBRG U {playerj(¢',t)} | playeri(p,u)
i

playeri(p, 1) depends on playerj(p’,t) with respect to BRg.

Proof:
Recall that Pg is the binary extensional equivalent of Pg and contains a terminating clause. .
By proposition 4.2. we have

P& = playeri(p,)
iff
playeri(p, s1) depends on stack(0,nil, fp1ayeri(p, #)) With respect to Pg.

The dependency soundness of BRg, which is given by proposition 4.1., together with the
previous equivalence implies, for any ground term t,

- BRe U {playerj(p',t)} = playeri(p,p))
i
playeri(p,) depends on playerj(p’,t) with respect to BRg.

46 ' H.A. Blair | Designing Dependencies

To complete the proof of the proposition it suffices to note that for any ground terms
tl, tg, t3,t4,t5,t6 if .
' A is stack(s"(0), cons(fprayeri(tis t2), ts)

and ,
B is stack(s* (0), cons(fplayeri(t4; ts), t6)
and
A refers to B with respect to BRg

then o

1=1

k=k+1
and V

A refers to B with respect to J; but not Q;_;. O

Observe that having set up a positive dependency relation to represent the game tree of
G we can easily set up a negative dependency relation to represent the same game tree by
negating the literals in the bodies of the connecting clauses,

stack(0,nil, fplayeri(Position, Move)) « - player(i — 1)([Move|Position],Movel)

to produce negative connections.
In the next section we will examine a class of GH- -games which have well-founded game
trees. The corresponding binary clause representation is locally stratified [8].

6. F(R, .’Eg)

We present an exact definition of a class of games in terms of two parameters, zo € N, where
N is a fixed set of nodes and R C N x N. We then illustrate the play of the games with
an example in which R is represented as a finite directed graph, and discuss the nature of
the games’ winning strategies. Subsequently, we will be interested in games for which the
underlying fixed set of nodes is (countably) infinite. Hence we will then identify N with the
set of natural numbers N.

Definition 6.1. I'(R, o) is played as follows:

Initially, setz :=xzo. Player 0 moves first. The players alternate moves until one of them
wins or loses. A play of the game is either a finite sequence of moves beginning with player 0’s
first move and ending with a move of player 1 resulting in a win for one of the players, or
an infinite sequence of moves beginning with player 0’s first move. The command choose z
chooses a natural number and assigns it to the variable z.

player 0 executes: (x := z; choose z)
player 1 executes:

if R(x,z) then (choose z; if not R(x,z) then player 0 wins)
else (choose z; (if R(x,z) then player 1 wins else player 0 wins))

Example 6.1. Let R be the binary relation on the set of nodes
N = {a,b,c,d,v,w,x,y,z}

that is depicted below as a directed graph.

The game-tree below depicts all of the possible sequences of plays of the game I'(R, V).
The edges are labeled by the player making the play, and the nodes into which the edges le- -

H.A. Blair | Designing Dependencies 47

- J

ad are labeled by the value of z chosen during the play. Additionally, the leaves are labeled
by whether player 0 wins or loses.

75 ¢
wins

The above game tree node labels 74 and 75 can be any of the nodes in V.

The next game tree below depicts all of the possible sequences of plays of the game

T'(R,b).

Player 0 wins the game whenever player 1 makes a choice for the value of z that breaks the
relation R or, in terms of directed graphs, chooses a node that is not immediately adjacent to
the current node along the edges of the graph R. There are two ways player 1 can win. The
first way occurs when player 0 breaks R but was not forced to. Player 1 has an immediate
opportunity to re-choose the value of z to re-establish R and win (or lose if she fails to re-
establish R during such a move.) The second way for player 1 to win occurs when he is able
to keep the game going indefinitely without player 0 explicitly winning at any finite stage of
the play. By definition, and consistent with the definition of winning in Gurevich-Harrington
(GH) games, we define such an infinite play as a winning play for player 1. However, whether
the reader thinks of an infinite play not otherwise won by player 0 as a win for player 1, or -
merely as a play without a winning outcome for either player is immaterial for our present
purposes (although not for other purposes to which GH-games have been put in the literature

48 H.A. Blair [Designing Dependencies

[15].) It follows that as soon as player 1 chooses a node 7 such that all paths in R originating
at n are finite, (or if the game is initialized to such a node) then player 0 can force a win for
herself. In order to keep most games from being always winnable by player 0, player 1 is given
an opportunity to “correct” player 0’s choice as long as the relation R can b¢"maintained. -

wins

For example, in the game tree for I'(R,b), above, when, while at d, player 0 chooses y,
player 1 has the opportunity to escape back to a node from which infinite paths originate
by implicitly backing up to d and choosing b. It should also be noted that it is always in
the interest of both players to maintain the relation R (where player 1 may implicitly back
up one move to, in effect, replay player 0’s move), if possible. Thus, in the game I'(R, b),
if player 0 is to avoid loss outright, then she must choose ¢ on her first move. Player 1
then will choose d in order to avoid choosing a node from which no infinite paths proceed.
Player 0 then chooses y in order to try to get to such a node. (The alternative, choosing a,
allows player 1 to effectively return to the initialized position of the game on his next move.)
Player 1 then “corrects” player 0’s choice by choosing b and the game is now as it was when
initialized. In this way, player 1 has a winning strategy (or at at least a strategy to avoid
loss) in the game I'(R, b).

We introduce some terminology for binary relations that will allow us to be more concise
in describing winning strategies for the games I'(R, o). With the terminology made precise
in the next definition we can say that the strategy for player 1 to avoid losing is for player 1
to avoid crossing the boundary of a well in R.

Definition 6.2. We borrow terminology from graph theory via the following notation and
terminology: The trace Rg of R on a subset A’ of A is defined by '

Ra(z,y)iff z € A", y € A" and R(z,y).
A subrelation R’ of R is full iff R is the trace of R on a subset A’ of A.

We say that R’ is a well in R iff R’ is maximal in the set of full Noetherian subrelations of
R. The idea is that there are no paths leading out of wells, and one cannot move along a
path in a well indefinitely. We take maximal relations of this kind because players of the

games are interested in boundaries of wells.
The field of R, denoted by fld(R), is defined by

d(R) = {z | 3y R(z,y)} U {z | 3y R(y,z)}

H.A. Blair | Designing Dependencies 49

Let R’ be a subrelation of R. Then the boundary of R’ is the set of elements a of A such that
{a € A|Fy e 1d(R)[a & id(R) A R(a,y)]}.

A path in R from a to b crosses the boundary of a well W in R iff a is not in th€ well but
b is in the well. (The last element of A in the path from a to b that is not in fld(W) is on
the boundary of the well.) Note that a path does not terminate within the field of a well
iff the path can be properly extended to a path with the same property. This completes
definition 4.6.

Example 6.2. In the directed graph corresponding to the relation R of example 6.1. the
relation Ry is the trace of the relation R on the nodes v, w, x, y and z. Ry is a well whose
boundary consists of the nodes a, ¢ and d.

Proposition 6.1. Player 0 wins I'(R, z) iff « is within the field of a well in R.

What makes T'(R,zo) interesting for investigations of degrees of unsolvability is that
computable R can be easily chosen to make the set of all 2o such that player 0 wins I'(R, z¢)
complete II}.

First, some notation: (z,y) is the code number (using a bijective pairing function) of the
pair (z,y). If ¢ = (z,y), then (¢)o = z and (¢); = y. The function ¢, is the 2** partial
recursive function with respect to a fixed acceptable indexing. Equivalently, z is the index
of W, the 2t recursively enumerable subset of N. The notation is as in [14].

Lemma 6.1. Let R(z,z2) « cp(x)o((z)) converges within (z); steps. Then the set of all ng
such that player 0 has a winning strategy in ['(R, no) is complete II].

Proof:

(Sketch. cf. {14].) Let C be the productive center of the identity function. C is a complete
I} set. Player 0 has a winning strategy in I'(R,n) iff (n)o € C. The strategy has player 0
always choose z such that R(z,z) holds, unless W(,), = 0, in which case player 1 will lose
on his next turn. Such a choice can always be made if play starts from (n)o € C because
(z)o € C implies either Wi,), = 0 or 3z [(2)0 € W4, € C]. If player 0 chooses z by this
strategy, then for player 1 to avoid losing, he must either confirm player 0’s choice of z or
choose 2z’ # z with the property that (2')o € W), € C. C is structured so that it has a

well-ordered partition C' = U C, such that a € C implies a € Cyy1 for some a < wk,

which, in turn, implies W, € C,. (w is the least nonconstructive ordinal.) This property
entails that eventually player 0 must be able to choose z such that W(,), = 0.

In order to exclude certain unwanted entailments within the logic program representations
of the games I'(R, ng), we will use the following variation of the preceding lemma.

Corollary 6.1. Let ®(Y) = {z |z € W, for some y € Y'}. Then Jio, ®*({n}) is recursively
enumerable. Define f by Wy, = U2 @'({n}) and let

Rno(252) < @(2)0((2)0) #1(no) ((2)o)

both converge within (z)1 steps. Then the set of all ng such that player 0 has a winning
strategy in I'(Rn,,no) is complete II}.

It should be observed that if R is recursively enumerable,then a winning strategy for player 1
in I'(R, no), if it exists, is in general recursive in a complete I1}. Player 0’s winning strategy,
if it exists, is at worst recursive in the halting problem. At the cost of adjusting the games
by complicating the relation R a little, we can focus on a class of games where player 0’s
strategies are recursive, while player 1’s strategies are still in general recursive in a complete

I1} set.

50 H.A. Blair [Designing Dependencies

7. Representing Players

Note that, informally, the players in I'(R, o) nondeterministically map N to N.

Definition 7.1. Let P, be the program consisting of only the unit clause p0(X, Z0, WinLoss).
Informally, Z0 is the new value chosen by player 0. WinLoss records whether player 0 wins
or loses in a finite number of moves.

Let P, be the program

pi(X,Z,20,0,0) < pr(X,Z,s(0)) A pp(X,Z20,0).
p1(X, 2,20, WinLoss,s(0)) < pr(X,2,5(0)) A pr(X,20,s(0)).
p1(X, 2, ZO,WinLoss,Q) — pr(X,2,0) A pp(X,20,WinLoss).

pr computes the characteristic function of relation R. The fifth argument of pl is intended
to record that play should continue when the second clause succeeds.

Suppose that R is a recursive relation. Let Pr be a definite clause program that computes
the characteristic function of R using the predicate symbol pg.

Assume that there are no predicate symbols that occur in both programs Fy and P;.
Assume also that the only predicate symbol that occurs in both programs P; and Pg is
pr. Further assume that po, the predicate symbol in the head of the clause in Py does not
occur in program Pg. The nonintersection of the sets of predicate symbols occurring in these
programs can easily be arranged without loss of generality by renaming predicate symbols
as necessary. (That a program to compute the characteristic function of R using pgr can be
constructed from an explicit definition of R can be established by a variety of techniques;
in particular, see [13].) The game has to get started. For this purpose we introduce the
following definition.

Definition 7.2. An initializing clause a clause of the form
start(s¥(0),WinLoss) « p0(s¥(0),Z0,WinLoss).
for some y € N.

We will set up the program corresponding to I'(R, z¢) in two stages. In the first stage we
define the player programs assuming that the relation R is recursive and that the corre-
sponding program Pg is at hand. In the second stage we show how to connect the player
programs together so that play may pass between them. The means of connection will be
regarded as an adjustable parameter involving the presence or absence of negation signs.
We also want to have that the depends on relations with respect to each of the player pro-
grams, respectively, are Noetherian. We do this by adding a step-counter to the programs
representing the players.) '

Definition 7.3. Let (o be the binary extensional equivalent of P and let Qg be the
binary extensional equivalent of P; U Pr. Let player, and playerg; be the step-counter
augmentations of Qo and Qg,;, respectively. The predicate symbol stack in each of the
two programs is assumed to be renamed so that the programs have no predicate symbols in
common. We also further assume, without loss of generality, that the only function symbols
occurring in program Pg are the unary symbol s and the constant symbol 0.

Hereafter, we will refer to the programs Py and P; as the prototype player programs, and the
programs playerg and playerg, as the player programs.

The next proposition informally says that player, and playerg; are correct implemen-
tations of player 0 and player 1, respectively, in the game I'(R, zo). ‘

Proposition 7.1. Let L’ be the sublanguage of L whose function symbols are the unéry
function symbol s and constant 0.

H.A. Blair/ Designing Dependencies 51

1) Using predicate symbol p0, playery computes with respect to L’ the relation P consist-
ing of all tuples (s%(0),87(0),s"(0)).

2) Using p1, playerg,; computes with respect to L' the relation @ where Q(s(0), s*(0),
s% (0),s*(0), s*“(0)) holds iff any of the following conditions hold: (i) Rfz,z) and
-R(z,20) and w = u = 0, (ii) R(z,z) and R(z,z), and v = 0, (iii) =R(z,2) and
R(z,z) and w =1 and u=0,or (1v) - R(z,z) and ~R(z,2p) and w =u = 0.

Proof:
By proposition 4.2., it suffices to show that the prototype player programs Py and P; |J Pr

compute the relatlons P and @, given in the proposition, using p0 and p1, respectlvely This
is nearly immediate. _ |

We now show how to connect the player programs. This will be done by replacing the
empty bodies of the terminating clauses in the player programs by calls to instances of p0

and p1 literals.

Definition 7.4. The clauses (1) - (4), below, are called connecting clauses.

(1) stack(O,nil,fpo(X,Z,WinLoss)) — p1(X,2,21,WinLoss, s(0)).

(2) stack(O,nil,fpo(X,Z,WinLoss)) — =p1(X,Z,Z1,WinLoss, s(0)).
(3) stack(0,nil, fp1(X, 2, Z0,WinLoss,s(0))) « p0(20,21,WinLoss).
(4) stack(O,nil,fpl(X,Z,ZO,WinLoss,s(O))) — —1p0(20,21,WinLoss).

Connecting clauses (1) and (3) are said to be positive; connecting clauses (2) and (4) are
negative. A connection is any one of the four programs consisting of two connecting clauses
obtained by selecting one of the two clauses (1) and (2) and by selecting one of the two
clauses (3) and (4). A game program consists of the initializing clause, and the clauses for
the player programs but where the terminating clauses of the player programs are replaced
by a connection.

8. Unifying Two Theorems

In this section we show that two theorems that give the degree of unsolvability of two
distinctly different classes of normal logic programs are actually two manifestations of the
same underlying complexity of the dependency relations determined by the programs in
these classes. This complexity is determined by lemma 6.1., above. |

By a sufficiently large language we mean a language with at least one constant and one
nonconstant function symbol and at least one binary predicate symbol or one binary function
symbol. By independent means the following two theorems can be established.

Theorem 8.1. If L is a sufficiently large language, the set of normal logic programs over L
that are locally stratified is complete 11].

Theorem 8.2. If L is a sufficiently large language the set of definite clause programs over
L with a unique supported Herbrand model is complete I1}.

The first of these theorems is proved in [8]. The second is contained in an unpublished tech-
nical report, [4]. In this section we observe that both theorems are obtainable by essentially
the same proof using lemma 6.1. The point is that the lemma is very generic, and the two
theorems follow nearly immediately by the same short routine line of reasoning about game
programs. We now prove both of these theorems together.

Proof: :

Form two programs, @+ and @~ as follows. First, choose y € N and form the player.
programs using relation R, where R, is as in corollary 6.1. Next, connect the player programs
by replacing their terminating clauses by a connection consisting of the positive connecting

52 H.A. Blair | Designing Dependencies

clauses in forming Q% and the negative connecting clauses in forming ¢)~. Include the
initializing clause

start(sY(0),WinLoss) « p0(s?(0),Z0,WinLoss). -
in Q* and Q~. This completes the construction of @* and Q. We now have the following
claims.

claim 1: @~ is locally stratified iff player 0 has a winning strategy in I'(Ry, y).

claim 2: Q7 has a unique supported Herbrand model (which is empty) iff player 0 has a
winning strategy in I'(R,, y).

We complete the proof of the theorems by proving claims 1 and 2. We prove claim 1 first.
A proof of claim 2 will then be at hand almost immediately. A program is locally stratified
iff the depends negatively on relation is Noetherian.

The depends negatively on relation (with respect

to @) is not Noetherian

iff
there is an infinite sequence of ground atoms
Agy, ..oy Ap,y ...
such that A; depends negatively on A;;; for allz € N
iff

(see the remark immediately following the proof.)
there is a sequence

of atoms such that each atom in the sequence depends negatively on the succeeding
atom :
iff
there is an infinite sequence
kO’ klv ki’ k2a k;’ kS, ey kn’ k:u kn+la e

such that Ry(ko, k1), By(ko, k) and for each ¢ € N: Ry(k!, kiy1) and Ry (k}, k).
iff

Player 0 does not have a winning strategy for the game I'(R,,y).
This completes the proof of claim 1. To prove claim 2, replace depends negatively on by
depends positively on in the above argument. The new argument goes through because the

depends positively on relation, with respect to each of the player programs separately, is
Noetherian. O

The reader may wonder whether, in the preceding proof, dependencies between, for exam-
ple, atoms of the form pO(t,¢2,%3) and p1(uy,uz,us, uq,us) are relevant when the terms
t1, 2,13, U1, U2, U3, ug, us may contain occurrences of function and constant symbols other
than s or 0. Such dependencies are relevant. However, by replacing every term v, where v
has the form s¥(v') and the principal function symbol of v’ is neither s nor 0, with v*, where
v* is %(0), we obtain a dependency between pO(t},3,13) and p1(u*, ul, ul, ul, ul).

H.A. Blair [Designing Dependencies v 53

9. Conclusions and Future Work

The aim of this paper has been to show the utility of viewing interacting logic program
procedures as players in a game. The utility in this approach is that a varietysof results
about the degrees of unsolvability of logic program properties and expressive power can be
established by representing various phenomena as properties of game trees. Sequences of
moves in the game are represented as dependencies, and subsequently as entailments, with
respect to various logic programs.

We speculate that the game tree technique presented here will also be useful in investiga-
tions of subrecursive complexity properties of function-symbol-free programs, provided the
stack-machine aspect of a binary extensional equivalent of a function-symbol-free program
is kept clearly separate from the relations defined by the program itself. The reduction of
programs to binary programs given in this paper also suggests that properties of programs
closely related to dependencies between atoms should be further investigated by studying
dependencies between finite sets of atoms. The techniques presented here also suggest that
reversing the direction of application of the games may aid future investigation of GH-games.
We stress that even where considerations about games are not essential, such considerations
are illuminating.

GH-games as we have used them in this paper do not require us to treat only GH-games
whose winning sets are definable in terms of kernels of positions (¢f. the comments following
definition 2.1.) However, we believe that restricting to such GH-games as well as employing
subsequent notions studied by Yakhnis and Yakhnis [15] will prove to be a powerful technique
for investigating logic programs, computationally and semantically.

Acknowledgements

The author has benefitted from discussions with Anil Nerode, Jeffrey Remmel,
Victor Marek, Alexander Yakhnis and Vladimir Yakhnis.

References

[1] Andreka H. and Nemeti I.: “The Generalized Completeness of Horn Predicate Logic as
a Programming Language”, Acta Cybernetica, 4, 1978, 3-10.

[2] Apt, K. R.: “Logic Programming”, J. van Leeuwen (ed.), Handbook of Theoretical
Computer Science, Amsterdam: Elsevier, 1990, 494-574.

[3] Blair, H. A.: “The Recursion-Theoretic Complexity of the Semantics of Predicate Logic
as a Programming Language”, Information and Control, 54(1), 1982, 25-47.

[4] Blair, H. A.: Decidability in the Herbrand Base. (Manuscript) Workshop on Deductive
Databases and Logic Programming, Washington D.C., 1986, Syracuse University Logic
Programming Research Group Technical Report LPRG-TR88-13.

[5] Blair, H. A.: “Canonical Conservative Extensions of Logic Program Completions”. [EEE
Symposium on Logic Programming, San Francisco, 1987, 154-161.

[6] Blair, H. A.: “Metalogic Programming and Direct Universal Computability”, Abramson,
H and Rogers, M. H. (eds.), Meta-Programming in Logic Programming, Cambridge: MIT
Press, 1989, 53-63.

[7] Blair, H. A.: “Game Characterizations of Logic Program Properties”, Logic Program-
ming and Nonmonotonic Reasoning, Lecture Notes in Artificial Intelligence no. 928,
Berlin: Springer, 1995, 99-112.

[8] Blair, H. A., Marek, V. W. and Schlipf, J. S.: “The Expressiveness of Locally Stratified
Programs”, Annals of Mathematics and Artificial Intelligence, 15(1995), 209-229.

[9] Cholak, P. and Blair, H. A.: “The Complexity of Local Stratification”, Fundamenta
Informaticae, 21(4), 1994, 333-344.

[10] Gurevich, Y. and Harrington, L.: “Trees, Automata and Games”, Proceedings of the
14th Annual ACM Symposium on Theory of Computing, 1982, 60-65.

54 H A. Blair | Designing Dependencies

[11] Huet, G.: “Confluent Reductions: Abstract Properties and Applications to Term
Rewriting Systems”, Journal of the Association for Computing Machinery 27(4), 1980,
797-821. ‘

[12] Lloyd, J. W.: Foundations of Logic Programming, (2nd. ed.), Berlin: Spriniger-Verlag,
1987.

[13] Nerode, A. and Shore, R.: Logic for Applications, Berlin: Springer-Verlag, 1993.

[14] Rogers, H. Theory of Recursive Functions and Effective Computability, New York:
McGraw-Hill, 1967.

[15] Yakhnis, A. and Yakhnis, V. “Extension of Gurevich-Harrington’s Restricted Memory
Determinacy Theorem: A Criterion for the Winning Player and an Explicit Class of
Winning Strategies”, Annals of Pure and Applied Logic, 48(3), 1990, 277-297.

