
Fundamenta Informaticae 179 (2021) 321–344 321

DOI 10.3233/FI-2021-2026

IOS Press

Using Hoare Logic in a Process Algebra Setting

J.A. Bergstra, C.A. Middelburg∗

Informatics Institute, University of Amsterdam

Amsterdam, the Netherlands

{J.A.Bergstra, C.A.Middelburg}@uva.nl

Abstract. This paper concerns the relation between process algebra and Hoare logic. We investi-
gate the question whether and how a Hoare logic can be used for reasoning about how data change
in the course of a process when reasoning equationally about that process. We introduce an exten-
sion of ACP (Algebra of Communicating Processes) with features that are relevant to processes
in which data are involved, present a Hoare logic for the processes considered in this process al-
gebra, and discuss the use of this Hoare logic as a complement to pure equational reasoning with
the equational axioms of the process algebra.

Keywords: process algebra, data parameterized action, assignment action, guarded command,
asserted process, Hoare logic

1. Introduction

ACP (Algebra of Communicating Processes) and its extensions provide a setting for equational rea-
soning about processes of some kind. The processes about which reasoning is in demand are often
processes in which data are involved. It is quite common for such a process that the data that are
involved change in the course of the process and that the process proceeds at certain stages in a way
that depends on the changing data. This means that reasoning about a process often involves reasoning
about how data change in the course of that process. The question arises whether and how a Hoare
logic can be used for the second kind of reasoning when reasoning equationally about a process. After
∗Address for correspondence: Informatics Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the
Netherlands.

Received December 2019; revised January 2021.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

322 J.A. Bergstra and C.A. Middelburg / Using Hoare Logic in a Process Algebra Setting

all, processes of the kind described above are reminiscent of the processes that arise from the execution
of imperative programs.

This paper is concerned with the above-mentioned question. We investigate it using an extension
of ACP [1] with features that are relevant to processes in which data are involved and a Hoare logic
of asserted processes based on this extension of ACP. The extension concerned is called ACP∗ε -D. Its
additional features include assignment actions to deal with data that change in the course of a process
and guarded commands to deal with processes that proceed at certain stages in a way that depends on
certain data. In the Hoare logic concerned, an asserted process is a formula of the form {φ}p{ψ},
where p is a term of ACP∗ε -D that denotes a process and φ and ψ are terms of ACP∗ε -D that denote
conditions.

We define what it means that an asserted process is true in such a way that {φ}p {ψ} is true iff a set
of equations that represents this judgment is derivable from the axioms of ACP∗ε -D. Such a definition
is a prerequisite for an affirmative answer to the question whether and how a Hoare logic can be used
for reasoning about how data change in the course of a process when reasoning equationally about that
process. The set of equations that represents the judgment expresses that a certain equivalence relation
holds between processes determined by the asserted process. The equivalence relation concerned may
be a useful equivalence relation when reasoning about processes in which data are involved. However,
it is not a congruence relation, i.e. it is not preserved by all contexts. This complicates pure equational
reasoning considerably. The presented Hoare logic can be considered to be a means to get partially
round the complications concerned.

This paper is organized as follows. We begin with presenting ACP∗ε , an extension of ACP with the
empty process constant ε and the binary iteration operator ∗, and ACP∗ε -D, an extension of ACP∗ε with
features that are relevant to processes in which data are involved (Sections 2 and 3). We also present a
structural operational semantics of ACP∗ε -D, define a notion of bisimulation equivalence based on this
semantics, and show that the axioms of ACP∗ε -D are sound with respect to this bisimulation equiva-
lence (Section 4). After that, we present a Hoare logic of asserted processes based on ACP∗ε -D, define
what it means that an asserted process is true, and show that the axioms and rules of this Hoare logic
are sound with respect to this meaning (Section 5). Following this, we go further into the connection
of the presented Hoare logic with ACP∗ε -D by way of the equivalence relation referred to in the previ-
ous paragraph (Section 6). We also go into the use of the presented Hoare logic as a complement to
pure equational reasoning with the axioms of ACP∗ε -D by means of examples (Section 7). Finally, we
discuss related work and make some concluding remarks (Sections 8 and 9).

2. ACP with the empty process and iteration

In this section, we present ACP∗ε , ACP [1] extended with the empty process constant ε as in [2, Sec-
tion 4.4] and the binary iteration operator ∗ as in [3]. In ACP∗ε , it is assumed that a fixed but arbitrary
finite set A of basic actions, with δ, ε 6∈ A, and a fixed but arbitrary commutative and associative com-
munication function γ : (A∪{δ})× (A∪{δ})→ (A∪{δ}), such that γ(δ, a) = δ for all a ∈ A∪{δ},
have been given. Basic actions are taken as atomic processes. The function γ is regarded to give
the result of synchronously performing any two basic actions for which this is possible, and to be δ
otherwise. Henceforth, we write Aδ for A ∪ {δ}.

J.A. Bergstra and C.A. Middelburg / Using Hoare Logic in a Process Algebra Setting 323

The algebraic theory ACP∗ε has one sort: the sort P of processes. We make this sort explicit
to anticipate the need for many-sortedness later on. The algebraic theory ACP∗ε has the following
constants and operators to build terms of sort P:

• the inaction constant δ :→ P;

• the empty process constant ε :→ P;

• for each a ∈ A, the basic action constant a :→ P;

• the binary alternative composition operator + : P×P→ P;

• the binary sequential composition operator · : P×P→ P;

• the binary iteration operator ∗ : P×P→ P;

• the binary parallel composition operator ‖ : P×P→ P;

• the binary left merge operator bb : P×P→ P;

• the binary communication merge operator | : P×P→ P;

• for each H ⊆ A, the unary encapsulation operator ∂H : P→ P.

We assume that there is a countably infinite set of variables of sort P, which contains x, y and z.
Terms are built as usual. We use infix notation for the binary operators. The following precedence
conventions are used to reduce the need for parentheses: the operator · binds stronger than all other
binary operators and the operator + binds weaker than all other binary operators.

The constants and operators of ACP∗ε are the constants and operators of ACPε [2, Section 4.4] and
additionally the iteration operator ∗. Let p and q be closed ACP∗ε terms, a ∈ A, and H ⊆ A.1 Then the
constants and operators of ACP∗ε can be explained as follows:

• the constant δ denotes the process that is not capable of doing anything, not even terminating
successfully;

• the constant ε denotes the process that is only capable of terminating successfully;

• the constant a denotes the process that is only capable of first performing action a and next
terminating successfully;

• a closed term of the form p + q denotes the process that behaves either as the process denoted
by p or as the process denoted by q, but not both;

• a closed term of the form p · q denotes the process that first behaves as the process denoted by p
and on successful termination of that process next behaves as the process denoted by q;

1As usual, a term in which no variables occur is called a closed term.

324 J.A. Bergstra and C.A. Middelburg / Using Hoare Logic in a Process Algebra Setting

Table 1. Axioms of ACP∗ε

x+ y = y + x A1

(x+ y) + z = x+ (y + z) A2

x+ x = x A3

(x+ y) · z = x · z + y · z A4

(x · y) · z = x · (y · z) A5

x+ δ = x A6

δ · x = δ A7

x · ε = x A8

ε · x = x A9

x ∗ y = x · (x ∗ y) + y BKS1

z = x · z + y → z = x ∗ y RSP∗

x ‖ y = x bb y + y bb x+ x | y + ∂A(x) · ∂A(y) CM1T

ε bb x = δ CM2T

a · x bb y = a · (x ‖ y) CM3

(x+ y) bb z = x bb z + y bb z CM4

ε | x = δ CM5T

x | ε = δ CM6T

a · x | b · y = γ(a, b) · (x ‖ y) CM7

(x+ y) | z = x | z + y | z CM8

x | (y + z) = x | y + x | z CM9

∂H(ε) = ε D0

∂H(a) = a if a 6∈ H D1

∂H(a) = δ if a ∈ H D2

∂H(x+ y) = ∂H(x) + ∂H(y) D3

∂H(x · y) = ∂H(x) · ∂H(y) D4

• a closed term of the form p ∗ q denotes the process that behaves either as the process denoted by
q or as the process that first behaves as the process denoted by p and on successful termination
of that process next behaves as p ∗ q again;

• a closed term of the form p ‖ q denotes the process that behaves as the processes denoted by p
and q taking place in parallel, by which we understand that, each time an action is performed,
either a next action of one of the two processes is performed or a next action of the former
process and a next action of the latter process are performed synchronously;

• a closed term of the form p bb q denotes the process that behaves the same as the process denoted
by p ‖ q, except that it starts with performing an action of the process denoted by p;

• a closed term of the form p | q denotes the process that behaves the same as the process denoted
by p‖q, except that it starts with performing an action of the process denoted by p and an action
of the process denoted by q synchronously;

• a closed term of the form ∂H(p) denotes the process that behaves the same as the process
denoted by p, except that actions from H are blocked.

The axioms of ACP∗ε are the equations given in Table 1. In these equations, a and b stand for
arbitrary constants of ACP∗ε that differ from ε and H stands for an arbitrary subset of A. So, CM3,
CM7, and D0–D4 are actually axiom schemas. Axioms A1–A9, CM1T, CM2T, CM3, CM4, CM5T,
CM6T, CM7–CM9, and D0–D4 are the axioms of ACPε (cf. [2, Section 4.4]). Axioms BKS1 and
RSP* have been taken from [4].

J.A. Bergstra and C.A. Middelburg / Using Hoare Logic in a Process Algebra Setting 325

The iteration operator originates from [3], where it is called the binary Kleene star operator. The
unary counterpart of this operator can be defined by the equation x∗ = x ∗ ε. From this defining
equation, it follows, using RSP*, that x∗ = x · x∗ + ε and also that x ∗ y = x∗ · y.

Among the equations derivable from the axioms of ACP∗ε are the equations concerning the itera-
tion operator given in Table 2. In the axiom system of ACP∗ given in [3], the axioms for the iteration

Table 2. Derivable equations for iteration

x ∗ (y · z) = (x ∗ y) · z BKS2

x ∗ (y · ((x+ y) ∗ z) + z) = (x+ y) ∗ z BKS3

∂H(x ∗ y) = ∂H(x) ∗ ∂H(y) BKS4

ε ∗ x = x BKS5

operator are BKS1–BKS4 instead of BKS1 and RSP*. There exist equations derivable from the ax-
ioms of ACP∗ε that are not derivable from the axioms of ACP∗ε with BKS1 and RSP* replaced by
BKS1–BKS5. For example, the equation a ∗ δ = (a · a) ∗ δ is derivable with BKS1 and RSP*, but not
with BKS1–BKS5 (cf. [5]). Moreover, we do not see how Theorem 5.3 of this paper can be proved if
RSP* is replaced by BKS2–BKS5 (see the remark following the proof of the theorem).

3. Data enriched ACP∗ε
In this section, we present ACP∗ε -D, data enriched ACP∗ε . This extension of ACP∗ε has been inspired
by [6]. It extends ACP∗ε with features that are relevant to processes in which data are involved, such
as guarded commands (to deal with processes that only take place if some data-dependent condition
holds), data parameterized actions (to deal with process interactions with data transfer), and assign-
ment actions (to deal with data that change in the course of a process).

In ACP∗ε -D, it is assumed that the following has been given with respect to data:

• a (single- or many-sorted) signature ΣD that includes a sort D of data and constants and/or
operators with result sort D;

• a minimal algebra D of the signature ΣD.

Moreover, it is assumed that a countably infinite set V of flexible variables has been given. A flexible
variable is a variable whose value may change in the course of a process.2 Flexible variables are found
under the name program variables in imperative programming. We write D for the set of all closed
terms over the signature ΣD that are of sort D. An evaluation map is a function σ from V to D ∪ V
where, for all v ∈ V , σ(v) = v if σ(v) ∈ V . Let σ be an evaluation map and let V be a finite subset
of V . Then σ is a V -evaluation map if, for all v ∈ V , σ(v) ∈ D iff v ∈ V .

Evaluation maps are intended to provide the data values assigned to flexible variables of sort D
when a term of sort D is evaluated. However, in order to fit better in an algebraic setting, they provide

2The term flexible variable is used for this kind of variables in e.g. [7, 8].

326 J.A. Bergstra and C.A. Middelburg / Using Hoare Logic in a Process Algebra Setting

closed terms over the signature ΣD that denote those data values instead. The requirement that D is a
minimal algebra guarantees that each data value can be represented by a closed term. The possibility
to map flexible variables to themselves may be used for partial evaluation, i.e. evaluation where some
flexible variables are not evaluated.

The algebraic theory ACP∗ε -D has three sorts: the sort P of processes, the sort C of conditions,
and the sort D of data. ACP∗ε -D has the constants and operators from ΣD and in addition the following
constants to build terms of sort D:

• for each v ∈ V , the flexible variable constant v :→ D.

ACP∗ε -D has the following constants and operators to build terms of sort C:

• the binary equality operator = : D×D→ C;

• the truth constant t :→ C;

• the falsity constant f :→ C;

• the unary negation operator ¬ : C→ C;

• the binary conjunction operator ∧ : C×C→ C;

• the binary disjunction operator ∨ : C×C→ C;

• the binary implication operator→ : C×C→ C;

• the unary variable-binding universal quantification operator ∀ : C → C that binds a variable
of sort D;

• the unary variable-binding existential quantification operator ∃ : C → C that binds a variable
of sort D.

ACP∗ε -D has the constants and operators of ACP∗ε and in addition the following operators to build
terms of sort P:

• the binary guarded command operator :→ : C×P→ P;

• for each n∈N, for each a∈A, the n-ary data parameterized action operator a : D×· · ·×D︸ ︷︷ ︸
n times

→P;

• for each v ∈ V , a unary assignment action operator v:= : D→ P;

• for each evaluation map σ, a unary evaluation operator Vσ : P→ P.

We assume that there are countably infinite sets of variables of sort C and D and that the sets of
variables of sort P, C, and D are mutually disjoint and disjoint from V . The formation rules for terms
are the usual ones for the many-sorted case (see e.g. [9, 10]) and in addition the following rule:

J.A. Bergstra and C.A. Middelburg / Using Hoare Logic in a Process Algebra Setting 327

• if O is a variable-binding operator O : S1 × . . . × Sn → S that binds a variable of sort S′,
t1, . . . , tn are terms of sorts S1, . . . , Sn, respectively, and X is a variable of sort S′, then
OX(t1, . . . , tn) is a term of sort S (cf. [11]).

We use the same notational conventions as before. We also use infix notation for the additional binary
operators. Moreover, we use the notation [v := e], where v ∈ V and e is a term of sort D, for the term
v := (e).

We use the notation φ↔ ψ, where φ and ψ are terms of sort C, for the term (φ→ ψ)∧ (ψ → φ).
Moreover, we use the notation

∨
Φ, where Φ = {φ1, . . . , φn} and φ1, . . . , φn are terms of sort C, for

the term φ1 ∨ . . . ∨ φn.
We write P for the set of all closed terms of sort P, C for the set of all closed terms of sort C, and

D for the set of all closed terms of sort D.
Each term from C can be taken as a formula of a first-order language with equality of D by taking

the flexible variable constants as additional variables of sort D. We implicitly take the flexible variable
constants as additional variables of sort D wherever the context asks for a formula. In this way, each
term from C can be interpreted as a formula in D. The axioms of ACP∗ε -D (given below) include an
equation φ = ψ for each two terms φ and ψ from C for which the formula φ↔ ψ holds in D.

Let p be a term from P , φ be a term from C, and e1, . . . , en and e be terms from D. Then the
additional operators can be explained as follows:

• the term φ :→p denotes the process that behaves as the process denoted by p under condition φ;

• the term a(e1, . . . , en) denotes the process that is only capable of first performing action
a(e1, . . . , en) and next terminating successfully;

• the term [v := e] denotes the process that is only capable of first performing action [v := e],
whose intended effect is the assignment of the result of evaluating e to flexible variable v, and
next terminating successfully;

• the term Vσ(p) denotes the process that behaves the same as the process denoted by p except that
each subterm of p that belongs to D is evaluated using the evaluation map σ updated according
to the assignment actions that have taken place at the point where the subterm is encountered.

Evaluation operators are a variant of state operators (see e.g. [12]).

The guarded command operator is often used to construct ACP∗ε -D terms that are reminiscent
of control flow statements of imperative programming languages. For example, terms of the form
φ:→t+(¬φ):→t′ are reminiscent of if-then-else statements and terms of the form (φ:→t)∗((¬φ):→ε)
are reminiscent of while-do statements. The following ACP∗ε -D term contains a subterm of the latter
form (i, j, q, r ∈ V):

[q := 0] · [r := i] · (((r ≥ j) :→ [q := q + 1] · [r := r − j]) ∗ ((¬ r ≥ j) :→ ε)) .

This term is reminiscent of a program that computes the quotient and remainder of dividing two
integers by repeated subtraction. That is, the final values of q and r are the quotient and remainder

328 J.A. Bergstra and C.A. Middelburg / Using Hoare Logic in a Process Algebra Setting

of dividing the initial value of i by the initial value of j. An evaluation operator can be used to show
that this is the case for given initial values of i and j. For example, consider the case where the initial
values of i and j are 11 and 3, respectively. Let σ be an evaluation map such that σ(i) = 11 and
σ(j) = 3. Then the following equation can be derived from the axioms of ACP∗ε -D given below:

Vσ([q := 0] · [r := i] · (((r ≥ j) :→ [q := q + 1] · [r := r − j]) ∗ ((¬ r ≥ j) :→ ε)))

= [q := 0] · [r := 11] · [q := 1] · [r := 8] · [q := 2] · [r := 5] · [q := 3] · [r := 2] .

This equation shows that in the case where the initial values of i and j are 11 and 3 the final values of
q and r are 3 and 2 (which are the quotient and remainder of dividing 11 by 3).

An evaluation map σ can be extended homomorphically from flexible variables to terms of sort D
and terms of sort C. These extensions are denoted by σ as well. We write σ{e/v} for the evaluation
map σ′ defined by σ′(v′) = σ(v′) if v′ 6≡ v and σ′(v) = e.

The axioms of ACP∗ε -D are the axioms of ACP∗ε and in addition the equations given in Table 3.In
these equations, φ and ψ stand for arbitrary terms from C, e, e1, e2, . . ., and e′, e′1, e

′
2, . . . stand for

arbitrary terms from D, v stands for an arbitrary flexible variable from V , σ stands for an arbitrary
evaluation map, a and b stand for arbitrary constants of ACP∗ε -D that differ from ε, c stands for an
arbitrary constant of ACP∗ε -D that differ from ε and δ, and H stands for an arbitrary subset of A.
Axioms GC1–GC11 have been taken from [13] (using a different numbering), but with the axioms
with occurrences of conditional expressions of the form pCφBq replaced by simpler axioms. Axioms
CM3D, CM7Da, CM7Db, D1D, and D2D have been inspired by [6].

The set A of actions of ACP∗ε -D is inductively defined by the following rules:

• if a ∈ A, then a ∈ A;

• if a ∈ A and e1, . . . , en ∈ D, then a(e1, . . . , en) ∈ A;

• if v ∈ V and e ∈ D, then [v := e] ∈ A.

The elements of A are the processes that are considered to be atomic.

The setH of head normal forms of ACP∗ε -D is inductively defined by the following rules:

• δ ∈ H;

• if φ ∈ C, then φ :→ ε ∈ H;

• if φ ∈ C, α ∈ A, and p ∈ P , then φ :→ a · p ∈ H;

• if p, p′ ∈ H, then p+ p′ ∈ H.

The following lemma about head normal forms is used in later sections.

Lemma 3.1. For all terms p ∈ P , there exists a term q ∈ H such that p = q is derivable from the
axioms of ACP∗ε -D.

J.A. Bergstra and C.A. Middelburg / Using Hoare Logic in a Process Algebra Setting 329

Table 3. Axioms of ACP∗ε -D

e = e′ if D |= e = e′ IMP1

φ = ψ if D |= φ↔ ψ IMP2

t :→ x = x GC1

f :→ x = δ GC2

φ :→ δ = δ GC3

φ :→ (x+ y) = φ :→ x+ φ :→ y GC4

φ :→ x · y = (φ :→ x) · y GC5

φ :→ (ψ :→ x) = (φ ∧ ψ) :→ x GC6

(φ ∨ ψ) :→ x = φ :→ x+ ψ :→ x GC7

(φ :→ x) bb y = φ :→ (x bb y) GC8

(φ :→ x) | y = φ :→ (x | y) GC9

x | (φ :→ y) = φ :→ (x | y) GC10

∂H(φ :→ x) = φ :→ ∂H(x) GC11

Vσ(ε) = ε V0

Vσ(a · x) = a · Vσ(x) V1

Vσ(a(e1, . . . , en) · x) = a(σ(e1), . . . , σ(en)) · Vσ(x) V2

Vσ([v := e] · x) = [v := σ(e)] · Vσ{σ(e)/v}(x) V3

Vσ(x+ y) = Vσ(x) + Vσ(y) V4

Vσ(φ :→ y) = σ(φ) :→ Vσ(x) V5

a(e1, . . . , en) · x bb y = a(e1, . . . , en) · (x ‖ y) CM3D

a(e1, . . . , en) · x | b(e′1, . . . , e′n) · y =

(e1 = e′1 ∧ . . . ∧ en = e′n) :→ c(e1, . . . , en) · (x ‖ y) if γ(a, b) = c CM7Da

a(e1, . . . , en) · x | b(e′1, . . . , e′m) · y = δ if γ(a, b) = δ or n 6= m CM7Db

a(e1, . . . , en) · x | b · y = δ CM7Dc

a · x | b(e1, . . . , en) · y = δ CM7Dd

∂H(a(e1, . . . , en)) = a(e1, . . . , en) if a 6∈ H D1D

∂H(a(e1, . . . , en)) = δ if a ∈ H D2D

[v := e] · x bb y = [v := e] · (x ‖ y) CM3A

[v := e] · x | y = δ CM5A

x | [v := e] · y = δ CM6A

∂H([v := e]) = [v := e] D1A

330 J.A. Bergstra and C.A. Middelburg / Using Hoare Logic in a Process Algebra Setting

Proof:
This is straightforwardly proved by induction on the structure of p. The cases where p is of the form
δ, ε or α (α ∈ A) are trivial. The case where p is of the form p1 + p2 follows immediately from
the induction hypothesis. The case where p is of the form p1 ‖ p2 follows immediately from the case
that p is of the form p1 bb p2 and the case that p is of the form p1 | p2. Each of the other cases follow
immediately from the induction hypothesis and a claim that is easily proved by structural induction.
In the case where p is of the form p1 | p2, each of the cases to be considered in the inductive proof
demands an additional proof by structural induction. ut

Some earlier extensions of ACP include Hoare’s ternary counterpart of the binary guarded com-
mand operator (see e.g. [13]). This operator can be defined by the equation x CuB y = u :→ x +
(¬u) :→ y. From this defining equation, it follows that u :→ x = x CuB δ. In [14], a unary coun-
terpart of the binary guarded command operator is used. This operator can be defined by the equation
{u} = u :→ ε. From this defining equation, it follows that u :→ x = {u} · x and also that {t} = ε and
{f} = δ. In [14], the processes denoted by closed terms of the form {φ} are called guards.

4. Structural operational semantics and bisimulation equivalence

In this section, we present a structural operational semantics of ACP∗ε -D, define a notion of bisimula-
tion equivalence based on this semantics, and show that the axioms of ACP∗ε -D are sound with respect
to this bisimulation equivalence.

We write Csat for the set of all terms φ ∈ C for which D 6|= φ ↔ f. As formulas of a first-order
language with equality of D, the terms from Csat are the formulas that are satisfiable in D.

We start with the presentation of the structural operational semantics of ACP∗ε -D. The following
transition relations on P are used:

• for each φ ∈ Csat , a unary relation {φ}↓;

• for each ` ∈ Csat ×A, a binary relation `−→.

We write p {φ}↓ instead of p ∈ {φ}↓ and p {φ}α−−−→ q instead of (p, q) ∈ (φ,α)−−−→. The relations {φ}↓
and `−→ can be explained as follows:

• p {φ}↓: p is capable of terminating successfully under condition φ;

• p {φ}α−−−→ q: p is capable of performing action α under condition φ and then proceeding as q.

The structural operational semantics of ACP∗ε -D is described by the transition rules given in Ta-
ble 4.In this table, a, b, and c stand for arbitrary basic actions from A, v stands for an arbitrary flexible
variable from V , e and e1, e2, . . . stand for arbitrary terms from D, φ and ψ stand for arbitrary terms
from Csat , α stands for an arbitrary term from A, H stands for arbitrary subset of A, and σ stands for
an arbitrary evaluation map.

J.A. Bergstra and C.A. Middelburg / Using Hoare Logic in a Process Algebra Setting 331

Table 4. Transition rules for ACP∗ε -D

ε {t}↓

a
{t}a−−−→ ε a(e1, . . . , en)

{t}a(e1,...,en)−−−−−−−−−→ ε [v := e]
{t} [v:=e]−−−−−−→ ε

x {φ}↓
x+ y {φ}↓

y {φ}↓
x+ y {φ}↓

x
{φ}α−−−→ x′

x+ y
{φ}α−−−→ x′

y
{φ}α−−−→ y′

x+ y
{φ}α−−−→ y′

x {φ}↓, y {ψ}↓
x · y {φ∧ψ}↓

D 6|= φ ∧ ψ ↔ f
x {φ}↓, y {ψ}α−−−→ y′

x · y {φ∧ψ}α−−−−−→ y′
D 6|= φ ∧ ψ ↔ f x

{φ}α−−−→ x′

x · y {φ}α−−−→ x′ · y

y {φ}↓
x ∗ y {φ}↓

y
{φ}α−−−→ y′

x ∗ y
{φ}α−−−→ y′

x
{φ}α−−−→ x′

x ∗ y
{φ}α−−−→ x′ · (x ∗ y)

x {φ}↓
ψ :→ x {φ∧ψ}↓

D 6|= φ ∧ ψ ↔ f x
{φ}α−−−→ x′

ψ :→ x
{φ∧ψ}α−−−−−→ x′

D 6|= φ ∧ ψ ↔ f

x {φ}↓, y {ψ}↓
x ‖ y {φ∧ψ}↓

D 6|= φ ∧ ψ ↔ f x
{φ}α−−−→ x′

x ‖ y {φ}α−−−→ x′ ‖ y
y
{φ}α−−−→ y′

x ‖ y {φ}α−−−→ x ‖ y′

x
{φ}a−−−→ x′, y

{ψ}b−−−→ y′

x ‖ y {φ∧ψ}c−−−−−→ x′ ‖ y′
γ(a, b) = c, D 6|= φ ∧ ψ ↔ f

x
{φ}a(e1,...,en)−−−−−−−−−−→ x′, y

{ψ}b(e′1,...,e
′
n)−−−−−−−−−−→ y′

x ‖ y {φ∧ψ∧e1=e′1∧...∧en=e
′
n}c(e1,...,en)−−−−−−−−−−−−−−−−−−−−−−−−→ x′ ‖ y′

γ(a, b) = c, D 6|= φ ∧ ψ ∧ e1 = e′1 ∧ . . . ∧ en = e′n ↔ f

x
{φ}α−−−→ x′

x bb y {φ}α−−−→ x′ ‖ y

x
{φ}a−−−→ x′, y

{ψ}b−−−→ y′

x | y {φ∧ψ}c−−−−−→ x′ ‖ y′
γ(a, b) = c, D 6|= φ ∧ ψ ↔ f

x
{φ}a(e1,...,en)−−−−−−−−−−→ x′, y

{ψ}b(e′1,...,e
′
n)−−−−−−−−−−→ y′

x | y {φ∧ψ∧e1=e′1∧...∧en=e
′
n}c(e1,...,en)−−−−−−−−−−−−−−−−−−−−−−−−→ x′ ‖ y′

γ(a, b) = c, D 6|= φ ∧ ψ ∧ e1 = e′1 ∧ . . . ∧ en = e′n ↔ f

x {φ}↓
∂H(x) {φ}↓

x
{φ}a−−−→ x′

∂H(x)
{φ}a−−−→ ∂H(x′)

a 6∈ H x
{φ}a(e1,...,en)−−−−−−−−−−→ x′

∂H(x)
{φ}a(e1,...,en)−−−−−−−−−−→ ∂H(x′)

a 6∈ H

x
{φ} [v:=e]−−−−−−→ x′

∂H(x)
{φ} [v:=e]−−−−−−→ ∂H(x′)

x {φ}↓
Vσ(x)

{σ(φ)}↓
x
{φ}a−−−→ x′

Vσ(x)
{σ(φ)}a−−−−−→ Vσ(x

′)

x
{φ}a(e1,...,en)−−−−−−−−−−→ x′

Vσ(x)
{σ(φ)}a(σ(e1),...,σ(en))−−−−−−−−−−−−−−−−→ Vσ(x

′)

x
{φ} [v:=e]−−−−−−→ x′

Vσ(x)
{σ(φ)} [v:=σ(e)]−−−−−−−−−−→ Vσ{σ(e)/v}(x

′)
σ(v) ∈ D x

{φ} [v:=e]−−−−−−→ x′

Vσ(x)
{σ(φ)} [v:=σ(e)]−−−−−−−−−−→ Vσ(x

′)
σ(v) /∈ D

332 J.A. Bergstra and C.A. Middelburg / Using Hoare Logic in a Process Algebra Setting

Two process are considered equal if they can simulate each other. In order to make this precise,
we will define the notion of bisimulation equivalence on the set P below. In the definition concerned,
we need an equivalence relation on the set A.

Two actions α, α′ ∈ A are data equivalent, written α ' α′, iff one of the following holds:

• there exists an a ∈ A such that α = a and α′ = a;

• there exist an a ∈ A and e1, . . . , en, e′1, . . . , e
′
n ∈ D such that D |= e1 = e′1 ∧ . . . ∧ en = e′n,

α = a(e1, . . . , en), and α′ = a(e′1, . . . , e
′
n);

• there exist a v ∈ V and e, e′ ∈ D such that D |= e = e′, α = [v := e], and α′ = [v := e′].

We write [α], where α ∈ A, for the equivalence class of α with respect to '.

A bisimulation is a binary relation R on P such that, for all terms p, q ∈ P with (p, q) ∈ R, the
following conditions hold:

• if p {φ}α−−−→ p′, then there exists a finite set Ψ ⊆ Csat such that D |= φ →
∨

Ψ and, for all
ψ ∈ Ψ, there exist an α′ ∈ [α] and a q′ ∈ P such that q {ψ}α′−−−−→ q′ and (p′, q′) ∈ R;

• if q {φ}α−−−→ q′, then there exists a finite set Ψ ⊆ Csat such that D |= φ →
∨

Ψ and, for all
ψ ∈ Ψ, there exist an α′ ∈ [α] and a p′ ∈ P such that p {ψ}α′−−−−→ p′ and (p′, q′) ∈ R;

• if p {φ}↓, then there exists a finite set Ψ ⊆ Csat such that D |= φ →
∨

Ψ and, for all ψ ∈ Ψ,
q {ψ}↓;

• if q {φ}↓, then there exists a finite set Ψ ⊆ Csat such that D |= φ →
∨

Ψ and, for all ψ ∈ Ψ,
p {ψ}↓.

Two terms p, q ∈ P are bisimulation equivalent, written p↔ q, if there exists a bisimulation R such
that (p, q) ∈ R. Let R be a bisimulation such that (p, q) ∈ R. Then we say that R is a bisimulation
witnessing p↔ q.

The above definition of a bisimulation deviates from the standard definition because a transition
on one side may be simulated by a set of transitions on the other side. For example, the transition
(φ1 ∨ φ2) :→ a · b {φ1∨φ2}a−−−−−−→ b is simulated by the set of transitions consisting of φ1 :→ a · b {φ1}a−−−−→ b
and φ2 :→ a · b {φ2}a−−−−→ b. A bisimulation as defined above is called a splitting bisimulation in [15].

Bisimulation equivalence is a congruence with respect to the operators of ACP∗ε -D of which the
result sort and at least one argument sort is P.

Theorem 4.1. (Congruence)
For all terms p, q, p′, q′ ∈ P and all terms φ ∈ C, p ↔ p′ and q ↔ q′ only if p + q ↔ p′ + q′,
p · q ↔ p′ · q′, p ∗ q ↔ p′ ∗ q′, φ :→ p ↔ φ :→ p′, p ‖ q ↔ p′ ‖ q′, p bb q ↔ p′ bb q′, p | q ↔ p′ | q′,
∂H(p)↔ ∂H(p′), and Vσ(p)↔ Vσ(p′).

J.A. Bergstra and C.A. Middelburg / Using Hoare Logic in a Process Algebra Setting 333

Proof:
We can reformulate the transition rules such that:

• bisimulation equivalence based on the reformulated transition rules according to the standard
definition of bisimulation equivalence coincides with bisimulation equivalence based on the
original transition rules according to the definition of bisimulation equivalence given above;

• the reformulated transition rules make up a transition system specification in path format.

The reformulation is similar to the one for the transition rules for BPAps outlined in [16]. The propo-
sition follows now immediately from the well-known result that bisimulation equivalence according
to the standard definition of bisimulation equivalence is a congruence if the transition rules concerned
make up a transition system specification in path format (see e.g. [17]). ut

The underlying idea of the reformulation referred to above is that we replace each transition p {φ}α−−−→ p′

by a transition p {ν} [α]−−−−→ p′ for each valuation of variables ν such that D |= φ [ν], and likewise p {φ}↓.
Thus, in a bisimulation, a transition on one side must be simulated by a single transition on the other
side. We did not present the reformulated structural operational semantics in this paper because it is,
in our opinion, intuitively less appealing.

The axioms of ACP∗ε -D are sound with respect to↔ for equations between terms from P .

Theorem 4.2. (Soundness)
For all terms p, q ∈ P , p = q is derivable from the axioms of ACP∗ε -D only if p↔ q.

Proof:
Because↔ is a congruence, it is sufficient to prove the theorem for all substitution instances of each
axiom of ACP∗ε -D. We will loosely say that a relation contains all closed substitution instances of an
equation if it contains all pairs (p, q) such that p = q is a closed substitution instance of the equation.

For each axiom, we can construct a bisimulation R witnessing p ↔ q for all closed substitution
instances p = q of the axiom as follows:

• in the case of A1–A6, A8, A9, BKS1, CM3, CM4, CM7–CM9, D1, D3, D4, GC1, GC4–GC11,
V1–V5, CM3D, CM7Da, D1D, CM3A, and D1A, we take the relation R that consists of all
closed substitution instances of the axiom concerned and the equation x = x;

• in the case of A7, CM2T, CM5T, CM6T, D0, D2, GC2, GC3, V0, CM7Db–CM7Dd, D2D,
CM5A, and CM6A, we take the relation R that consists of all closed substitution instances of
the axiom concerned;

• in the case of CM1T, we take the relation R that consists of all closed substitution instances of
CM1T, the equation x ‖ y = y ‖ x, and the equation x = x;

• in the case of RSP*, we take the relation R that consists of all closed substitution instances
r = p ∗ q of the consequent of RSP* for which r↔ p ·r+q and all closed substitution instances
of the equation x = x. ut

334 J.A. Bergstra and C.A. Middelburg / Using Hoare Logic in a Process Algebra Setting

We have not been able to prove the completeness of the axioms of ACP∗ε -D with respect to↔ for
equations between terms from P . Such a proof would give an affirmative answer to an open question
about the axiomatization of the iteration operator already posed in 1984 by Milner [18, page 465].
Until now, all attempts to answer this question have failed (see [19]).

5. A Hoare logic of asserted processes

In this section, we present HLACP∗ε -D, a Hoare logic of asserted processes based on ACP∗ε -D, define
what it means that an asserted process is true, and show that the axioms and rules of this logic are
sound with respect to this meaning.

We write Phl for the set of all closed terms of sort P in which the evaluation operators Vσ and the
auxiliary operators bb and | do not occur and we write Chl for the set of all terms of sort C in which
variables of sort C do not occur. Clearly, Phl ⊂ P and C ⊂ Chl .

An asserted process is a formula of the form {φ}p {ψ}, where p ∈ Phl and φ, ψ ∈ Chl . Here,
φ is called the pre-condition of the asserted process and ψ is called the post-condition of the asserted
process.

The intuitive meaning of an asserted process {φ}p {ψ} is as follows: if φ holds at the start of p and
p eventually terminates successfully, then ψ holds at the successful termination of p. The conditions φ
and ψ concern the data values assigned to flexible variables at the start and at successful termination,
respectively. Therefore, in general, one or more flexible variables occur in φ and ψ. Unlike in p,
(logical) variables of sort D may also occur in φ and ψ. This allows of referring in ψ to the data
values assigned to flexible variables at the start, like in {v = u} [v := v + 1] {v = u+ 1}.

Below, we use the notion of equivalence under V -evaluation to make the intuitive meaning of
asserted processes more precise.

We write FV (p), where p ∈ P , for the set of all v ∈ V that occur in p and likewise FV (φ), where
φ ∈ Chl , for the set of all v ∈ V that occur in φ. We write AFV (p), where p ∈ P , for the set of all
v ∈ FV (p) that occur in subterms of p that are of the form [v := e]. Moreover, we write PV , where V
is a finite subset of V , for the set {p ∈ P | FV (p) ⊆ V }.

Let V be a finite subset of V and let p, q ∈ PV . Then p and q are equivalent under V-evaluation,
written p

V∼ q, if, for all V -evaluation maps σ, Vσ(p) = Vσ(q) is derivable from the axioms of
ACP∗ε -D.

Notice that V∼, where V be a finite subset of V , is an equivalence relation indeed. Notice further
that, for all p, q ∈ PW , W ⊂ V and p W∼ q only if p V∼ q.

Let {φ}p {ψ} be an asserted process and let V = FV (φ) ∪ FV (p) ∪ FV (ψ). Then {φ}p {ψ} is
true if, for all closed substitution instances {φ′}p {ψ′} of {φ}p {ψ}, φ′ :→ p

V∼ (φ′ :→ p) · (ψ′ :→ ε).
To justify the claim that the definition given above reflects the intuitive meaning given earlier, we

mention that φ′ :→ p
V∼ (φ′ :→ p) · (ψ′ :→ ε) only if, for all V -evaluation maps σ, there exists a

V -evaluation map σ′ such that Vσ(φ′ :→ p)↔ Vσ(φ′ :→ p) · Vσ′(ψ′ :→ ε).
Notice that, using the unary guard operator mentioned in Section 3, we can write {φ′} · p V∼

{φ′} · p · {ψ′} instead of φ′ :→ p
V∼ (φ′ :→ p) · (ψ′ :→ ε).

J.A. Bergstra and C.A. Middelburg / Using Hoare Logic in a Process Algebra Setting 335

Below, we will present the axioms and rules of HLACP∗ε -D. In addition to axioms and rules that
concern a particular constant or operator of ACP∗ε -D, there is a rule concerning auxiliary flexible
variables and a rule for precondition strengthening and/or postcondition weakening.

We use some special terminology and notations with respect to auxiliary variables. Let p ∈ Phl ,
and let A ⊆ FV (p). Then A is a set of auxiliary variables of p if each flexible variable in A occurs
in p only in subterms of the form [v := e] with v ∈ A. We write AVS (p), where p ∈ Phl , for the set
of all sets of auxiliary variables of p. Moreover, we write pA, where p ∈ Phl and A ∈ AVS (p), for p
with all occurrences of subterms of the form [v := e] with v ∈ A replaced by ε.

Table 5. Axioms and rules of HLACP∗ε -D

inaction axiom: {φ} δ {ψ}

empty process axiom: {φ} ε{φ}

basic action axiom: {φ}a {φ}

data parameterized action axiom: {φ}a(e1, . . . , en) {φ}

assignment axiom: {φ[e/v]} [v := e]{φ}

alternative composition rule:
{φ}p {ψ}, {φ} q {ψ}
{φ}p+ q {ψ}

sequential composition rule:
{φ}p {ψ}, {ψ} q {χ}
{φ}p · q {χ}

iteration rule:
{φ}p {φ}, {φ} q {ψ}
{φ}p ∗ q {ψ}

guarded command rule:
{φ ∧ ψ}p {χ}
{φ}ψ :→ p{χ}

parallel composition rule:
{φ}p {ψ}, {φ′} q {ψ′}
{φ ∧ φ′}p ‖ q {ψ ∧ ψ′}

premises are disjoint

encapsulation rule:
{φ}p {ψ}

{φ}∂H(p) {ψ}

auxiliary variables rule:
{φ}p{ψ}
{φ}pA {ψ}

A ∈ AVS (p), FV (ψ) ∩A = ∅

consequence rule:
` φ→ φ′ = t, {φ′}p {ψ′}, ` ψ′ → ψ = t

{φ}p {ψ}

336 J.A. Bergstra and C.A. Middelburg / Using Hoare Logic in a Process Algebra Setting

The axioms and rules of HLACP∗ε -D are given in Table 5. In this table, p and q stand for arbitrary
terms from Phl , φ, ψ, χ, φ′, and ψ′ stand for arbitrary terms from Chl , a stands for an arbitrary
basic action from A, v stands for an arbitrary flexible variable from V , and e and e1, e2, . . . stand for
arbitrary terms fromD. The parallel composition rule may only be applied if the premises are disjoint.
Premises {φ}p {ψ} and {φ′} q {ψ′} are disjoint if

• AFV (p) ∩ FV (q) = ∅, AFV (p) ∩ FV (φ′) = ∅, and AFV (p) ∩ FV (ψ′) = ∅;

• AFV (q) ∩ FV (p) = ∅, AFV (q) ∩ FV (φ) = ∅, and AFV (q) ∩ FV (ψ) = ∅.

In the consequence rule, the first premise and the last premise are not asserted processes. They assert
that φ→ φ′ = t and ψ′ → ψ = t are derivable from the axioms of ACP∗ε -D.

Before we move on to the soundness of the axioms and rules of HLACP∗ε -D, we consider two
congruence related properties of the equivalences V∼ that are relevant to the soundness proof.

Theorem 5.1. (Congruence)
For all finite V ⊆ V , for all terms p, q, p′, q′ ∈ PV , p V∼ p′ and q V∼ q′ only if p + q

V∼ p′ + q′,
p · q V∼ p′ · q′, and p ∗ q V∼ p′ ∗ q′. Moreover, for all finite V ⊆ V , for all terms p, p′ ∈ PV and all terms
φ ∈ Chl with FV (φ) ⊆ V , p V∼ p′ only if φ :→ p

V∼ φ :→ p′ and ∂H(p)
V∼ ∂H(p′).

Proof:
Assume p V∼ p′ and q V∼ q′. Then p + q

V∼ p′ + q′ follows immediately and p · q V∼ p′ · q′ and
p ∗ q

V∼ p′ ∗ q′ follow easily by induction on the number of proper subprocesses of p, where use is
made of Lemma 3.1. Assume p V∼ p′. Then φ :→ p

V∼ φ :→ p′ follows immediately and ∂H(p)
V∼

∂H(p′) follows easily by induction on the number of proper subprocesses of p, where use is made of
Lemma 3.1. ut

Theorem 5.2. (Limited Congruence)
For all finite V ⊆ V , for all terms p, q, p′, q′ ∈ PV with AFV (p)∩FV (q) = ∅, AFV (q)∩FV (p) = ∅,
AFV (p′) ∩ FV (q′) = ∅, and AFV (q′) ∩ FV (p′) = ∅, p V∼ p′ and q V∼ q′ only if p ‖ q V∼ p′ ‖ q′.

Proof:
Assume AFV (p)∩FV (q) = ∅ and AFV (q)∩FV (p) = ∅, AFV (p′)∩FV (q′) = ∅ and AFV (q′)∩
FV (p′) = ∅, p V∼ p′ and q V∼ q′. Then p ‖ q V∼ p′ ‖ q′ follows easily by induction on the number of
proper subprocesses of p, where use is made of Lemma 3.1. ut

Theorem 5.3. (Soundness)
For all terms p ∈ Phl , for all terms φ, ψ ∈ Chl , the asserted process {φ}p {ψ} is derivable from the
axioms and rules of HLACP∗ε -D only if {φ}p {ψ} is true.

Proof:
We will assume that φ, ψ ∈ C. We can do so without loss of generality because, by the definition of
the truth of asserted processes, it is sufficient to consider arbitrary closed substitution instances of φ
and ψ if φ, ψ /∈ C. We will prove the theorem by proving that each of the axioms is true and each
of the rules is such that only true conclusions can be drawn from true premises. The theorem then
follows by induction on the length of the proof.

J.A. Bergstra and C.A. Middelburg / Using Hoare Logic in a Process Algebra Setting 337

The proofs for the axioms and the consequence rule are trivial. Theorems 5.1 and 5.2 facilitate
the proofs for the other rules. By these theorems, the proofs for the alternative composition rule, the
sequential composition rule, and the guarded command rule are also trivial and the proofs for the
parallel composition rule, the encapsulation rule, and the auxiliary variables rule are straightforward
proofs by induction on the number of proper subprocesses, in which use is made of Lemma 3.1. The
parallel composition rule is proved simultaneously with similar rules for the left merge operator and
the communication merge operator. The proof for the iteration rule goes in a less straightforward way.

In case of the iteration rule, we assume that

(1) for all V -evaluation maps σ, Vσ(φ :→ p) = Vσ((φ :→ p) · (φ :→ ε)) is derivable;

(2) for all V -evaluation maps σ, Vσ(φ :→ q) = Vσ((φ :→ q) · (ψ :→ ε)) is derivable;

and we prove that

(3) for all V -evaluation maps σ, Vσ(φ :→ (p ∗ q)) = Vσ((φ :→ (p ∗ q)) · (ψ :→ ε)) is derivable;

where V = FV (φ)∪FV (p∗q)∪FV (ψ). We do so by induction on the number of proper subprocesses
of Vσ(φ :→ (p ∗ q)).

The basis step is trivial. The inductive step is proved in the following way. It follows easily from
assumption (1), making use of BKS1, that

(4) for all V -evaluation maps σ, for some evaluation map σ′, Vσ(φ :→ (p ∗ q)) = Vσ(φ :→ p) ·
Vσ′(φ :→ (p ∗ q)) + Vσ(φ :→ q) is derivable.

We distinguish two cases: σ 6= σ′ and σ = σ′.
In the case where σ 6= σ′, (3) follows easily from (4), the induction hypothesis, and assumption (2),

making use of BKS1.

In the case where σ = σ′, it follows immediately from (4), making use of RSP*, that

(5) for all V -evaluation maps σ, Vσ(φ :→ (p ∗ q)) = Vσ((φ :→ p) ∗ (φ :→ q)) is derivable;

and (3) follows easily from (5) and assumption (2), making use of BKS1. ut

In the proof of Theorem 5.3, RSP* is used in the part concerning the iteration rule. We do not see how
that part of the proof can be done if RSP* is replaced by BKS2–BKS5.

The following is a corollary of the definition of the truth of asserted processes and Theorem 5.3.

Corollary 5.4. For all terms p, p′ ∈ Phl , for all terms φ, ψ ∈ Chl , the asserted process {φ}p {ψ} is
derivable from the axioms and rules of HLACP∗ε -D and p = p′ is derivable from the axioms of ACP∗ε -D
only if {φ}p′ {ψ} is true.

If it is possible at all, equational reasoning with the axioms of a process algebra about how data
change in the course of a process is often rather cumbersome. In many cases, but not all, reason-
ing with the axioms and rules of a Hoare logic is much more convenient. We have not strived

338 J.A. Bergstra and C.A. Middelburg / Using Hoare Logic in a Process Algebra Setting

for a Hoare logic that covers the cases where it does not simplify reasoning. Actually, the ax-
ioms and rules of HLACP∗ε -D are not complete (in the sense of Cook [20]). The side condition of
the parallel composition rule precludes completeness. We have, for example, that the asserted pro-
cess {i = 0} [i := i+ 1] · [i := i+ 1] ‖ [i := 0] {i = 0 ∨ i = 1 ∨ i = 2} is true, but this cannot
be derived by means of the axioms and rules of HLACP∗ε -D alone because a premise of the form
{φ} [i := i+ 1] · [i := i+ 1] {ψ} and a premise of the form {φ′} [i := 0] {ψ′} are never disjoint.

We could have replaced the disjointness side condition by an interference-freedom side condition
to cover cases such as the example given above and perhaps this would lead to completeness. How-
ever, unless the disjointness side condition would suffice, fulfillment of the interference-freedom side
condition generally needs a sophisticated proof. These interference-freedom proofs partly outweigh
the advantage of using a Hoare logic for reasoning about how data change in the course of a process.
As will be shown by means of an example in Section 7, equational reasoning with the axioms of
ACP∗ε -D offers an alternative without interference-freedom proofs. That is why we have chosen for
the parallel composition rule with the disjointness side condition.

6. On the connection between the Hoare logic and ACP∗ε -D

In this section, we go into the connection of HLACP∗ε -D with ACP∗ε -D by way of the equivalence rela-
tions V∼.

Let {φ}p{ψ} be an asserted process, and let V = FV (φ) ∪ FV (p) ∪ FV (ψ). Suppose that
{φ}p {ψ} has been derived from the axioms and rules of HLACP∗ε -D. Then, by Theorem 5.3, {φ}p {ψ}
is true. This means that, for all closed substitution instances {φ′}p {ψ′} of {φ}p {ψ}, φ′ :→ p

V∼
(φ′ :→ p) · (ψ′ :→ ε). In other words, for all closed substitution instances {φ′}p {ψ′} of {φ}p {ψ},
for all V -evaluation maps σ, Vσ(φ′ :→ p) = Vσ(φ′ :→ p) · Vσ′(ψ′ :→ ε) is derivable from the axioms
of ACP∗ε -D. Thus, the derivation of {φ}p {ψ} from the axioms and rules of HLACP∗ε -D has made a
collection of equations available that can be considered to be derived by equational reasoning from
the axioms of ACP∗ε -D.

Let us have a closer look at the equivalence relation V∼ on PV . Clearly, this equivalence relation is
useful when reasoning about processes in which data are involved. However, it is plain from the proof
of Theorem 5.2 that V∼ is not a congruence relation on PV . This complicates the use of equational
reasoning to derive, among other things, the collection of equations referred to above considerably.
The presented Hoare logic can be considered to be a means to get partially round the complications
concerned.

Dissociated from its connection with HLACP∗ε -D, V∼ remains an interesting equivalence relation on
PV when it comes to reasoning about processes in which data is involved. Therefore, we mention
below a result on this equivalence relation which is a corollary of results from Section 5 used to prove
the soundness of HLACP∗ε -D. The fact that V∼ is not a congruence relation on PV , and consequently
that V∼ is not preserved by all contexts, makes this corollary to the point. In order to formulate the
corollary, we first define a set of contexts, using � as a placeholder.

For each finite V ⊆ V , the set Cseq
V of sequential evaluation supporting contexts for V is the set⋃

W⊆V Cseq
V,W , where the sets Cseq

V,W , for finite V,W ⊆ V with W ⊆ V , are defined by simultaneous
induction as follows:

J.A. Bergstra and C.A. Middelburg / Using Hoare Logic in a Process Algebra Setting 339

• � ∈ Cseq
V,W ;

• if p ∈ Pseq , C ∈ Cseq
V,W , FV (p) ⊆ V , and AFV (p) ⊆W , then p+C, C + p, p ·C, C · p, p ∗

C, C ∗ p ∈ Cseq
V,W ;

• if φ ∈ C and C ∈ Cseq
V,W , FV (φ) ⊆ V , then φ :→ C ∈ Cseq

V,W ;

• if p ∈ Pseq , C ∈ Cseq
V,W , AFV (p) ∩ V = ∅, and FV (p) ∩ W = ∅, then p ‖ C, C ‖ p ∈

Cseq
V ∪FV (p),W∪AFV (p);

• if H ⊆ A and C ∈ Cseq
V,W , then ∂H(C) ∈ Cseq

V,W .

We write C[p], where C ∈ Cseq
V and p ∈ P , for C with the occurrence of � replaced by p.

The following is a corollary of Theorems 5.1 and 5.2.

Corollary 6.1. Let V be a finite subset of V . Then, for all p, p′ ∈ PV , for all C ∈ Cseq
V , p V∼ p′ only

if C[p]
V∼ C[p′].

Of course, Corollary 6.1 can be applied to results from using HLACP∗ε -D. Let {φ}p {ψ} be an asserted
process, let V = FV (φ) ∪ FV (p) ∪ FV (ψ), and let C ∈ Cseq

V . Suppose that {φ}p {ψ} has been
derived from the axioms and rules of HLACP∗ε -D. Then, for all closed substitution instances {φ′}p{ψ′}
of {φ}p {ψ}, we have that C[φ′ :→ p]

V∼ C[(φ′ :→ p) · (ψ′ :→ ε)].

7. On the role of the Hoare logic for ACP∗ε -D

Process algebras focus on the main role of a reactive system, namely maintaining some ongoing inter-
action with its environment. Hoare logics focus on the main role of a transformational system, namely
producing, without interruption by its environment, outputs from inputs.3 However, actual systems are
often reactive systems composed of reactive components and transformational components. ACP∗ε -D
provides a setting for equational reasoning about the behaviour of such systems, but it does not of-
fer by itself the possibility to reason in Hoare-logic style about the behaviour of the transformational
components.

Below, we will take the behaviour of a very simple transformational component and reason about
how it changes data both in Hoare-logic style with the axioms and rules of HLACP∗ε -D and equationally
with the axioms of ACP∗ε -D. We assume that D is the group of integers. We also assume that i and j
are flexible variables from V and n and n′ are variables of sort D. Moreover, we use e − e′ as an
abbreviation of e + (−e′). The behaviour of the very simple transformational component concerned
is described by the closed ACP∗ε -D term [i := i+ j] · [j := i− j] · [i := i− j].

We begin with showing by means of HLACP∗ε -D that this behaviour swaps the values of i and j.
We derive {i = n ∧ j = n′} [i := i+ j]{i = n + n′ ∧ j = n′} using the assignment axiom and the
consequence rule. Similarly, we derive {i = n + n′ ∧ j = n′} [j := i− j]{i = n + n′ ∧ j = n}
and {i = n + n′ ∧ j = n} [i := i− j]{i = n′ ∧ j = n}. From these three asserted processes, we

3The terms reactive system and transformational system were coined in [21].

340 J.A. Bergstra and C.A. Middelburg / Using Hoare Logic in a Process Algebra Setting

derive {i = n ∧ j = n′} [i := i+ j] · [j := i− j] · [i := i− j] {i = n′ ∧ j = n} using the sequential
composition rule twice.

We continue with showing the same by means of ACP∗ε -D. This means that we have to derive from
the axioms of ACP∗ε -D, for all e, e′ ∈ D, for all {i, j}-evaluation maps σ:

(∗)
Vσ((i = e ∧ j = e′) :→ [i := i+ j] · [j := i− j] · [i := i− j])
= Vσ((i = e ∧ j = e′) :→ [i := i+ j] · [j := i− j] · [i := i− j] · (i = e′ ∧ j = e) :→ ε) .

We derive

Vσ((i = e ∧ j = e′) :→ [i := i+ j]) = σ(i = e ∧ j = e′) :→ [i := σ(i+ j)]

using axioms V3 and V5; and

Vσ((i = e ∧ j = e′) :→ [i := i+ j] · (i = e+ e′ ∧ j = e′) :→ ε)

= σ(i = e ∧ j = e′) :→ [i := σ(i+ j)] · σ{σ(e+ e′)/i}(i = e+ e′ ∧ j = e′) :→ ε

using axioms V0, V3, and V5.

We can derive the following equation for all {i, j}-evaluation maps σ:

(∗∗)
σ(i = e ∧ j = e′) :→ [i := σ(i+ j)]

= σ(i = e ∧ j = e′) :→ [i := σ(i+ j)] · σ{σ(e+ e′)/i}(i = e+ e′ ∧ j = e′) :→ ε .

In the case where σ(i) = e and σ(j) = e′, we derive σ{σ(e + e′)/i}(i = e+ e′ ∧ j = e′) = t using
IMP2. From this, we derive equation (**) using axioms GC1 and A8.
In the case where σ(i) 6= e or σ(j) 6= e′, we derive σ{σ(e + e′)/i}(i = e + e′ ∧ j = e′) = f using
IMP2. From this, we derive equation (**) using axiom GC2.
Hence, we have for all {i, j}-evaluation maps σ:

Vσ((i = e ∧ j = e′) :→ [i := i+ j])

= Vσ((i = e ∧ j = e′) :→ [i := i+ j] · (i = e+ e′ ∧ j = e′) :→ ε) .

Similarly, we find for all {i, j}-evaluation maps σ:

Vσ((i = e+ e′ ∧ j = e′) :→ [j := i− j])
= Vσ((i = e+ e′ ∧ j = e′) :→ [j := i− j] · (i = e+ e′ ∧ j = e) :→ ε)

and
Vσ((i = e+ e′ ∧ j = e) :→ [i := i− j])

= Vσ((i = e+ e′ ∧ j = e) :→ [i := i− j] · (i = e′ ∧ j = e) :→ ε) .

From the last three equations, we derive equation (*) using axioms A5, A9, GC5, V3, and V5. By
this we have finally shown by means of ACP∗ε -D that the values of i and j are swapped by the process
described by [i := i+ j] · [j := i− j] · [i := i− j].

J.A. Bergstra and C.A. Middelburg / Using Hoare Logic in a Process Algebra Setting 341

In this case, it is clear that Hoare-logic style reasoning with the axioms and rules of HLACP∗ε -D
is much more convenient than equational reasoning with the axioms of ACP∗ε -D. Because a single
application of a rule of HLACP∗ε -D cannot be justified by a single application of an axiom of ACP∗ε -D,
we expect that this also holds for virtually all other cases of reasoning about how the behaviour of a
transformational system changes data.

Now, we turn our attention to the rather restrictive side condition of the parallel composition
rule of HLACP∗ε -D. As mentioned before at the end of Section 5, we have that the asserted pro-
cess {i = 0} [i := i+ 1] · [i := i+ 1] ‖ [i := 0] {i = 0 ∨ i = 1 ∨ i = 2} is true, but this cannot
be derived by means of the axioms and rules of HLACP∗ε -D alone because a premise of the form
{φ} [i := i+ 1] · [i := i+ 1] {ψ} and a premise of the form {φ′} [i := 0] {ψ′} are never disjoint. How-
ever, we can derive the following equation from the axioms of ACP∗ε -D:

[i := i+ 1] · [i := i+ 1] ‖ [i := 0]

= [i := i+ 1] · ([i := i+ 1] · [i := 0] + [i := 0] · [i := i+ 1]) + [i := 0] · [i := i+ 1] · [i := i+ 1] .

By Corollary 5.4, it is sound to replace in the above asserted process the left-hand side of this equation
by the right-hand side of this equation. This yields the asserted process

{i = 0}
{[i := i+ 1] · ([i := i+ 1] · [i := 0] + [i := 0] · [i := i+ 1]) + [i := 0] · [i := i+ 1] · [i := i+ 1]}
{i = 0 ∨ i = 1 ∨ i = 2} ,

which can be derived using the assignment axiom, the alternative composition rule, the sequential
composition rule, and the consequence rule of HLACP∗ε -D several times.

If the disjointness side condition of the parallel composition rule of HLACP∗ε -D is replaced by an
interference-freedom side condition, like in [22], then the original asserted process becomes deriv-
able using the axioms and rules of the Hoare logic alone (cf. [23, page 278]). The interference-
freedom proof involved needs proof outlines (see [22]) for {i = 0} [i := i+ 1] · [i := i+ 1] {t} and
{t} [i := 0] {i = 0 ∨ i = 1 ∨ i = 2}. In this very simple case, the interference-freedom proof already
amounts to seven interference-freedom checks. However, for two processes in which k and k′ assign-
ment actions occur, the number of interference-freedom checks is at least 2 ·k ·k′+k+k′. Therefore,
we expect that interference-freedom proofs partly outweigh the advantage of using a Hoare logic.

8. Related work

The approach to the formal verification of programs that is now known as Hoare logic was proposed
in [24]. The illustration of this approach was at the time confined to the very simple deterministic se-
quential programs that are mostly referred to as while programs (cf. [23]). The axioms, the sequential
composition rule, the iteration rule, the guarded command rule, and the consequence rule from our
Hoare logic savour strongly of the common rules for while programs. The alternative composition
rule is the or rule due to [25], the parallel composition rule was proposed in [26], and the auxiliary

342 J.A. Bergstra and C.A. Middelburg / Using Hoare Logic in a Process Algebra Setting

variables rule was first introduced in [22]. The parallel composition rules proposed in [27, 28, 22] are
more complicated than our parallel composition rule.

In the case of [27, 28], the intention was to provide a Hoare logic for the first design of CSP [29]. In
that design, one program may force another program to assign a data value sent by the former program
to a program variable used by the latter program. This feature complicates the parallel composition
rule considerably. Moreover, incorporating this feature in an ACP-like process algebra would lead to
the situation that, in equational reasoning, certain axioms may not be applied in contexts of parallel
processes (like in [14], see below). Because our concern is in the use of a Hoare logic as a complement
to pure equational reasoning, we have not considered incorporating this feature.

In the case of [22], the rule is more complicated because, in the parallel programs covered, program
variables may be shared variables, i.e. program variables that are assigned to in one program may be
used in another program. Our process algebra also covers shared variables. However, covering shared
variables in our Hoare logic as well would mean that the simple disjointness proof required by our
parallel composition rule has to be replaced a sophisticated interference-freedom proof. We believe
that this would diminish the usefulness of our Hoare logic as a complement to equational reasoning
considerably. Therefore, we have not considered covering shared variables in the parallel composition
rule.

In [14], an extension of ACP with the empty process constant and the unary counterpart of the
binary guarded command operator is presented, the truth of an asserted sequential process is defined
in terms of the transition relations from the given structural operational semantics of the presented
extension of ACP, and it is shown that an asserted sequential process {φ}p {ψ} is true according to
that definition iff {φ} · p ↔′ {φ} · p · {ψ}, where↔′ is bisimulation equivalence as defined in [14]
for sequential processes. Moreover, a Hoare logic of sequential asserted processes is presented and its
soundness is shown. However, [14] does not go into the use of that Hoare logic as a complement to
pure equational reasoning from the equational axioms.

Regarding the bisimulation equivalence↔′ defined in [14] for sequential processes, we can men-
tion that, if the data-states are evaluation maps, p↔′ q iff Vσ(p)↔ Vσ(q) for all V -evaluation maps
σ, where V = FV (p) ∪ FV (q). Due to the possibility of interference between parallel processes, a
different bisimulation equivalence↔′′, finer than↔′, is needed in [14] for parallel processes. As a
consequence, in equational reasoning, certain axioms may not be applied in contexts of parallel pro-
cesses. Moreover,↔ together with the operators Vσ allows of dealing with local data-states, whereas
the combination of↔′ and↔′′ does not allow of dealing with local data-states.

9. Concluding remarks

We have taken an extension of ACP with features that are relevant to processes in which data are
involved, devised a Hoare logic of asserted processes based on this extension of ACP, and gone into
the use of this Hoare logic as a complement to pure equational reasoning from the axioms of the
extension of ACP.

We have defined what it means that an asserted process is true in terms of an equivalence relation
(V∼) that had been found to be central to relating the extension of ACP and the Hoare logic. That this
equivalence relation is not a congruence relation with respect to parallel composition is related to the

J.A. Bergstra and C.A. Middelburg / Using Hoare Logic in a Process Algebra Setting 343

fact that in the extension of ACP presented in [14] certain axioms may not be applied in contexts of
parallel processes.

In this paper, we build on earlier work on ACP. The axioms of ACPε have been taken from [2,
Section 4.4], the axioms for the iteration operator have been taken from [4], and the axioms for the
guarded command operator have been taken from [13]. The evaluation operators have been inspired
by [15] and the data parameterized action operator has been inspired by [6].

Acknowledgements

We thank two anonymous referees for carefully reading a preliminary version of this paper and for
suggesting improvements of the paper.

References

[1] Bergstra JA, Klop JW. Process Algebra for Synchronous Communication. Information and Control, 1984.
60(1–3):109–137. doi:10.1016/S0019-9958(84)80025-X.

[2] Baeten JCM, Weijland WP. Process Algebra, volume 18 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, Cambridge, 1990. doi:10.1017/CBO9780511624193.

[3] Bergstra JA, Bethke I, Ponse A. Process Algebra with Iteration and Nesting. Computer Journal, 1994.
37:243–258. doi:10.1093/comjnl/37.4.243.

[4] Bergstra JA, Fokkink WJ, Ponse A. Process Algebra with recursive operations. In: Bergstra JA, Ponse
A, Smolka SA (eds.), Handbook of Process Algebra, pp. 333–389. Elsevier, Amsterdam, 2001. doi:
10.1016/B978-044482830-9/50023-0.

[5] Sewell P. Bisimulation Is Not Finitely (First Order) Equationally Axiomatisable. In: LICS’94. IEEE
Computer Society Press, 1994 pp. 62–70. doi:10.1109/LICS.1994.316086.

[6] Bergstra JA, Middelburg CA. A Process Calculus with Finitary Comprehended Terms. Theory of Com-
puting Systems, 2013. 53(4):645–668. doi:10.1007/s00224-013-9468-x.

[7] Schneider FB. On Concurrent Programming. Graduate Texts in Computer Science. Springer-Verlag,
Berlin, 1997. doi:10.1007/978-1-4612-1830-2.

[8] Lamport L. The Temporal Logic of Actions. ACM Transactions on Programming Languages and Systems,
1994. 16(3):872–923. doi:10.1145/177492.177726.

[9] Sannella D, Tarlecki A. Algebraic Preliminaries. In: Astesiano E, Kreowski HJ, Krieg-Brückner B
(eds.), Algebraic Foundations of Systems Specification, pp. 13–30. Springer-Verlag, Berlin, 1999. doi:
10.1007/978-3-642-59851-7 2.

[10] Wirsing M. Algebraic Specification. In: van Leeuwen J (ed.), Handbook of Theoretical Computer Science,
volume B, pp. 675–788. Elsevier, Amsterdam, 1990. doi:10.1016/B978-0-444-88074-1.50018-4.

[11] Pigozzi D, Salibra A. The Abstract Variable-Binding Calculus. Studia Logica, 1995. 55(1):129–179.
doi:10.1007/BF01053036.

[12] Baeten JCM, Bergstra JA. Global Renaming Operators in Concrete Process Algebra. Information and
Computation, 1988. 78(3):205–245. doi:10.1016/0890-5401(88)90027-2.

344 J.A. Bergstra and C.A. Middelburg / Using Hoare Logic in a Process Algebra Setting

[13] Baeten JCM, Bergstra JA. Process Algebra with Signals and Conditions. In: Broy M (ed.), Programming
and Mathematical Methods, volume F88 of NATO ASI Series. Springer-Verlag, 1992 pp. 273–323. doi:
10.1007/978-3-642-77572-713.

[14] Groote JF, Ponse A. Process Algebra with Guards: Combining Hoare Logic with Process Algebra. Formal
Aspects of Computing, 1994. 6(2):115–164. doi:10.1007/BF01221097.

[15] Bergstra JA, Middelburg CA. Splitting Bisimulations and Retrospective Conditions. Information and
Computation, 2006. 204(7):1083–1138. doi:10.1016/j.ic.2006.03.003.

[16] Baeten JCM, Bergstra JA. Process Algebra with Propositional Signals. Theoretical Computer Science,
1997. 177:381–405. doi:10.1016/S0304-3975(96)00253-8.

[17] Baeten JCM, Verhoef C. A Congruence Theorem for Structured Operational Semantics with Predicates.
In: Best E (ed.), CONCUR’93, volume 715 of Lecture Notes in Computer Science. Springer-Verlag, 1993
pp. 477–492. doi:10.1007/3-540-57208-2 33.

[18] Milner R. A Complete Inference System for a Class of Regular Behaviours. Journal of Computer and
System Sciences, 1984. 28(3):439–466. doi:10.1016/0022-0000(84)90023-0.

[19] Fokkink WJ. On the Completeness of the Equations for the Kleene Star in Bisimulation. In: Wirsing M,
Nivat M (eds.), AMAST 96, volume 1101 of Lecture Notes in Computer Science. Springer-Verlag, 1996
pp. 180–194. doi:10.1007/BFb0014315.

[20] Cook SA. Soundness and Completeness of an Axiom System for Program Verification. SIAM Journal of
Computing, 1978. 7(1):70–90. doi:10.1137/0207005.

[21] Harel D, Pnueli A. On the development of reactive systems. In: Apt K (ed.), Logics and Models of
Concurrent Systems, volume F13 of NATO ASI Series. Springer-Verlag, 1985 pp. 477–498. doi:10.1007/
978-3-642-82453-1 17.

[22] Owicki S, Gries D. An Axiomatic Proof Technique for Parallel Programs I. Acta Informatica, 1976.
6(4):319–340. doi:10.1007/BF00268134.

[23] Apt KR, de Boer FS, Olderog ER. Verification of Sequential and Concurrent Programs. Texts in Computer
Science. Springer-Verlag, Berlin, third edition, 2009. doi:10.1007/978-1-84882-745-5.

[24] Hoare CAR. An Axiomatic Basis for Computer Programming. Communications of the ACM, 1969.
12(10):576–580, 583. doi:10.1145/363235.363259.

[25] Lauer PE. Consistent Formal Theories of the Semantics of Programming Languages. Technical Report
25.121, IBM Laboratory Vienna, 1971.

[26] Hoare CAR. Towards a Theory of Parallel Programming. In: Hoare CAR, Perrott RH (eds.), Operating
Systems Techniques. Academic Press, 1972 pp. 61–71. doi:10.1007/978-1-4757-3472-0 6.

[27] Apt KR, Francez N, de Roever WP. A Proof System for Communicating Sequential Processes. ACM
Transactions on Programming Languages and Systems, 1980. 2(3):359–385. doi:10.1145/357103.357110.

[28] Levin GM, Gries D. A Proof Technique for Communicating Sequential Processes. Acta Informatica,
1981. 15(3):281–302. doi:10.1007/BF00289266.

[29] Hoare CAR. Communicating Sequential Processes. Communications of the ACM, 1978. 21(8):666–677.
doi:10.1145/359576.359585.

