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1. Introduction

A wide variety of information can be expressed in the form of a directed graph, for example, the
web graph of the Web or the state transition graph of a state transition system [1]. A graph can be
considered to be a way to represent sets in a non-well-founded set theory when its bisimilarity is
guaranteed on the nodes. Here, we will use the Anti-Foundation Axiom [2], which we call AFA, as a
non-well-founded set theory. Moreover, we will sometimes use set-theoretical notions for mathemati-
cal simplicity.

We often have to group nodes according to the bisimilarity in these applications. For example, we
might want to identify structurally identical sites on the web [3, 4]. In a transition system, it is often
required to identify equivalent states [5, 6]. For AFA, we have to identify the equivalence of nodes
based on the Anti-Foundation Axiom to obtain a set represented by the nodes.

A leaf node and a non-leaf node can never be structurally grouped. Thus, whether it is a leaf node
or not is an attribute showing that two nodes can never be grouped. A rank function is a function to
yield such a value called a rank value for a node.

By aggregating the rank values of its children, we can construct richer rank functions. We call
such a constructed function a higher-order rank function and the original rank function a base rank
function in this paper. By repeating this child aggregation, we can make richer and richer higher-order
rank functions. Higher-order rank functions have been used in algorithms, for example, to improve
the speed of the bisimulation calculation, but their general properties have not been studied fully. For
example, it is not clear whether we can determine the equivalence simply by the higher-order rank
values of nodes or not. Higher-order rank values of only orders 0 and 1 (xrank′ in Section 4.1) have
been used in the literature [5], but in these cases, the equivalence was determined by the refining
algorithm. In the literature [7], a higher-order rank function (arank in Section 4.2) had the refining
algorithm as part of it. In this paper, we propose a new scheme for constructing a higher-order rank
function from a given base rank function and show that the higher-order rank function determines the
equivalence completely if the base rank function satisfies a certain condition.

Our higher-order rank function can be used as its own. The higher-order rank function of order
k reflects the structural difference up to depth k and is easy to interpret. In [3], the higher-order rank
function was used to investigate the structural similarity of web graphs. Accordingly, we believe that
there is a merit to study the higher-order rank functions and clarify their properties.

A rank function induces such an equivalence relation on nodes wherein two nodes are equivalent
if and only if their rank values are equal. The equivalence relation induces a partition on the nodes.
Thus, the rank function is related to a partition and the higher-order rank function is related to refining.
In this paper, we review the properties of partitions and refining. It turns out that important properties
of higher-order rank functions can be determined from the properties of the corresponding refining
operators.

The contributions of this paper are as follows.

• We introduce a new higher-order rank function (H k
r in Section 4.3) and show that the higher-

order rank function for some base rank function r with sufficiently large k induces the coarsest
stable partition (least partitioned without conflict.)
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• As a partial answer to the following intuition, we show that the entire topology can be encoded
into higher-order ranks if some conditions are met (Section 5.1).

Our intuition is that, for a given non-well-founded set a, such an optimal notion
should somehow encode the entire topology of the well-founded sets in the transitive
closure of a. ([5], p. 239)

• We propose a new refining operator (cpo in Section 2.5) that is simpler than the previous oper-
ators.

• We show which of the rank functions defined in [5, 7, 8] can be used to calculate a coarsest
stable partition (in Section 3). We introduce a new rank function (nrank in Section 3.1).

• We reformulate some rank functions in [5, 7] as higher-order rank functions (xrank’ and arank
in Sections 4).

• The use of our higher-order rank function in analyzing web pages is briefly described (Sections
4.1 and 4.2).

• Our higher-order rank function is uniquely determined by a graph. Thus, it can be used for
comparing nodes in two different graphs or for calculating updates. These possibilities are
briefly described in Sections 5.3 and 5.4.

This paper focuses on mathematical aspects. Sometimes we will compute the computational com-
plexity, but the development of a faster algorithm is beyond the scope of this paper.

In this paper, we do not consider labels because sets with labels can be simulated by using a set
without labels ([9], p. 78).

2. Stable partition

In this section, we study the properties of refining operators and partitions.

2.1. Lattice of partitions

Let V be a non-empty finite set throughout this paper.
A family Q ⊆ 2V on V is said to be a partition on V if (1) V =

⋃
Q, (2) A,B ∈ Q with A 6= B

implies A∩B = ∅, and (3) ∅ /∈ Q. In the following, P,Q,R, ... represent partitions of V . An element
of a partition is called a block.

A relation � between partitions P and Q on V is defined so that P � Q if and only if for any
block A ∈ P there exists a block B ∈ Q with A ⊆ B. We say that P is a refinement of Q.

The join operator ∨ is such an operator that a ∨ b is the minimal partition c such that a � c and
b � c, and the meet operator ∧ is such an operator that a∧ b is the maximal partition c such that c � a
and c � b. Here, the maximal and minimal are with respect to �.
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Proposition 2.1. P ∨ Q = min{C ⊆ V | C is a union of some blocks in P and also is a union of
some blocks in Q and C 6= ∅}.

Proof:
LetR = {C ⊆ V | C is the union of some blocks in P , and C is the union of some blocks in Q}.

We first show that minR is a partition. Since V ∈ R, R covers V , that is
⋃
R = V . If A

and B with A ( B belong to R, B − A belongs to R since P and Q are partitions. If A and
B belong to R, A ∪ B ∈ R. So if A and B belong to R, A ∩ B ∈ R or A ∩ B = ∅ since
A ∩ B = (A ∪ B) − ((A ∪ B) − A) − ((A ∪ B) − B). So minR is a partition because any
A,B ∈ minR satisfies A = B or A ∩B = ∅.

Since P � minR and Q � minR, we have P ∨Q � minR.
For any A ∈ P ∨ Q, we have A ∈ R since P ∨ Q � P and P ∨ Q � Q. Moreover, A ∈ minR

because any element inR can be written as a union of some elements of minR. So we have P ∨Q �
minR. ut

P ∧Q = {A ∩B | A ∈ P, B ∈ Q, A ∩B 6= ∅}.
All the partitions form a lattice with∧ and∨. This lattice is called a partition lattice. The minimum

element of the partition lattice of V is {{a} | a ∈ V } and the maximum element is {V }. Because V
is assumed to be finite, the partition lattice on V is also finite.

2.2. Directed graph and stable partition

A directed graph G is a pair G = (V,E) of a set V of nodes and a set E of edges such that E ⊆ V ×V .
Here, a directed graph has no parallel edges in the same direction, but may have loops. Hereafter we
fix a graph G = (V,E) and omit it from the notation if there is no ambiguity.

For an edge (a, b) ∈ E, b is called a child of a and a is called a parent of b. A node with no child is
called a leaf node1. The in-degree of a leaf node is not limited to 1 and a node with in-degree 0 is called
a root in this paper. The set of all the leaf nodes is denoted as Φ = {b ∈ V | ∀a ∈ V, (b, a) 6∈ E}.
If there are multiple graphs and it is necessary to specify which graph the leaf nodes belong to, we
denote the leaf nodes of a graph G as Φ(G).

Let E−1 : 2V → 2V be a map from a set A ⊆ V to its parents defined as E−1(A) = {b ∈
V | (b, a) ∈ E, a ∈ A}. The image of V by f is denoted as f [V ] = {f(a) | a ∈ V }.

In the set theory based on the Anti-Foundation Axiom [2, 10], a cyclic graph can be considered
to represent a set. In this sense, we denote an edge (a, b) ∈ E as b ∈E a. We omit E of ∈E if E is
obvious. Note that the same set may be represented by different nodes. For a graph, this equivalence
notion of nodes is defined as bisimulation.

Definition 2.2. [10] For G = (V,E), a binary relation � on V is a bisimulation over G if and only if,
for any nodes a, b, c, d ∈ V ,

1. (a � b and (a, c) ∈ E)⇒ ∃d(c � d and (b, d) ∈ E),

2. (a � b and (b, d) ∈ E)⇒ ∃c(c � d and (a, c) ∈ E).
1In some literature, a leaf node is called a sink node.
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If there is a bisimulation � such that a � b, we say that nodes a and b are bisimilar and denote it as
a ≡b b. If every node in G1 is bisimilar to some node in G2 and vice versa, we say G1 is bisimilar to
G2.
≡b can be determined using the operator stab defined below.
Before the defining stab though, we introduce the operator div.

Definition 2.3. The operator div on a partition P on V is defined as

div(P) = (
∧
{{E−1(A), (E−1(A))c} − {∅} | A ∈ P}) ∧ P.

Here,
∧
P is the meet of all the elements in P and Ac = V −A.

Lemma 2.4.
P � div(P),

P � Q =⇒ div(P) � div(Q).

Proof:
The first inequality holds by definition. Let’s show the second one. Let A ∈ P . Then there exist
Bi ∈ Q such that A =

⋃
iBi. Accordingly, we have E−1(A) =

⋃
iE
−1(Bi). Thus,

({E−1(A), (E−1(A))c} − {∅}) �
∧
i

({E−1(Bi), (E
−1(Bi))

c} − {∅}).
ut

For a directed graph and A ⊆ V , a partition P on V is said to be stable with respect to A if any
B ∈ P satisfies either B ⊆ E−1(A) or E−1(A) ∩B = ∅.

Lemma 2.5. For A ⊆ V , a partition P is stable with respect to A if and only if E−1(A) is the union
of some blocks in P .

Proof:
We assume that P is stable with respect to A. Now let us assume, on the contrary, that there exists
x ∈ E−1(A)−

⋃
{B ⊆ E−1(A) | B ∈ P}. Then there exists a block B′ ∈ P containing x. Since P

is stable with respect to A, the non-emptiness of E−1(A)∩B′ implies B′ ⊆ E−1(A), a contradiction
to x /∈

⋃
{B ⊆ E−1(A) | B ∈ P}, and we have

⋃
{B ⊆ E−1(A) | B ∈ P} = E−1(A).

Conversely, when E−1(A) is the union of some blocks in P , any B ∈ P satisfies either B ⊆
E−1(A) or E−1(A) ∩B = ∅. ut

P is said to be stable if P is stable with respect to any block in P .

Lemma 2.6. P = div(P) if and only if P is stable.

Proof:
Assume that P = div(P). Then we have {E−1(A), (E−1(A))c} − {∅} � P for any A ∈ P . This
means that P is stable by Lemma 2.5.
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Conversely, assume that P is stable. Then, by Lemma 2.5, for A ∈ P , we have

{E−1(A), (E−1(A))c} − {∅} � P.

Thus, we have P = div(P). ut

Now let us estimate the complexity of the calculation of the operator div. In [11], it was shown
that the computational complexity of the refinement by block B is O(|B| +

∑
y∈B |E−1({y})|). To

calculate div(P), we have to scan all the blocks B ∈ P resulting in a computational complexity of
O(|E|+ |V |).

2.3. Stabilization operator

By applying the operator div iteratively starting from a partition P , the partition gets finer. Eventually
it reaches a stable partition since |V | is finite. We denote such a partition by stab(P) and call the
operator stab the stabilization operator.

Formally, we can define the operator stab as follows. Define divk+1(P) = div(divk(P)) for
k ∈ N and div0(P) = P . divk+1(P) � divk(P) follows from Lemma 2.4. So this sequence
converges. We define stab(P) to be divl(P) for the smallest l ∈ N such that divl+1(P) = divl(P).
Obviously div(stab(P)) = stab(P) holds.

stab has monotonicity and idempotency, as shown in the next lemma.

Lemma 2.7.
P � stab(P),

P � Q =⇒ stab(P) � stab(Q),

stab(P) = stab(stab(P)).

Lemma 2.8. P is stable if and only if stab(P) = P .

Proof:
Assume that P is stable. By Lemma 2.6, div(P) = P . So we have stab(P) = P .

Conversely, assume that stab(P) = P . From the definition of stab, we have div(stab(P)) =
stab(P). So, from the assumption, we have div(P) = P . By Lemma 2.6, P is stable. ut

Lemma 2.9. If P and Q are stable, P ∨Q is also stable.

Proof:
Since P and Q are stable, we have stab(P) = P and stab(Q) = Q.
P ∨Q � stab(P ∨Q) follows from the first statement in Lemma 2.7.
P ∨ Q � P implies stab(P ∨ Q) � stab(P) = P . stab(P ∨ Q) � P ∨ Q follows from

stab(P ∨Q) � P and stab(P ∨Q) � Q.
So by the anti-symmetric law, we have stab(P ∨Q) = P ∨Q. ut

Even if P and Q are stable, P ∧Q is not always stable.
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stable stable unstable

Figure 1. The meet of stable partitions is not always stable.

Example 2.10. Figure 1 shows three partitions on the same directed graph on five nodes. The left and
middle partitions are stable partitions. But the right partition, which is the meet of the left and middle
partitions, is unstable.

All the stable partitions form a lattice with ∨ and ∧∗ where P ∧∗ Q = stab(P ∧Q).

Lemma 2.11. stab(P) =
∨
{Q | P � Q,Q = div(Q)}, where

∨
P is the join of all the elements

in P .

Proof:
LetR =

∨
{Q | P � Q,Q = div(Q)}. ThenR � stab(P) since div(stab(P)) = stab(P).

On the other hand, we have P � R by definition and R is a stable partition by Lemma 2.6 and
Lemma 2.9. Thus, stab(P) � stab(R) = R by the monotonicity in Lemma 2.7. Therefore, from the
anti-symmetric law, we have stab(P) = R. ut

Since V is finite, the lattice of the stable partitions has the maximum element. We call the maxi-
mum element in all the stable partitions the coarsest stable partition.

Theorem 2.12. stab({V }) is the coarsest stable partition.

Proof:
Let P be a stable partition. Then {V } � P . So stab({V }) � stab(P) by the second statement in
Lemma 2.7. Since stab(P) = P by Lemma 2.8, we have stab({V }) � P . Therefore, stab({V }) is
the coarsest stable partition. ut

2.4. Relation of coarsest stable partition and AFA

In AFA, the equality of sets is determined by the bisimulation defined by the directed graph of ∈.
The coarsest stable partition of the relation coincides with the quotient set of V determined by the
bisimulation [12]. So, the set corresponding to node x equals the set corresponding to node y if and
only if x and y belong to the same block in the coarsest stable partition. Formally, ≡b on G = (V,E)
is the same as ∼stab({V }). Here, ∼R is the equivalence relation induced by partitionR.
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2.5. Child partition operator

Here, we introduce a refining operator cpo that is simpler than div. cpo corresponds to some higher-
order rank function in Section 4.3 and is useful for analyzing the properties of the higher-order rank
function.

Definition 2.13. cpo is defined as
cpo(P) =

∧
{{E−1(A), (E−1(A))c} − {∅} | A ∈ P}.

cpo(P) � div(P) holds since div(P) = cpo(P) ∧ P by definition. Note that P � cpo(P) may
not hold.

For a directed graph and a partition R, define cpok(R) as cpo0(R) = R and cpok+1(R) =
cpo(cpok(R)).

Example 2.14. Consider the directed graph in Figure 2 with nodes {a, b, c, d}. Let the initial partition
R be {{a, b, c}, {d}} as in the left figure. The middle figure shows cpo(R) = {{a}, {b, c, d}} which
is not finer than R. The right figure shows cpo2(R) = {{a}, {b, c}, {d}}. This is the coarsest stable
partition.

a

b c

d

R cpo( R ) cpo2( R )

a

b c

d

a

b c

d

Figure 2. Example application of child partition operators: R, cpo(R), and cpo2(R).

Thus, cpo is not monotonic in general. However, it is monotonic under certain conditions as will
be shown later in Theorem 2.20.

Lemma 2.15. If P1 � P2, cpo(P1) � cpo(P2) holds.

Proof:
Since |V | is finite, the length of sequence P1 � · · · � P2 is also finite. Therefore, we have only
to show the case that P2 is covered by P1. In this case, every block in P1 belongs to P2 except
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one block, and |P2| = |P1| + 1. Let A1, A2 ∈ P2 and A1 ∪ A2 ∈ P1. To prove this case of the
lemma, we have only to show that ({E−1(A1), (E

−1(A1))
c} − {∅}) ∧ ({E−1(A2), (E

−1(A2))
c} −

{∅}) � {E−1(A1 ∪ A2), (E
−1(A1 ∪ A2))

c} − {∅} for disjoint A1 and A2. This follows from
the fact that ({E−1(A1), (E

−1(A1))
c} − {∅}) ∧ ({E−1(A2), (E

−1(A2))
c} − {∅}) = {E−1(A1) ∩

E−1(A2), E
−1(A1)∩ (E−1(A2))

c, (E−1(A1))
c ∩E−1(A2), (E

−1(A1))
c ∩ (E−1(A2))

c} − {∅} and
{E−1(A1 ∪A2), (E

−1(A1 ∪A2))
c} = {E−1(A1) ∪ E−1(A2), (E

−1(A1))
c ∩ (E−1(A2))

c}. ut

Lemma 2.16. If P � cpo(P), cpo(P) = div(P).

Proof:
div(P) = cpo(P) ∧ P = cpo(P) when P � cpo(P). ut

Lemma 2.17. If R � cpo(R), cpok(R) � cpok+1(R) for k ∈ N. Moreover, divk(R) = cpok(R)
holds for k ∈ N whenR � cpo(R).

Proof:
We prove the former statement by induction on k. The base case follows from the assumption. The
inductive step follows from the fact that cpok(R) � cpok+1(R) implies cpok+1(R) � cpok+2(R)
by Lemma 2.15.

Next, we prove the latter statement by induction on k. By Lemma 2.16,

div(cpok(R)) = cpo(cpok(R)) = cpok+1(R).

By the inductive hypothesis,

div(cpok(R)) = div(divk(R)) = divk+1(R).

Now we have divk+1(R) = cpok+1(R). ut

Corollary 2.18. divk({V }) = cpok({V }) holds for any k ∈ N.

Proof:
The assumption of Lemma 2.17 is satisfied since {V } � {Φ,Φc} = cpo({V }). ut

Lemma 2.19. cpo(stab({V })) = stab({V }).

Proof:
For a sufficiently large k, stab({V }) = divk({V }). cpo(stab({V }) = cpo(divk({V })). From
Corollary 2.18, cpo(divk({V })) = cpok+1({V }) = divk+1({V }) = stab({V }). ut

The following theorem is one of the main theorems in this paper.

Theorem 2.20. If R � stab({V }), for a sufficiently large k, cpok(R) = stab({V }). We can use
|V | − 1 as a sufficiently large k.
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Proof:
We have {V } � R � stab({V }). By Lemma 2.17, for any k, we have cpok({V }) � cpok(R) �
cpok(stab({V })). cpok(stab({V })) = stab({V }) by Lemma 2.19. By Corollary 2.18, divk({V }) =
cpok({V }) � stab({V }). For a sufficiently large k, divk({V }) = stab({V }). So, for a sufficiently
large k, cpok({V }) = stab({V }).

If cpok({V }) = cpok+1({V }), we have cpok+1({V }) = cpok+2({V }). Thus, cpok({V }) =
cpok+1({V }) for k ≥ |V | − 1. So, we can use |V | − 1 as a sufficiently large k. ut

3. Rank function

We call a function from the nodes V to some domain D a rank function and call the value returned by
the function the rank value. We assume that rank functions on isomorphic directed graphs are identical.
The rank function r : V → D induces an equivalence relation ∼r such that a ∼r b⇔ r(a) = r(b).

First, we define the most fundamental rank function 0.

Definition 3.1. The rank function 0 is a rank function such that 0(a) = 0 for a ∈ V .

3.1. nrank

The length of a shortest path to some leaf node can be used as a rank, but in a cyclic case, there may
exist a node which has no path to any leaf node. In such a case, we use∞ as a rank value. This rank
function nrank : V → N ∪ {∞} is defined as follows.

nrank(a) =


the length of the shortest path from a if there exists a path
to some leaf node, to some leaf node,
∞, otherwise.

ab

c d eg

f
011

0 2 3 ∞

Figure 3. nrank for sample graph

In other words, nrank gives the minimum distance from the leaves.
Figure 3 shows an example of nrank.
The next proposition follows from the definition.
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Proposition 3.2. For an integer r ≥ 0,

nrank−1(r) = E−1
(r)

(Φ)−
⋃

0≤i≤r−1
E−1

(i)
(Φ)

where E−1
(r) denotes the composition of E−1 by r times.

Proposition 3.3. V/∼nrank � cpo(V/∼nrank ).

Proof:
Nk denotes the block consisting of the nodes of rank k determined by the nrank function. Let A ∈
cpo(V/ ∼nrank). A = (

⋂
k∈I E

−1(Nk)) ∩ (
⋂

k/∈I E
−1(N c

k)) for some I ⊆ N ∪ {∞}. Let k0 be the
minimum number in I . Then A ⊆ Nk0+1. ut

Proposition 3.4. V/∼nrank � stab({V }).

Proof:
Suppose, on the contrary, that the partition of the rank function is not coarser than or equal to the
coarsest stable partition. Then there exists a block in the coarsest stable partition that has nodes of
different ranks. Let A be a block which has a node of the least rank among such blocks. Let a be a
node of the minimum rank in A. Let b be a node which does not have the minimum rank in A. Since
the set of leaf nodes forms a block of the coarsest stable partition, we can assume that the rank of a is
greater than 0. Then there exists an edge from node a to a node of rank (nrank(a)−1). But there exists
no edge from b to some node of rank (nrank(a)− 1) because b has greater rank than a. Because of the
choice of node a, any block in the coarsest stable partition that contains a node of rank (nrank(a)− 1)
cannot intersect with two blocks in V/∼nrank . So a and b belong to different blocks in the coarsest
stable partition, a contradiction. ut

V/∼nrank may not be the coarsest stable partition but any two elements in the same block of the
coarsest stable partition have the same rank by this lemma.

Corollary 3.5. divk(V/∼nrank ) = stab({V }) for a sufficiently large k.

Proof:
The statement follows from Lemma 2.16, Propositions 3.3 and 3.4, and Theorem 2.20. ut

The complexity of computing nrank is O(|V |+ |E|).

3.2. xrank

The literature [5] introduced a rank function, which we call xrank in this paper. xrank is defined as
follows.

For a directed graph G = (V,E), let Gscc = (V scc, Escc) be the graph defined as follows.
V scc = {c | c is a strongly connected component in G},
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Escc = {(c1, c2) | c1, c2 ∈ V scc, c1 6= c2, (∃a1 ∈ c1)(∃a2 ∈ c2)((a1, a2) ∈ E)}.
Gscc is acyclic. For a node a ∈ V , we denote the strongly connected component to which a

belongs as c(a) ∈ V scc. For a ∈ V , let G(a) be the graph restricted to the nodes reachable from
a ∈ V of G. WF (G) = {a ∈ V | G(a) is acyclic}.

Definition 3.6. xrank(a) is defined as:

xrank(a) =



0, if a ∈ Φ(G),

−∞, if c(a) ∈ Φ(Gscc),

a /∈ Φ(G),

max({1 + xrank(b) | (c(a), c(b)) ∈ Escc, b ∈WF (G)}
∪{xrank(b) | (c(a), c(b)) ∈ Escc, b /∈WF (G)}), otherwise.

V/∼xrank � stab({V }) was proved in [5].

The complexity of calculating strongly connected components is O(|E|+|V |); xrank has the same
complexity.

3.3. xrank∗

For the equivalence of states in some transition systems, simulation, which is a slightly weaker condi-
tion than bisimulation, is used.

Definition 3.7. Let G = (V,E). A binary relation ≤ is called a simulation over G when (a ≤
b and (a, c) ∈ E)⇒ ∃d(c ≤ d and (b, d) ∈ E).

a and b are sim-equivalent (a ≡s b) if there exist two simulations ≤1 and ≤2 such that a ≤1 b and
b ≤2 a.

For deciding sim-equivalence, another type of rank (called rank* in [8]) is defined on xrank (rank).
We call this rank xrank∗.

Definition 3.8. xrank∗(a) is defined as:

xrank∗(a) =


0, if a ∈ Φ(G),

max({1 + xrank(b) | (c(a), c(b)) ∈ Escc}), if a ∈WF (G), a 6∈ Φ(G),

+∞, otherwise.

Proposition 3.9. V/∼xrank∗ � stab({V }).

Proof:
We show that two nodes that have different xrank∗ belong to different blocks in the coarsest stable
partition. First we show that any node a with xrank∗(a) = k belongs to a different block from that of
any node b with xrank∗(b) < k in the coarsest stable partition by induction on k.
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For the base case, xrank∗(a) = 1 belongs to a different block from that of b to xrank∗(b) = 0
because b with xrank∗(b) = 0 must be a leaf node.

Next, we show the inductive step. Any node a ∈WF (G)−Φ(G) with xrank∗(a) = k has a child
node c of xrank∗ k − 1. On the other hand, a node b with xrank∗(b) < k cannot have a child d with
xrank∗(d) = k − 1. By the inductive hypothesis, node c belongs to a different block from any child d
of b on the coarsest stable partition. Therefore a and b belong to different blocks on the coarsest stable
partition. So any node a with xrank∗(a) = k belongs to a different block from that of any node b with
xrank∗(b) < k in the coarsest stable partition for any natural number k.

Finally, we show that node a with xrank∗(a) = ∞ belongs to a different block from that of any
node b with xrank∗(b) = m <∞ by induction on m because b has a child c with xrank∗(c) = m− 1
and a does not. ut

Proposition 3.10. V/ ∼xrank∗� cpo(V/ ∼xrank∗) holds.

Proof:
Assume that a and b are in the same block in cpo(V/ ∼xrank∗). Then for each child a′ of a, there
is a child b′ in b such that a′ and b′ are in the same block of V/ ∼xrank∗ . If there is no such child,
then a, b ∈ Φ(G) and belong to the same block in V/ ∼xrank∗ . If a′ 6∈ WF (G), then xrank∗(a) =
xrank∗(b) = ∞, and a and b are in the same block in V/ ∼xrank∗ . Consider the case that a, b ∈
WF (G) and a, b 6∈ Φ(G). There is a child a′ of a such that xrank∗(a) = 1 + xrank(a′). Because a
and b are in the same block of cpo(V/ ∼xrank∗), there must be a child b′ of b in the same block to a′

in V/ ∼xrank∗ and a′ and b′ have the same xrank∗. So, xrank∗(a) ≤ xrank∗(b). By exchanging a and
b, we have xrank∗(a) = xrank∗(b). So, a and b are in the same block in V/ ∼xrank∗ . This exhausts
the cases. ut

The complexity of calculating xrank∗ is O(|E|+ |V |).

3.4. xranks

Another type of rank (called ranks in [8]) is defined for calculating simulation. We call this rank
xranks.

Definition 3.11. xranks(a) is defined as:

xranks(a) =

{
0, if c(a) ∈ Φ(Gscc),

max({1 + xranks(b) | (c(a), c(b)) ∈ Escc}), otherwise.

The complexity of calculating xranks is O(|E|+ |V |).

Example 3.12. V/∼xranks
� cpo(V/∼xranks

) does not hold. See Figure 4. xranks(a) = 1 and
xranks(b) = 2, but a and b are in the same block of cpo(V/∼xranks

).
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Figure 4. Example in which cpo does not refine partitions for xranks and xrank’.

3.5. crank

Here, we explore other possibilities of using strongly connected components to calculate a rank.

Definition 3.13. crank(a) is defined as:

crank(a) =


0, if a ∈ Φ(G),

−∞, if c(a) ∈ Φ(Gscc)

and a 6∈ Φ(G),

max({1 + crank(b) | (c(a), c(b)) ∈ Escc}), otherwise.

Example 3.14. V/∼crank� stab({V }) does not hold in general. Consider the directed graph shown
in Figure 5. The numbers in the figure are the cranks of the nodes. In the coarsest stable partition, the
above two nodes are in a single block, but nodes in the block have different cranks: 1 and 2. Moreover,
we can see that V/ ∼crank� cpo(V/ ∼crank) does not hold from the figure.

0

1

1

2

Figure 5. Crank and the coarsest stable partition. Dotted ovals enclose the coarsest stable partition.

Example 3.15. nrank, xrank, crank, xrank∗, and xranks of a sample directed graph are shown in
Figure 6.
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nrank xrank crank xrank∗ xranks
Figure 6. nrank (left), xrank (middle left), crank (center), xrank∗ (middle right), and xranks (right) of a sample
directed graph.

V/ ∼nrank � stab({V }) by Proposition 3.4, V/ ∼xrank � stab({V }) by [5], V/ ∼xrank∗ �
stab({V }) by Proposition 3.9, and V/ ∼0= {V } � stab({V }). In Figure 6, e and f are bisimilar,
but xranks(e) 6= xranks(f). So, V/∼xranks

� stab({V }) does not hold.

4. Higher-order rank function

Suppose that each node a is assigned a rank value r(a) by the rank function described in Section
3. Then, we can calculate a new rank value r′(a) for node a by aggregating to it the rank values
of its children by some method. We call a rank function constructed from another rank function a
higher-order rank function and the initial rank function the base rank function. The return value of the
higher-order rank function is called a higher-order rank value.

The higher-order rank value r′(a) may differentiate more nodes than r(a) does. But when does
this happen? The same method can be used to calculate another higher-order rank value r′′(a) for
node a by aggregating the higher-order rank value r′(b) of its child b. Hence, there are infinitely many
higher-order rank values. We make a distinction among the higher-order rank values by the order.
The base rank value is the higher-order rank value of order 0. A higher-order rank value constructed
from higher-order rank values of order k is of order k + 1. By increasing the order, how far we can
differentiate nodes? In this section, we will answer these questions.

4.1. xrank′

The rank function defined in Definition 6.3 of [5], where it is denoted as rank’, will be denoted as
xrank′ in this paper. xrank′ is defined as

xrank′(a) =



{0}, if a ∈ Φ(G),

{−∞}, if c(a) ∈ Φ(Gscc)

and a 6∈ Φ(G),

{1 + m′ | (c(a), c(m)) ∈ Escc, otherwise
m ∈WF (G),m′ ∈ xrank′(m)}
∪{m′ | (c(a), c(m)) ∈ Escc,

m 6∈WF (G),m′ ∈ xrank′(m)}.
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In xrank, {1 + m′ | (c(a), c(m)) ∈ Escc,m ∈WF (G),m′ ∈ xrank′(m)} ∪ {m′ | (c(a), c(m)) ∈
Escc,m 6∈ WF (G),m′ ∈ xrank′(m)} is summarized by max. In xrank′, information other than the
maximum is represented as sets. In [5], it was proposed to use a bit vector for efficient handling the
sets. The computational complexity of xrank′ is O(|E| + |V |), neglecting O(|V |) overhead incurred
by handling the bit vector.

They showed V/∼xrank′� stab({V }). To get the coarsest stable partition from V/ ∼xrank′ , they
employed an additional refining operation described in Algorithm 4 of [5]. The overall complexity
they claimed was O(|E| log |V |).

Example 4.1. V/∼xrank′ � cpo(V/∼xrank′ ) does not hold. See Figure 4. xrank′(a) = {1} and
xrank′(b) = {2}, but a and b are in the same block of cpo(V/∼xrank′ ).

4.2. arank

The literature [7] proposed to use a rank < xrank(a),A(a) > for node a. A(a) is a unique id assigned
to the node a to distinguish it from other nodes with the same xrank with a. A(a) is determined as
follows. Let >− i (a) be a function such that >− i (a)(b) is 1 if b is a child of a and 0 otherwise. A(a) is
a unique id given to >− i (a). If >− i (a) and >− i (a′) are the same as a function, they are identified and
given the same id. This identification is the most difficult part of this algorithm, and OBDD (Ordered
Binary Decision Diagram) is used for this purpose. Then, let arank(a) =< xrank(a),A(a) >.

V/∼arank = stab({V }) holds because A(a) is assigned in such a way as to distinguish a from
other nodes with the same xrank by using the coarsest stable partition algorithm of [6].

4.3. H k
r

How high a rank can we achieve with a higher-order rank function? Section 4.2 showed that some
higher-order rank values can induce a partition coarser than the coarsest stable partition. In this section,
we show that some higher-order rank values for sufficiently large order k induce the coarsest stable
partition. We show this in a purely mathematical framework. The higher-order rank value is uniquely
determined from the graph structure and the base rank function. This is different from the encoding in
Section 4.2 and is desirable when we compare the higher-order rank values as in Sections 5.3 and 5.4.

Our higher-order rank function H k
r for a base rank function r with order k is defined as follows.

Definition 4.2. H k
r is a higher-order rank function on V with order k and base rank function r such

that H k
r (a) = {H k−1

r (b) | (a, b) ∈ E} for k > 0 and H 0
r(a) = r(a) for node a ∈ V .

For example, H 1
r of a node whose children’s H 0

r are 0 and 1 is {0, 1}.
Note that H k

r (a) is a well-founded set.

Example 4.3. Figure 7 shows H 1
nrank of the graph in Figure 3.

If V/∼r � stab({V }), the partition of a higher-order rank function H k
r for a sufficiently large k

coincides with the coarsest stable partition. This will be proved in Corollary 4.5.
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ab

c d eg

f
{0,1,3}{0}

φ {1,3} {∞}{2, ∞}

φ

Figure 7. Higher-order rank H 1
nrank for the graph in Figure 3.

Theorem 4.4. V/ ∼H k
r
= cpok(V/ ∼r) holds for any k ≥ 0.

Proof:
We prove the statement by induction on k. For k = 0, the statement reduces to V/ ∼r= cpo0(V/ ∼r)
and trivially holds by definition.

The inductive hypothesis is V/ ∼H k−1
r

= cpok−1(V/ ∼r).
Take a, b ∈ V so that H k

r (a) = H k
r (b). H k

r (a) = {H k−1
r (a′)|(a, a′) ∈ E} by definition. For

each H k−1
r (a′), there exists b′ such that H k−1

r (a′) = H k−1
r (b′) and (b, b′) ∈ E. From the inductive

hypothesis, a′ and b′ are in the same block in cpok−1(V/ ∼r). This is true for every a′. So, a and b
are in the same block in cpok(V/ ∼r). This proves V/ ∼H k

r
� cpok(V/ ∼r).

Now assume that a and b are in the same block of cpok(V/ ∼r). Then, for every child a′ of a,
there is a child b′ of b such that a′ and b′ are in the same block of cpok−1(V/ ∼r). From the inductive
hypothesis, Hk−1

r (a′) = Hk−1
r (b′). So, Hk

r (a) and Hk
r (b) have the same children and Hk

r (a) = Hk
r (b).

This proves V/ ∼H k
r
� cpok(V/ ∼r). Now we have V/ ∼H k

r
= cpok(V/ ∼r), which completes the

induction step. ut

Corollary 4.5. Assume that a directed graph (V,E) is given with a rank function r on V . If V/ ∼r�
stab({V }), V/ ∼Hk

r
= stab({V }) for a sufficiently large k. |V | − 1 is sufficient for such k.

Proof:
If V/ ∼r� stab({V }), for sufficiently large k, cpok(V/ ∼r) = stab({V }) by Theorem 2.20. Theo-
rem 4.4 yields V/ ∼Hk

r
= cpok(V/ ∼r). ut

The minimum such k is called the minimum separating order (MSO for short) of G. The MSO
depends on the base rank function, and we will mention whose MSO it is if necessary.

V/∼H 0
r
� V/∼H 1

r
does not hold in general. Example 2.14 is a counterexample. However, the

following holds.

Corollary 4.6. If V/ ∼r� cpo(V/ ∼r), V/ ∼H k
r
= divk(V/ ∼r) holds for any k ≥ 0. So,

V/ ∼H k
r
= stab({V }) for sufficiently large k.

Proof:
The statement follows from Theorem 4.4 and Lemma 2.17. ut
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Example 4.7. Consider the directed graph shown in Figure 8. H 0
nrank, H 1

nrank, and H 2
nrank are

shown in Figure 8 left, middle, and right, respectively. The nodes with the same rank are enclosed by
dashed ovals. In this example, V/ ∼H 2

nrank
= stab({V }), and MSO = 2.

0 0

1

1

1

2 2

{0}

{0}

{1}{1}

{0,1}

{{0},{0,1}}
{{0}}

{φ}

{φ}

φ

{{0},φ}

φφφ

order 0 order 1 order 2

Figure 8. Partitions according to orders 0, 1, and 2 induced by nrank.

Example 4.8. Figure 9 shows the graph in Figure 2 of [5].

a

b c d

e

g

f

h

Figure 9. The graph in Figure 2 of [5].

H k
nrank for k = 0, 1, 2 are shown below.
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node nrank H 1
nrank H 2

nrank
a 2 {1, 2} {{1}, {1, 0}}
b 2 {1} {{0}}
c 1 {1, 0} {{0}, ∅}
d 2 {1} {{0}}
e 1 {0} {∅}
f 1 {0} {∅}
g 0 ∅ ∅
h 0 ∅ ∅

As can be seen, each pair of nodes b and d, nodes e and f, and nodes g and h has the same H 1
nrank

and no pair can be separated by advancing to the next order. This confirms that each pair of b and d, e
and f , and g and h is bisimilar.

V/ ∼Hk
0
= stab({V }) for sufficiently large k from Corollary 4.5.

Example 4.9. Shown below are H k
xrank∗ in Figure 6 for k = 0, 1, 2.

node xrank∗ H 1
xrank∗ H 2

xrank∗

a ∞ {∞} {{0, 1}}
b ∞ {0, 1,∞} {{0, 1,∞}, {0}, ∅}
c 0 ∅ ∅
d ∞ {∞} {{0, 1,∞}, {∞}}
e ∞ {∞} {{∞}}
f ∞ {∞} {{∞}}
g 1 {0} {∅}

From Proposition 3.10 and Theorem 4.6, V/ ∼H k

xrank∗
= stab({V }).

Example 4.10. Shown below are H k
xranks

in Figure 6 for k = 0, 1, 2.

node xranks H 1
xranks

H 2
xranks

a 3 {2} {{0, 1, 2}}
b 2 {0, 1, 2} {∅, {0}, {0, 1, 2}}
c 0 ∅ ∅
d 3 {1, 2} {{0, 1, 2}, {0}}
e 1 {0} {{0}}
f 0 {0} {{0}}
g 1 {0} {∅}
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H0
xranks

(e) 6= H0
xranks

(f) and H1
xranks

(e) = H1
xranks

(f). So, V/ ∼xranks
6� cpo(V/ ∼xranks

).
So, Corollary 4.6 can not be applied to xranks.

Example 4.11. V/∼xrank � cpo(V/∼xrank ) does not hold. An example is shown in Figure 10.

order 0 order 1 order 2

0

11

1
2

{1} {1}

{0}{0,1}

{{0}}

{φ}

{{0,1}}

φφ

{φ,{1}}

Figure 10. Partitions according to orders 0, 1, and 2 induced by xrank.

The above results are summarized as follows.

base rank
function

V/ ∼r

� cpo(V/ ∼r)
V/ ∼r

� stab({V })
V/ ∼Hk

r

= stab({V })

0 yes yes, Example 3.15 yes

nrank yes, Proposition
3.3

yes, Proposition
3.4

yes, Corollary 4.5
or Corollary 4.6
(Example 4.7)

xrank no, Example 4.11 yes, [5] yes, Corollary 4.5

xrank∗ yes, Proposition
3.10

Proposition 3.9 yes, Corollary 4.5
or Corollary 4.6
(Example 4.9)

xranks no, Example 3.12 no, Example 3.15 no, Example 4.10

crank no, Example 3.14 no, Example 3.14 no, Example 4.12

xrank’ no, Example 4.1 yes, [5] yes, Corollary 4.5

arank yes yes yes, [7]

Example 4.12. For crank and xranks, there is a case that V/ ∼Hk
r
= stab({V }) does not hold for any

k. In Figure 11, e and f are in the same block of the coarsest stable partition. The crank of e is 2
and that of f is 3, H1

crank(e) = {1, 2} and H1
crank(f) = {2, 3}, and H2

crank(e) = {{{1}, ∅}, {1, 2}}
and H2

crank(f) = {{{1}, ∅}, {2, 3}}. Because e and f each have an edge to themselves, Hk
crank(e) 6=
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Hk
crank(f) for any k. For xranks, H2

xranks
(e) = {{0, 1}, {1}} and H2

xranks
(e) = {{0, 1}, {2}}, and

Hk
xranks

(e) 6= Hk
xranks

(f) for any k.

Figure 11. Counterexample of V/ ∼Hk
r
= stab({V }) for crank and xranks.

To get a higher-order rank values up to order k it can be obtained with a computation of complexity
O(k(|E|+ |V |)). For calculating cpo, we refine V by using the blocks in P . This operation is simpler
than div but its computational complexity is still O(|E|+ |V |).

In the worst case, the least k in Theorem 2.20 is |V | − 1. So, the computational complexity of the
coarsest stable partition using stab is O(|V |(|E|+ |V |)). This is worse than O(|E| log |V |) of [6].

We think that the order at which most nodes are separated is much smaller than |V | and that an on-
demand calculation of higher-order rank values may save most of the useless calculations. However,
an elaboration of this algorithm is beyond the scope of this paper.

5. Applications

5.1. Reconstruction of G from H k
r

Can the entire topology be encoded into H k
r? We will rephrase this question as “How can the graph

G can be reconstructed from H k
r”?

Lemma 5.1. If G has no root, then H k
r [V ] can be reconstructed from H k′

r [V ] for k′ > k.

Proof:
H k−1

r [V ] =
⋃

H k
r [V ]. ut

Definition 5.2. For a subset s in {H 1
nrank(a)|a ∈ V }, define g(s) =

{
0, if s = ∅,
(min s) + 1, otherwise.

Note that g({∞}) =∞ because∞+ 1 =∞.
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Lemma 5.3. If G has no root, g(H 1
nrank(a)) = H 0

nrank(a) for a ∈ V .

Proof:
If a ∈ Φ(G), g(H1

nrank(a)) = g(∅) = 0 = H0
nrank(a). If no leaf is reachable from a, no leaf is

reachable from a’s children. g(H1
nrank(a)) = g({∞}) = ∞ = H0

nrank(a). Otherwise, the mini-
mum length to a leaf from a is the minimum length to a leaf from one of the children of a plus 1.
g(H1

nrank(a)) = g({∞, n1, n2, ..., nm}) = min({n1, n2, ..., nm}) + 1 = H0
nrank(a). ut

This is a good property of nrank.

Lemma 5.4. If G has no root, we can extend the function g to {H i
nrank(a)|a ∈ V } such that

g(H i
nrank(a)) = H i−1

nrank(a) for a ∈ V and 1 ≤ i ≤ k.

Proof:
We can recursively construct g by defining g(x) = {g(y) | y ∈ x} for x ∈ H i

nrank(a) for i > 1.
The function g is well-defined because if H i

nrank(a) = H i
nrank(b) then H i−1

nrank(a) = H i−1
nrank(b) from

Lemma 2.17 and Theorem 4.4 for i > 1 and from the definitions of g and nrank for i = 1. ut

This function g is called the Mostowski’s collapse in the literature [10].

Theorem 5.5. Suppose that G has no root. If the MSO is k with respect to nrank, then the graph
G′ = (V ′, E′) with V ′ = H k

nrank[V ] and E′ = {(g(v), v′) | v ∈ H k+1
nrank[V ], v′ ∈ v} is bisimilar to

the original graph G.

Proof:
Suppose that (a, b) ∈ E, then for v = Hk+1

nrank(a), g(v) = Hk
nrank(a) by Lemma 5.4. For v′ =

Hk
nrank(b), v′ ∈ v = Hk+1

nrank(a). So, (g(v), v′) = (Hk
nrank(a), Hk

nrank(b)) ∈ E′. Define the
bisimulation relation � on G×G′ as a � Hk

nrank(a). For (a, b) ∈ E, (Hk
nrank(a), Hk

nrank(b)) ∈ E′

and b � Hk
nrank(b). Conversely, suppose that (Hk

nrank(a), c) ∈ E′. Suppose that no e exists such that
(a, e) ∈ E and e � c. Then Hk+1

nrank(a) does not have c as an element, a contradiction. So, there exists
e such that (a, e) ∈ E and e � c. This completes the proof that G and G′ are bisimilar. ut

Example 5.6. The MSO of G in Figure 3 is 1. So, G can be reconstructed from H 2
nrank[V ].

node nrank H 1
nrank H 2

nrank
a 0 ∅ ∅
b 1 {0, 1, 3} {∅, {0}, {2,∞}}
c 2 {1, 3} {{0, 1, 3}, {2,∞}}
d 3 {2,∞} {{1, 3}, {∞}}
e ∞ {∞} {{∞}}
f 1 {0} {∅}
g 0 ∅ ∅
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Suppose that we just have H 2
nrank[V ] = {∅, {∅, {0}, {2,∞}}, {{0, 1, 3}, {2,∞}},

{{1, 3}, {∞}}, {{∞}}, {∅}}.

First, we reconstruct H k
nrank[V ](k < 2) from H 2

nrank[V ]. H 1
nrank[V ] =

⋃
H 2

nrank[V ] =

{∅, {0, 1, 3}, {1, 3}, {2,∞}, {∞}, {0}}. H 0
nrank[V ] =

⋃
H 1

nrank[V ] = {0, 1, 2, 3,∞}.

By applying g to each element of H 1
nrank[V ], we get g(∅) = 0, g({0, 1, 3}) = 1, g({1, 3}) =

2, g({2,∞}) = 3, g({∞}) = ∞, g({0}) = 1, and g(∅) = 0. g is a function from H1
r (a)

to H0
r (a) for a ∈ V . We construct a function g from H2

r (a) to H1
r (a) for a ∈ V as follows.

g(∅) = ∅, g({∅, {0}, {2,∞}}) = {g(∅), g({0}), g({2,∞})} = {0, 1, 3}, g({{0, 1, 3}, {2,∞}}) =
{g({0, 1, 3}), g({2,∞})} = {1, 3}, and so on. Now we have V ′ = H 1

nrank[V ] =

{∅, {0, 1, 3}, {1, 3}, {2,∞}, {∞}, {0}}, and E′ = {(g(v), v′)|v ∈ H 2
nrank[V ], v′ ∈ v} =

{({0, 1, 3}, ∅), ({0, 1, 3}, {0}), ({0, 1, 3}, {2,∞}), ...}. Then, G′ = (V ′, E′) is bisimilar to G.

5.2. Binary encoding

Example 5.7. The MSO of G in Figure 3 with respect to the rank function 0 is 4 as shown below.

node 0 H 1
0 H 2

0 H 3
0 H 4

0

a 0 ∅ ∅ ∅ ∅
b 0 {0} {∅, {0}} {{∅}, {{0}}, ∅} {∅, {{{0}}}, {∅}}
c 0 {0} {{0}} {{∅}, {{0}}} {{{{0}}}, {{∅}, {{0}}, ∅}}
d 0 {0} {{0}} {{{0}}} {{{{0}}}, {{{0}}, {∅}}}
e 0 {0} {{0}} {{{0}}} {{{{0}}}}
f 0 {0} {∅} {∅} {∅}
g 0 ∅ ∅ ∅ ∅

H k
0 is acyclic, and we can construct an encoding for higher-order rank values in a similar way to

the Ackermann encoding.

Definition 5.8. A higher-order encoding of order k for the rank function r is defined as follows.

Ak
r (a) =

{
r(a), if k = 0,

∨b∈a2A
k−1
r (b), otherwise .

Here, ∨ is the bitwise logical OR of numbers in the binary

representation.

Example 5.9. Higher-order encodings of G with the base rank function 0 in Figure 3 are shown below
up to k = 4.
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node 0 A1
0 A2

0 A3
0 A4

0

a 0 0 00 0000 0000000000000000

b 0 1 11 0111 0000000000010011

c 0 1 10 1100 0000000010010000

d 0 1 10 0100 0001000000010000

e 0 1 10 0100 0000000000010000

f 0 1 01 0001 0000000000000001

g 0 0 00 0000 0000000000000000

Theorem 5.10. Ak
r (a) = Ak

r (b)⇔ H k
r (a) = H k

r (b).

Proof:
This statement follows from the fact that Ak

r is a faithful binary representation of H k
r for k > 0. ut

Note that this higher-order encoding is uniquely determined while the encoding A(a) in Section
4.2 is not uniquely determined.

5.3. Merging graphs

One can compare two nodes in different graphs by using their higher-order rank values.
If Hk

r (a) 6= Hk
r (b), a and b never become bisimilar.

What can we say if Hk
r (a) = Hk

r (b) holds? Are a and b are bisimilar in G1 ∪G2? Unfortunately,
even if Hk

r (a) = Hk
r (b) holds, Hk′

r (a) = Hk′
r (b) may not hold for some k′ � k.

Example 5.11. Figure 12 shows an example that (MSO of G1 ∪ G2)� (MSO of G1) and (MSO of
G2).

b

c

d

e

gf

b

c

d

e
f

(G1) (G2)

Figure 12. Sample graphs G1 and G2 such that (MSO of G1 ∪G2)� (MSO of G1) and (MSO of G2).

H k
nrank for Figure 12 (G1) is shown below. The MSO is 0, but for later use, we show H k

nrank up
to k = 4.
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H 0
nrank H 1

nrank H 2
nrank H 3

nrank H 4
nrank

b 1 {0, 4} {∅, {3}} {∅, {{2}}} {∅, {{{1}}}}
c 2 {1} {{0, 4}} {{∅, {3}}} {{∅, {{2}}}}
d 3 {2} {{1}} {{{0, 4}}} {{{∅, {3}}}}
e 4 {3} {{2}} {{{1}}} {{{{0, 4}}}}
f 0 ∅ ∅ ∅ ∅

H k
nrank for Figure 12 (G2) is shown below. The MSO is again 0, but for later use, we show

H k
nrank up to k = 4.

H 0
nrank H 1

nrank H 2
nrank H 3

nrank H 4
nrank

b 1 {0, 5} {∅, {4}} {∅, {{3}}} {∅, {{{2}}}}
c 2 {1} {{0, 5}} {{∅, {4}}} {{∅, {{3}}}}
d 3 {2} {{1}} {{{0, 5}}} {{{∅, {4}}}}
e 4 {3} {{2}} {{{1}}} {{{{0, 5}}}}
f 5 {4} {{3}} {{{2}}} {{{{1}}}}
g 0 ∅ ∅ ∅ ∅

The MSOs of G1 and G2 are 0. However, e in G1 and G2 has the same H k
nrank for even k = 3,

and they can be eventually separated at k = 4. So, the MSO of G1 ∪G2 is 4.

Suppose that we want to determine whether a node of graph G1 and a node of G2 are bisimilar.
We assume that the higher-order rank of G1 and that of G2 are already calculated for the order k ≥
MSO of G1 and G2. For simplicity we additionally assume that G1 has no two bisimilar nodes and G2

has no two bisimilar nodes. Then for k ≥MSO of G1 and G2, H k
nrank(a) 6= H k

nrank(b) if a, b ∈ G1

and a 6= b. This also holds for nodes in G2. So, a node of G1 has the same H k
nrank with at most one

node of G2. The partition of H k
nrank for G1 ∪ G2 is such a pair or a singleton. Now, the problem

is to decide whether we should divide the pair or not in G1 ∪ G2 which can be solved with a simple
partition algorithm, for example, the one shown in Algorithm 1.

Algorithm 1 is a variant of the minimization algorithm of DFA [11]. The computational complex-
ity 2 of the minimization algorithm of DFA for a set of symbols Σ is O(|Σ||V | log |V |). In our case,
the possible pairs are limited by |V1| and |V2| while those of the edges are limited by |E1| and |E2|.
As such, the computational complexity is O(|E1| + |E2|). This is smaller than the computational
complexity O((|E1| + |E2|) log(|V1| + |V2|)) of calculating the coarsest stable partition of the entire
graph G1 ∪ G2 by employing (from scratch) the algorithm in [5] and [6]. H k

nrank gets complicated

2There have been some improvements in the original algorithm, but the worst-case complexity is still O(|Σ||V | log |V |).
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Algorithm 1 Separating pairs algorithm
1: P ← node pairs with the same H k

r . {To process pairs}
2: P ′ ← ∅. {Processed pairs}
3: for p ∈ P do
4: move p from P to P ′.
5: (a, b)← p.
6: for a′ ∈ a do
7: if there does not exist b′ ∈ b s.t. (a′, b′) ∈ P ∪ P ′ or a′ = b′ then
8: Transitively divide all the pairs in the list associated with (a, b).
9: Remove p and the pairs from P ′.

10: Break
11: end if
12: end for
13: Do the same for b.
14: if p ∈ P ′ then
15: Put (a, b) into a list associated with (a′, b′).
16: end if
17: end for

for larger k. The cost to compare such complicated higher-order rank values is not O(1). However
|V | is much smaller than the number of possible return values of H k

nrank. So, if we can find a proper
hash function, we can effectively compare the return values of H k

nrank in O(1).

Example 5.12. For Example 5.11, the MSO of G1 and G2 is 0. Thus, c of G1 and c of G2 have
the same H 0

nrank. H 0
nrank of b, c, d, and e are 1, 2, 3 and 4 for both G1 and G2. Now, P =

{(d, d′), (c, c′), (b, b′), (e, e′), (f, g′)}, where the nodes in G2 are apostrophized to make a distinction
to the nodes in G1.

Suppose (d, d′) is processed first. Then for child c of d, there exists c′ of d′ such that (c, c′) ∈ P .
So, (d, d′) is put into the list associated with (c, c′) to be processed later. Suppose (c, c′) is processed
next. Then for child b of c, b′ of c′ exists such that (b, b′) ∈ P . So, (c, c′) is put into the list associated
to (b, b′) to be processed later. Suppose (b, b′) is processed next. Then for child e of b, no child x′ of
b′ exists such that (e, x′) ∈ P nor e = x′. So we divide (b, b′) and following the list associated with
(b, b′), we transitively divide (c, c′) and (d, d′). Suppose (e, e′) is processed next. Then for child d
of e, no child d′ of e′ exists such that (d, d′) ∈ P because (d, d′) was already divided. So, we divide
(e, e′). Suppose (f, g′) is processed last. Because f and g′ do not have a child, (f, g′) is left in P ′.
Now we know that c, d, and e of G1 and those of G2 are distinct and f and g′ are bisimilar.

5.4. Edge increment

An incremental algorithm to maintain the coarsest stable partition was proposed in [13]. Here, we
show how to incrementally calculate the coarsest stable partition by using the higher-order rank. We
use the example in Figure 13 of [13].



K. Kashiwabara et al. / Higher-Order Rank Functions on Directed Graphs 27

n
3

n
2

n
1

n
5

n
0

n
4

n
3

n
2

n
1

n
5

n
0

n
4

Figure 13. Sample increment of an edge n4 → n3 in Figure 10 of the graph in [13]. Before (left) and After
(right).

For the graph in Figure 13 (left), the higher-order ranks are as follows.

H 0
nrank H 1

nrank H 2
nrank

n0 0 ∅ ∅
n1 1 {0, 1} {∅, {0}}
n2 2 {1} {{0, 1}}
n3 1 {0, 2} {∅, {1}}
n4 1 {0} {∅}
n5 0 ∅ ∅

The MSO of this graph is 1, but we show H 2
nrank for comparison later.

By adding an edge from n4 → n3 as in Figure 13 (right), the higher-order ranks slightly change.
The changed higher-order ranks are shown in bold in the table below.

H 0
nrank H 1

nrank H 2
nrank

n0 0 ∅ ∅
n1 1 {0, 1} {∅, {0,1}}
n2 2 {1} {{0, 1}}
n3 1 {0, 2} {∅, {1}}
n4 1 {0,1} {∅, {0,2}}
n5 0 ∅ ∅
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The higher-order rank value of n4 changes and the higher-order rank values depending on it
change. Now H 1

nrank(n4) is {0, 1} being identical to H 1
nrank(n1). This means that the local structure

around n4 is the same as that of n1. n1’s children are n0 with nrank 0 and n4 with nrank 1, and n4’s
children are n5 with nrank 0 and n3 with nrank 1. So, we have to calculate H 2

nrank. In H 2
nrank, n1

and n4 have different higher-order rank values and all nodes are separated.
At an edge increment, at most only one pair of nodes has the same higher-order rank at the order

of the original MSO. So, we only have to calculate the higher-order rank at the order of the original
MSO + 1 for the nodes in the pair. The complexity in this case is proportional to the outdegrees of the
nodes and O(|E|/|V |) on average.

5.5. Web graph analysis

Here, we briefly explain an application to web site analysis.
It is said that if the structure of a web site is inconsistent, users tend to get lost in it [14, 15]. By

detecting and restructuring irregular structures in a web site, we can reduce such inconsistencies. By
viewing web pages as nodes and links between them as edges, we can picture a web site as a directed
graph. This graph is called a web graph. For this web graph, a higher-order rank function can be
considered to produce a summary of the local link structure around each page. Each block induced by
the function contains nodes with the same local link structure up to the specified order.

g

b c d e f

a h

transform

irregular vertex

block of 0 rank

block of 1 rank

Figure 14. Web pages with a linear substructure and AFA structure with higher-order rank.

Figure 14 shows an example of a web site with pages and links (A) and the corresponding web
graph (B). V/ ∼H 0

nrank
consists of {b, c, d, e, f}, {a}, {h}, and {g}. Because the blocks {a}, {h},

and {g} are smaller than {b, c, d, e, f}, we can consider them to be irregular. On the original web
site (A), they consist of an index, an external page, and a substructure, and compared with the large
linear structure of {b, c, d, e, f}, they are considered to be irregular. Next, V/ ∼H 1

nrank
has blocks
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{b, d, e, f}, {c}, {a}, {h}, and {g}. Here, {c} can be considered to be irregular compared with
the relatively large block of {b, d, e, f}. On the original web site (A), a page c is an entry to the
substructure, and compared with the still large linear structure, it is considered to be irregular. In
[3], it was reported that several irregular structures could be detected by using the higher-order rank
function in this way.

A hub is well characterized as a node with many outgoing links in the graph theory [16]. Certain
hub structures can be analyzed in more detail by using a higher-order rank function Hk

r . For example,
a hub h with small |H i

nrank(h)| can be considered to have homogeneous children, whereas one with
large |H i

nrank(h)| can be considered to have heterogeneous (so, irregular) children.

6. Concluding remarks

In this paper, we reviewed the properties of the partition lattice and refining operators div, stab, and
cpo. We introduced cpo, which is simpler than div and directly corresponds to higher-order rank
functions. div divides the current partition, so the partition depends on the previous history as well
as the division caused by the children. cpo depends only on the children, and the partition is more
homogeneous. We showed that cpo is not monotonic, in general, but it becomes so if certain conditions
are met. For example, if V/∼xrank� cpo(V/∼xrank ), successive application of cpo on V/∼xrank
is monotonic (Lemma 2.17). This condition is satisfied by many ranks, including nrank (Proposition
3.3). We also showed that by applying cpo to a partition coarser than the stable one, we eventually get
the stable partition (Theorem 2.20).

We summarized the rank functions: xrank defined in [5], arank defined in [7], and xrank∗ and
xranks defined in [8], and showed their properties. We also proposed nrank which is closely related to
cpo in the context of the higher-order rank.

We introduced the higher-order rank function H k
r for order k and a rank function r. Some higher-

order rank functions were proposed in [5] and [7] for specific data structures. We separated the mathe-
matical model from the data representation and focused on the mathematical aspects of xrank’ (Section
4.1) and arank (Section 4.2). In so doing, we gain flexibility in implementing a mathematical model
with guaranteed convergence. H i

r may be as complex as a well-founded set can be. However, it is
defined purely mathematically, so we can employ various implementation techniques. For example,
we can use a hash function suitable for the target domain in order to reduce the number of exact
comparisons of H i

r, as explained in Section 5.3.
The equivalence ∼H k

r
directly corresponds to the refining operator cpok (Theorem 4.4.) This

means that a higher-order rank function with sufficiently large order induces the coarsest stable par-
tition if V/ ∼r� stab({V }) (Corollary 4.5). We may explore a possible implementation without
worrying about the limit behavior (Section 4.3). (For obtaining just the coarsest stable partition, it is
better to switch to the algorithm in [6].)

cpo is more homogeneous than div and has better understandability. In the web application de-
scribed in Section 5.5, the distinction made by cpok is caused by the difference at the depth3 k and
can be easily interpreted.

3the path length to some leaf
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We also showed that the entire topology can be reconstructed from Hk
r if some conditions are met

(Section 5.1).
The higher-order rank H k

r (a) depends on the local structure of a, but is independent of the entire
structure. Thus, we can compare the nodes n ∈ V and n′ ∈ V ′ in different graphs G = (V,E) and
G′ = (V ′, E′) by their higher-order ranks as shown in Section 5.3.

There are variants of the bisimulation relation. For example, simulation is used in some applica-
tions. It is said that�S used in the simulation does not have a direct counter-part among set-theoretical
notion, but the higher-order rank may be useful for analyzing an algorithm on the simulation. We plan
to pursue this idea in the future.

This paper focused on a mathematical aspects. To obtain the exact computational complexity, we
have to determine the data structures precisely. The worst-case complexity is O(|E| log |V |), as it
includes pathological cases; the average complexity may be smaller. Also, for some popular graphs
with good properties such as those manifested by the small-world phenomenon, the complexity may
be much smaller still. We also plan to explore these possibilities in our future work.
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