
v 

Editor's Foreword 

This issue of Fundamenta Informaticae is devoted to the theory of logic program
ming. To put the papers which appear here in a proper perspective, let us discuss 
briefly the most relevant aspects of this subject. 

Theory of Positive Programs 

From the viewpoint of mathematical logic, logic programming is a proof theory and 
model theory of Horn clauses and some of their extensions. It started its life as an 
independent discipline around 1973 when Colmerauer and Kowalski realized that 
Horn clauses can be used as a programming language. A theoretical framework for 
this idea was published in Kowalski [1974]. 

A logic program consists of a finite set of definite clauses (i.e. Horn clauses with 
one positive literal) and is activated by a goal (i .e . a Horn clause with no positive 
literal). Definite clauses are written as 

Ao +-- A I , ... , An 

where n ;::: 0, and should be interpreted as 

(AI /\ ... /\ An -+ Ao), 

whereas goals are written as 

where n ;::: 0, and should be interpreted as the question 

We shall also call logic programs positive programs, or simply programs. 
The activation of a logic program leads to an attempt at refuting the goal. If it 

succeeds, it produces a constructive answer to the question expressed in the goal. 
This process generates a sequence of goals in which each consecutive goal is derived 
by computing a resolvent of the previous goal with one of the program clauses . 
To this purpose an atom is selected in each goal. This refutation process is called 
SLD-resolution (SLD stands for selection rule driven linear resolution for definite 
clauses) . 

This interpretation of logic programs is called a procedural semantics which ex
plains how a program computes, i.e. what is the computation mechanism which 
underlies the program execution. When in each goal the first atom from the left 
is selected and the search for a solution proceeds in a depth-first fashion, the pro
gramming language P ROLOG is obtained. 

Another interpretation of logic programs is obtained by studying them from the 
model-theoretic point of view. With each logic program P the least Herbrand model 
Mp can be associated in a natural way. This model is the least fixpoint of a natural 
immediate consequence operator Tp introduced by Van Emden and Kowalski [1976] 

1990, Polish Mathematical Society 



VI Editor's Foreword 

which, given a set of ground atoms, produces the set of their direct consequences 
by means of the clauses which form the program P. Since Tp is continuous, Mp = 
Tp T w, where Tp T w is the result of the iteration of Tp upward by w steps. 

The model Mp provides the meaning of a program P and allows us to explain 
what semantically follows from the program P . Thus it provides us with a declarative 
semantics in that it explains what the program computes without analyzing the 
underlying computational mechanism. 

Completeness theorems link the above two semantics of logic programs and 
can be proved in a number of versions. The so-called strong completeness theorem 
shows that a goal semantically inconsistent with the program can be refuted by 
SLD-resolution for any given selection rule. However, this result does not imply 
completeness of P ROLOG which, for efficiency reasons, uses a depth-first search in 
the corresponding derivation tree (called an SLD-tree). These completeness results 
were proved by Hill [1974]' Clark [1979], Apt and Van Emden [1982]' and others. 

To extend the expressiveness of logic programs, Colmerauer suggested to use 
negative literals in the goals and proposed a computational mechanism allowing us 
to resolve them. Clark [1978] formulated this mechanism as a negation as failure 
rule and investigated its semantics. The negation as failure rule allows us to infer 
-,A if for some selection rule a finite and failed SLD-tree with the goal <- A can be 
constructed. To study the semantics of the negation as failure rule, the declarative 
interpretation of logic programs through the model Mp turns out to be inadequate 
since -,A holds in Mp iff +- A cannot be refuted from P and the latter is in general a 
weaker statement than "-,A can be inferred using the negation as failure rule". Clark 
[1978] proposed therefore to interpret logic programs by means of a construction 
called the completion of P (written as comp(P)) which transforms the original set 
of if-clauses into a set of iff-statements. This construction introduces the equality 
predicate and therefore additionally so-called free equality axioms are needed here 
to ensure the appropriate interpretation of equality. These axioms enforce that non
unifiable terms are assigned to different elements in a model. 

Jaffar, Lassez and Lloyd [1983] proved completeness of the negation as failure 
rule with respect to the completion of the program. Thus the negation as failure 
rule allows us to prove exactly those negative literals which are semantically implied 
by the completion of the program. Earlier Apt and Van Emden [1982] characterized 
the negation as failure rule in terms of the complement of Tp 1 w, the result of 
the iteration of Tp downward by w steps. They also noted that the pre-fixpoints 
of the operator Tp are exactly all Herbrand models of the program P whereas the 
fixpoints of Tp are exactly all Herbrand models of comp(P). Putting these and some 
other related results together one gets an interesting duality between the concepts 
of SLD-refutation and the negation as failure rule. 

Theory of General Programs 

By general programs we mean here an extension of positive programs in which 
negative literals are allowed in the bodies of the clauses. An extension of the above 
results to the case of general programs presented a number of difficulties which only 



Editor's Foreword vu 

recently have been resolved. First of all, the completion of a general program can 
be inconsistent (just take P = {A <- .A}; then A f-t .A is in comp(P)). Secondly, 
the appropriate extension of SLD-resolution introduced by Clark [1978] and called 
SLDNF-resolution (for SLD-resolution with the negation as failure rule), has to 
be properly defined in order to avoid circularity and reduction to undefined cases. 

One line of research proposed by Apt, Blair and Walker [1988] and Van Gelder 
[1988] resulted in the isolation of a natural subclass of general programs called 
stratified programs whose completion is consistent. Stratified programs are general 
programs in which recursion "through" negation is disallowed. They form a simple 
generalization of a class of database queries introduced by Chandra and Harel [1985]. 

Stratified programs have a natural semantics associated with them in the form of 
a minimal Herbrand model. This model is built iteratively using smallest Herbrand 
models and forms a natural generalization of the model Mp. Przymusinski [1988] 
found an interesting characterization of this model as the unique minimal Herbrand 
model in a specific partial ordering < on the models of P and termed this model 
a perfect model. In this partial ordering N < M if N is obtained from M by 
minimizing some of the relations defined "lower" in P even at the cost of extending 
some of the relations defined "higher" in P. With this model chosen as a declarative 
semantics for a stratified program P, Przymusinski [1988] proved a completeness 
result which refers to a non-effective form of resolution, called SLS-resolution, in 
which a negative literal .A is considered proved if A cannot be proved. 

Another line of research, based on the use of 3-valued logic, was advocated by 
Mycroft [1984]' Fitting [1985] and Kunen [1987]. In the 3-valued semantics, for 
any ground atom, the value true corresponds to being provable, the value false to 
being refuted and the value u (for undefined) to divergence. With an appropriate 
interpretation of the logical connectives comp(P) is always consistent in the 3-valued 
semantics. 

Kunen [1987] showed completeness of SLDN F-resolution with respect to this 
interpretation of comp(P). No restriction to stratified programs is needed here, 
though (similarly as in the caSt of the SLS-resolution) one needs to ensure that only 
ground negative literals are resolved. The proof relies on a natural generalization by 
Fitting [1986] of the operator Tp to its 3-valued counterpart IP p. ~ p is monotonic 
(though not continuous) and for every formula cP, cP has value true in all 3-valued 
models of comp(P) iff cP has value true in IP p T n for some finite n. This is a crucial 
lemma since it allows us to carry out the completeness proof by an induction set 
up in a suitable way. 

We thus see that two natural views of stratified programs arise here, depending 
on what declarative semantics one chooses. 

Short SUIllIllary of this Issue 

The first four papers deal with general programs . 
Apt and Blair study in their paper the recursion-theoretic complexity of perfect 

models. They show among others that for a stratified program with n strata its 
perfect model is E~ and that for each n > 0 there exists a stratified program with n 



viii Editor's Foreword 

strata whose perfect model is E~ complete. Using these results they obtain a similar 
characterization of the recursion-theoretic complexity of a number of formalisms 
dealing with non-monotonic reasoning. 

Fitting and Jacobs study 3-valued semantics of stratified programs. One of them 
is obtained by considering the operator If> p discussed in the previous section. Since it 
is monotonic, by the Knaster-Tarski theorem it has a least fixpoint. It turns out that 
for stratified programs this least fixpoint coincides with the outcome of an iterative 
construction in which for each successive stratum the least and greatest fixpoints 
of the Tp operator associated with the current stratum are used. Consequently, the 
latter construction is independent on the stratification of the considered program. 

Kunen in his paper extends his completeness result discussed in the previous 
section by including in the language a number of P ROLOG features. The extensions 
discussed include the numeric and term comparison operators. The proper handling 
ofthese constructs requires an appropriate modification of the completion comp(P). 
Finally he proves that any general program computing transitive closure either uses 
negative literals (i.e. is not positive) or uses function symbols. 

Przymusinski and Przymusinska study in their paper a natural extension of the 
iterative construction which in the case of stratified programs leads to the perfect 
model. This construction takes dynamically into account which literals are "irrele
vant". In this construction the decomposition into strata is performed dynamically 
rather than statically. The semantics obtained by this process is applicable to a 
larger class of general programs than the stratified ones. 

One of the most striking aspects of the theory of logic programming is that for 
a positive program P its immediate consequence operator Tp is upward continuous 
but does not need to be downward continuous. This fact has been first noticed by 
Clark, Andreka and Nemeti (see Apt and Van Emden [1982]). However, examples 
of such programs seemed artificial and difficult to construct. Bagai, Bezem and Van 
Emden provide in their paper a number of natural positive programs whose imme
diate consequence operator is not downward continuous and clarify this problem by 
'elating it to certain concepts of graph theory. 

I hope that this special issue will raise the reader's interest in the theory of 
logic programming. Those wishing to get a systematic treatment of the subject are 
advised to consult Lloyd [1987] or Apt [1988]. 

Krzysztof R. Apt 

References 

1. Apt, K.R., Introduction to Logic Programming, Report CS-R8826, Centre for 
Mathematics and Computer Science, Amsterdam, to appear in: Handbook of 
Theoretical Computer Science (J. van Leeuwen, ed .), North Holland, Amster
dam, 1988. 

2. Apt, K.R., Blair, H. and Walker, A., Towards a Theory of Declarative Knowl
edge, in: Foundations of Deductive Databases and Logic Programming (J. 



Editor's Foreword IX 

Minker, ed .), Morgan Kaufmann, Los Altos, 1988. 

3. Apt, K.R. and van Emden,M.H., Contributions to the Theory of Logic Pro
gramming, JACM, vol. 29, No. 3, 1982, pp. 841-862. 

4. Clark, K.L., Negation as Failure, in : Logic and Databases, (H. Gallaire and J . 
Minker, Eds.), Plenum Press, New York, 1978, pp. 293-322. 

5. Clark, K.L., Predicate Logic as a Computation Formalism, Research Report 
DOC 79/59, Department of Computing, Imperial College, 1979. 

6. Chandra, A . and Harel, D., Horn Clause Queries and Generalizations, Journal 
of Logic Progra mming, vol. 2, no. 1, 1985, pp . 1-15. 

7. van Emden, M .H. and Kowalski, R.A., The Semantics of Predicate Logic as a 
Programming Language, JACM, vol. 23, no. 4,1976, pp. 733-742. 

8 . Fitting, M., A Kripke-Kleene Semantics for General Logic Programs, Journal 
of Logic Programming, vol. 2 , no. 4, 1985, pp . 295-312. 

9. van Gelder, A., Negation as Failure Using Tight Derivations for General Logic 
Programs, in: Foundations of Deductive Databases and Logic Programming (J. 
Minker,ed.), Morgan Kaufmann , Los Altos, 1988. 

10. Hill, R., LUSH-Resolution and its Completeness, DCL Memo 78, Department 
of Artificial Intelligence, University of Edinburgh, 1974. 

11. Jaffar, J., Lassez, J.-L. and Lloyd, J .W ., Completeness of the Negation as a 
Failure Rule , in: IJCAl-S3, Karlsruhe, 1983, pp . 500-506. 

12. Kowalski, R.A., Predicate Logic as a Programming Language, in: Proc. lFlP 
74, 1974, pp. 569-574. 

13. Kunen, K., Signed Data Dependencies in Logic Programs, Technical Report, 
No. 719, Department of Computer Science, University of Wisconsin, to appear 
in Journal of Logic Programming. 

14. Lloyd, J.W., Foundations of Logic Programming, Second Edition, Springer 
Verlag, 1987. 

15. Mycroft, A ., Logic Programs and Many-valued Logic, in : Proc. of Sympo
sium on Theoretical Aspects of Computer Science (STACS), Lecture Notes in 
Computer Science 166, Springer-Verlag, Berlin, 1984, pp. 274-286. 

16. Przymusinski, T., On the Semantics of Stratified Deductive Databases, in: 
Foundations of Deductive Databases and Logic Programming (J. Minker, ed.), 
Morgan Kaufmann, Los Altos, 1988. 


