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Abstract. The human-readable simplicity with which the CSV format was devised, together with the absence of a standard that
strictly defines this format, has allowed the proliferation of several variants in the dialects with which these files are written. The
latter has meant that the exchange of information between data management systems, or between countries and regions, requires
human intervention during the data mining and cleansing process. This has led to the development of various computational
tools that aim to accurately determine the dialects of CSV files, in order to avoid data loss at data loading stage in a given
system. However, the dialect detection is a complex problem and current systems have limitations or make assumptions that
need to be improved and/or extended. This paper proposes a method for determining CSV file dialects through table uniformity,
a statistical approach based on table consistency and records dispersion measurement along with the detection of data type over
each field. The new method has a 93.38% average accuracy on a dataset with 548 CSV files composed of samples coming from a
data load testing framework, the test suite provided by the CSV on the Web Working Group (CSVW), curated experimental data
set from similar tool development and some others CSV files added as verification of the parsing routines. In tests, the proposed
solution outperforms the state-of-the-art tool by achieving an average improvement of 16.45%, resulting in an net increment
of about 10% in the accuracy with which dialects are detected on truly messy data for this research dataset. Furthermore, the
proposed method is accurate enough to determine dialects by reading only ten records, requiring more data to disambiguate
those cases where the first records do not contain the necessary information to conclude with a dialect determination.

Keywords: Comma Separated Values, CSV dialect detection, data mining, data wrangling

1. Introduction

The CSV files are a special kind of tabulated plain text data container widely used in data exchange,
currently there is no defined standard for CSV file’s structure and a multitude of implementations and
variants. Notwithstanding the foregoing, there are specifications such as RFC-41801 that define the basic

1https://datatracker.ietf.org/doc/rfc4180/
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Fig. 1. CSV that cannot be disambiguated by a simple delimiter count.

Fig. 2. Misinterpreted data using the “most frequent char” strategy.

structure of these files, while a useful addendum to this is defined in the specifications of the USA
Library of Congress (LOC). According to the LOC specifications the CSV simple format is intended for
representing a rectangular array (matrix) of numeric and textual values. “It is a delimited data format that
has fields/columns separated by the comma character %x2C (Hex 2C) and records/rows/lines separated
by characters indicating a line break. RFC-4180 stipulates the use of CRLF pairs to denote line breaks,
where CR is %x0D (Hex 0D) and LF is %x0A (Hex 0A). Each line should contain the same number of
fields. Fields that contain a special character (comma, CR, LF, or double quote), must be “escaped” by
enclosing them in double quotes (Hex 22). An optional header line may appear as the first line of the
file with the same format as normal record lines. This header will contain names corresponding to the
fields in the file and should contain the same number of fields as the records in the rest of the file. CSV
commonly employs US-ASCII as character set, but other character sets are permitted”2. Furthermore,
so far to the specifications, in a file may exist: commented or empty records; the tab character (\t) or
semicolon (;) as field delimiter; one or more, in exceptional cases, of the characters CRLF, CR, and LF
as a record delimiter; quote character escaped by preceding it with a backslash (Unix style).

Given that many public administration portals use CSV files to share information of public interest,3

coupled with the reality that the process of manipulating the information contained in them requires
structuring the data in tables and correcting data quality errors, it is necessary to automate tasks as much
as possible to reduce the time and effort required to deal with messy CSV data [8,10]. The automation
problem focuses on seeking the delimiters (also called dialect sniffing) of a given file. Dialect sniffing
requires that the field delimiter, record delimiter and escape character be determined [11].

This problem seems straightforward, but it is by no means simple. If one opts to implement a simple
field delimiter counter to choose the one with the most occurrences in the entire file, it is very likely that
disambiguation will become impossible if the algorithm is confronted with data that have two or more
delimiters with the same number of matches.

A CSV file with a structure as shown in Fig. 1 is at risk of being misinterpreted, this is illustrated in
[4]. If delimiters are counted, the period or space will be selected as field delimiters because of their
three constant occurrences, generating four fields, in the records, as opposed to the two occurrences and
three fields generated by the comma and semicolon, as shown in Fig. 2. Although a well-defined file
should have a header row, there are many files on the Internet that do not [10].

2https://www.loc.gov/preservation/digital/formats/fdd/fdd000323.shtml
3An analysis of a 413 GB data body found CSV files available for download on 232 portals.

https://www.loc.gov/preservation/digital/formats/fdd/fdd000323.shtml
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It is a fact that systems that work with CSV files may require the user to set the configuration with
which they want the file to be processed, however, when the intention is to analyze data coming from
different sources, it is very beneficial to implement a methodology that allows to automatically infer
CSV dialects with minimal user intervention.

In this sense, CSV file dialect inference is a fundamental part of data mining, data wrangling and data
cleansing environments [10]. Moreover, dialect detection has the potential to be embedded in systems
designed for the new paradigm with the NoDB philosophy, under which it is proposed to make databases
systems more accessible to users [2,7]. These trends suggest that the traditional practice of considering
CSV files outside of database systems is tending to change [6].

The methodology presented in this paper approaches the problem from a new perspective, combining
a set of tangible characteristics in structured data into a single metric. To achieve this goal, a mathemati-
cal model was devised that receives as input a table, whose concept can be translated into data structured
in an array variable or other similar programming structure, making it easy to implement in different sys-
tems used to load information from CSV files. The method takes advantage of a table structure definition
by considering the table header as a simple record. This approach makes it possible to infer CSV dialects
with high accuracy, and without the need for additional configuration, over files in both cases, whether
or not the header row is present. The input table structure is evaluated on the basis that a correctly struc-
tured table has persistence of fields between its records and of data types across its fields, coupled with
the fact that tables tend to cluster the data rather than show scattered observations. From these key facts,
the concept of table uniformity is derived, which qualifies the input table by determining the consistency
between input table structure and the data present in its records, also weighing the divergence between
these factors.

Traditionally, even notorious in the methodology implemented by state-of-the-art tools, heuristics fo-
cus on weighting the count of delimiters in conjunction with data detection. This approach fails when
implemented on single-column tables, since the delimiter count is zero, and assumes that the more oc-
currences of a given character, the higher the probability that it is the delimiter of a potential CSV dialect
with which the file was written. Although this observation is applicable for a good number of CSV files,
as demonstrated in [11], there are many other situations where this observation results in a false posi-
tive and an inappropriate interpretation of the information contained in certain CSV files. The present
research sheds light on the importance of divergence measurement, incorporated in the new concept of
table uniformity, in solving this type of problem and in the consequent increase in the accuracy with
which dialects are determined in CSV files.

2. Related work

Dialect detection in CSV files is an understudied field, and there are few sources on the subject.
In 2017, T. Döhmen proposed the ranking decision method based on quality hypotheses for parsing
CSV files. A similar method is implemented in the DuckDB system4. Another treatment, based on
the discovery of the table structures once the information is loaded into the RAM, is addressed by
C. Christodoulakis et al. [3]. This latter methodology uses the classification of records present in CSV
files with a specific heuristic applied to discover and interpret each line of data.

4https://duckdb.org/docs/archive/0.9.2/

https://duckdb.org/docs/archive/0.9.2/
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In 2019, G. van den Burg et al., developed the CleverCSV system as a culmination of his research, in
which he demonstrated that the methodology significantly improved the accuracy for dialects determi-
nation problem compared to tools such as Python’s csv module, or the intrinsic functions of the Pandas
package, also in the Python programming language. The implementation of CleverCSV is based on de-
tection of patterns in the structure of CSV records, in addition to data types inference over the fields that
compose each record. In this way, the utility applies necessary heuristics to seek the potential dialect
for a given CSV file through mathematical and logical operations devised to discern between possible
dialects [11].

In 2023, Leonardo Hübscher et al., presented a research project that led to the development of a
software application capable of detecting tables in text files. This research considers the dialect deter-
mination of CSV files as a subproblem to be solved in order to seek the dialect that produces the best
table [5].

3. Preliminaries

Properly formulating the dialect detection problem requires establishing certain fundamental defini-
tions.

Definition 1 (CSV content). Given a CSV file ϒ , its content is defined as ξ{ξ1, ξ2, . . . , ξn}, where ξi ∈ �

and � represents a character set encoded using a given encoder.

As per the CSV content definition, there is a real possibility that a single CSV file contains characters
encoded in more than one encoder. For the purposes of this document, it is assumed that all characters
share the same encoding.

Given that each file ϒ originates from a table � to which a format �(�, ρ) and the helper func-
tion W(ξ) have been applied to produce and write a sequence of human readable characters sepa-
rated by lines; then from each CSV content ξ is possible to obtain a table �δ so that we can verify
�δ = �−1(ξδ ← R(ϒ), ρδ).

Definition 2 (CSV table). A table �δ is defined as a set of records composed of a given set of fields,
which share data types between corresponding fields across their records. This table can be represented
as a data array of fields and records. Thus, its records are defined as 	{ϕ1, ϕ2, . . . , ϕn}; i.e. a set of fields
ϕi ; i ∈ [1, 2, . . . , k]. Then, the table can be expressed as �δ{	1, 	2, . . . , 	n}; i.e. a set of records 	i ;
i ∈ [1, 2, . . . , n].

The function R(ϒ) is in charge of reading content from the file ϒ , while the function �−1(ξδ, ρδ)

parses and transforms the CSV content ξδ into a table �δ. The parsing and transformation processes are
clearly out of this study scope, so in the following it is assumed that the selected implementation is able
to process the tables obtained by parsing a CSV file with the selected tool.

Definition 3 (CSV dialect). Let � be the data table from which the content ξδ of file ϒ is generated, the
dialect ρ is defined as the formatting rule to be applied to produce the output data stream.

So that, by the dialect definition, the following statement is verified:

ϒ ← W
(
ξ ← �(�, ρ)

); ρ{υd, υq, υe, υr} ∈ �.
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Definition 4 (CSV dialect determination). Given a CSV file ϒ determining the dialect is the act of
seeking the dialect ρδ that satisfies the statement � � �δ ← �−1(ξδ ← R(ϒ), ρδ).

Thus, it can be concluded that for a CSV file ϒ , created using a dialect ρ, there exists a dialect ρδ that
verifies the condition � � �δ. Therefore, it is verifiable that the content of a CSV file is a function of its
dialect.

3.1. Potential dialect boundaries

It should be noted that multiple potential dialects can produce similar table outputs that are equal or
approximately equal to the source table �. Furthermore, ρδ shares the same character set as the contents ξ

for the CSV file ϒ . That is, an element from ρδ can be practically any character within � domain. Thus,
it is necessary to reduce the range of candidate characters involved in dialect detection to streamline the
process.

For the purposes of this research, the potential dialect is restricted to

ρδ{
υd[“, ” “; ” TAB “|” “ : ” SPACE],
υq[“” “ “” “ ∼ ”],
υe[υq “\”],
υr [CRLF CRLF]}5

4. Approach

As introduced in previous sections, the methodologies currently used to determine CSV dialects share
a common area for improvement that can be exploited by incorporating data divergence variables into
the models. The concept of table uniformity, defined as a computable parameter, encompasses variables
aimed at addressing these deficiencies and reducing uncertainty in the determination of CSV dialects.
The divergence of tables produced when reading CSV files using a specific dialect can be quantified
based on the dispersion of their data, and persistence can be measured in terms of the consistency of
their records. This approach aims to reduce false positives.

4.1. Table uniformity

The table uniformity approach is proposed to solve the problem of dialect determination. The method
is based on consistency measurement over a table �δ, which has been returned by parsing a CSV file
with a dialect ρδ, and the dispersion of records along with the inference of raw data types from fields.

Definition 5 (Table consistency). Let �δ be a table generated when parsing a CSV file ϒ , using a dialect
ρδ, the table consistency, denoted by τ0, is a ratio that describes how uniform �δ is across its k fields and
its n records.

Definition 6 (Records dispersion). Let 	 be the sets of records from table �δ, generated when parsing
a CSV file ϒ using a dialect ρδ, the records dispersion, denoted by τ1, is a measure describing the
magnitude of the change in the records composition throughout �δ.

5In most applications the record delimiter υr is not considered, as modern systems handle new lines discrepancies internally.
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These definitions are based on the fact that tables, in general, have a defined structure with persistent
k fields in its n records.

The two measurements that define the table uniformity parameter τ {τ0, τ1} are related to the structure
of records 	 from a table �δ. Where τ0 is a direct function of the standard deviation of fields, and τ1 is a
function measuring the weighted dispersion in records structures as a factor of the statistical segmented
mode.6

τ0 = 1

1 + 2
√

σ
; τ1 = 2 · R(

α2 + 1
)(1 − β

M

)

Where, for a given table �δ, σ is the number of fields standard deviation across records; α represents
the count of times number of fields changes between records; R is the statistical range for the number of
fields over records; M is the segmented mode, describing the largest number of times the record structure
is sequentially preserved within the table, and β = M

n
is the records variability factor.

The definitions provided propose a concept diametrically opposed to that used in most solutions, since
it discourages data dispersion, i.e. records with a higher number of fields/columns are only favored if
their record structure is uniform.The parameter τ0 indicates the degree of consistency for the records in
a table, while τ1 is a fine-grained measure of the dispersion and inconsistency within the records. This
quality allows the new method to discern between data tables by inferring uniformity in two senses:
consistent and invariant records with little dispersion in their structure. The parameter τ0 ranges from
0 � τ0 � 1, being 1 for those tables with consistent records; while τ1 ranges from 0 � τ1 < ∞, being 0
for those tables with invariant record structure and without dispersion.

4.2. Type detection

Data type detection is the core basis of the implemented methodology. Recognition of data types
over fields from each record allows us to collect information about the contents of a given table. In this
context, the records scoring, denoted as λ, is computed as

λ = (
∑k

i=1 Si)
2

100 · k2

Where Si is a score for the ith field ϕ in 	{ϕ1, ϕ2, . . . , ϕn} from the table �δ. If the type of the ith field
ϕ is known, Si = 100, Si = 0.1 otherwise.

It is important to highlight that the detection of data types is based on the findings presented in the re-
search conducted at [8] on approximately 413 GB of data. The study determined that 97% of the columns
loaded from CSV files were of numeric, date, and character sequence types. In the latter category, fields
with IDs and Tokens predominate. Only 3% of the studied fields were determined to be empty. These
conclusions suggest that inferring a few data types is sufficient to differentiate between CSV file dialects.

Data types are inferred using simple pattern matching like MM/DD/YYYY, which can be implemented
with Regex engines or their predecessors, in the case of non-numeric data types. For numeric data,
inference routines also use simple data conversion instructions supported by programming languages
where a text string is taken as input and the programming language returns a truth value for the requested

6Segmented mode refers to the use of sample segments, which are defined as the data undergoes dispersion.
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inference. That being said, it is worth mentioning that the data types detected by conversion functions
can vary between programming languages.

For the purposes of this paper, the following field types are generally considered to be known:

• Time and date: matching regular dates and time format, as well stamped ones like
MM/DD/YYYY[YYYY/MM/DD] HH:MM: SS +/- HH:MM.

• Numeric: matching all numeric data supported by the implementation language selected.
• Percentage.
• Alphanumeric: matching numbers, ASCII letters and underscore.
• Currency.
• Especial data: like “n/a” or empty strings.
• Email.
• System paths.
• Structured scripts data types: matching JSON arrays and data delimited by parentheses, curly and

square brackets.
• Numeric lists: matching fields with numeric values delimited with common separator character.
• URLs.
• IPv4.

Al other fields will be scored as unknown type. A particularly true fact is that data inference is an
inherently incomplete process aimed at favoring one dialect over another.

4.3. Table scoring

Once table uniformity τ {τ0, τ1} for records 	{ϕ1, ϕ2, . . . , ϕn} from the table �δ{	1, 	2, . . . , 	n},
which has been generated by reading a CSV file ϒ using a dialect ρδ, and the score λ are computed, the
table score, denoted as � , is computed as

� =
(

τ0

�
+ 1

τ1 + n

)
·

n∑
i=1

λi; ∀n > 1

Where � is a threshold indicating the expected number of records to be imported from the CSV file
ϒ which contains a number of records m. For m > n, and an appropriate selection of ρδ, �−1(ξδ ←
R(ϒ), ρδ) will generate a table where � = n; therefore, by the definition stated, the table score is in the
range 0 < � � 200.

In the case n = 1 we have

� = λ · η + 1
k

k − �η · k	 + 1

Where η =
√

λ
10 is a discriminant to ensure the exclusion of false positives with a single record.

4.4. Determining CSV file dialects

This section shows the core algorithms on which the methodology presented in this research is based,
complementary algorithms are listed in the appendix.
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Algorithm 1 Dialect determination
Input: CSV content ξ , expected number of records to import �

Output: the dialect ρδ the that produces the more accurate table
1: function DETERMINE(ξ , �)
2: P ← STARTDIALECTS()

3: for ρ ∈ P do
4: �δ ← �−1(ξ, ρ) 
 Parsing
5: ℵ(�, ρ) ← TSCORE(�δ, �)

6: return GETBESTDIALECT(ℵ)

The main pseudocode for dialect determination is listed in Algorithm 1. At line 2 the set of predefined
dialects are initialized; then, in line 4, a table �δ is created by parsing the CSV content ξ with each ρ
dialect.

At this point, it becomes clear that the selection of a robust parser is of utmost importance in order to
obtain the best results even on messy files. In line 5, the output table �δ is scored and this result is saved
within the current dialect in the collection ℵ. At line 6, the dialect that gets the highest scored table is
selected.

The table uniformity procedure is outlined in Algorithm 2 pseudocode. The method uses a set of
sentinels to measure table inconsistency through monitoring table changes over parsed records.

The parameter τ0 is derived from the standard deviation that indicates how uniformly the fields count
are grouped around the average number of fields contained in the parsed records, resulting in an appro-
priate measure to qualify the structure of a table [1]. However, when there are two or more dialects with
a small variance, the τ0 parameter is not decisive. It is in this situation where the τ1 parameter provides
support by penalizing tables with variations in its records structures, and whose structure resembles
sparse data that do not maintain consistency.

5. Evaluation setup

This section outlines the structure of comparative tests between state-of-the-art tool and the approach
presented in the current research. Previous studies, which have even been the backbone in the devel-
opment of tools like CleverCSV, have demonstrated that there is significant variability in the dialects
present in CSV files, making it necessary to thoroughly study the available alternatives to overcome
these issues. Considering this, the selected datasets aim to test edge cases where dialect detection is
non-trivial.

The proposed method was tested at development phase using a simple set of 19 test files, the results
of which were used to conclude the coding phase. Remaining CSV files were integrated into the global
dataset without running any tests on them. It was decided to code the new method and integrate it
with CSV Interface,7 a VBA CSV file parser. Thus, the new CSV dialect determination method will
be available in a widespread programming language without over-investing efforts. Additionally Python
code has been written to run the tests for CleverCSV. The code repository is currently available on
GitHub.8 To meet the reproducibility requirements of the experiments conducted, the code repository

7https://github.com/ws-garcia/VBA-CSV-interface
8https://github.com/ws-garcia/CSVsniffer

https://github.com/ws-garcia/VBA-CSV-interface
https://github.com/ws-garcia/CSVsniffer
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Algorithm 2 Table uniformity
Input: CSV table �δ with n records containing ki fields
Output: the table uniformity factors τ0, τ1

1: function TUNIFORMITY(�δ)
2: ϕ ← AVERAGEFIELDS(�δ)

3: for i ← 0 to n − 1 do
4: μ ← μ + (ki − ϕ)2 
 Deviations
5: if i = 0 then
6: c ← c + 1 
 Sentinel 1
7: else
8: if ki−1 �= ki then
9: α ← α + 1 
 Sentinel 2

10: if c > M then
11: M ← c

12: c ← 0
13: else
14: c ← c + 1
15: if i = n − 1 then
16: if c > M then
17: M ← c

18: if n > 1 then
19: σ ←

√
μ

n−1

20: else
21: σ ←

√
μ

n

22: τ0 ← 1
1+2·σ

23: R ← kmax − kmin 
 Range
24: if α > 0 then
25: β ← M

n

26: τ1 ← 2 · R((α)2 + 1)(
1−β

M
)

27: return τ0, τ1

was linked to a Zenodo record.9 This record contains everything necessary for any other researcher to
replicate the results obtained in the present study.

5.1. Datasets

The experiments uses three datasets, which have been added to the Zenodo record cited earlier in this
section

Pollock framework dataset: provided by Gerardo Vitagliano et al., also available in GitHub. For this
dataset, one or two polluted CSV file per pollution case are included for testing, all the 99 surveys
having at least one pollution case as described in the aforementioned study (excluding empty ones
by the fact infinite dialects can be produce no payload files [12]). In addition, the dataset was

9https://zenodo.org/records/11331538

https://zenodo.org/records/11331538
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enriched with data from the OpenRefine10 testing, CleverCSV failure cases and other files used at
development phase serves as testing samples. In total, this dataset is comprised of 148 CSV files
(104 MB of data).

CleverCSV testing dataset: provided by G. van den Burg as URLs into JSON files in the CleverCSV
repository. This dataset is composed of the 256 CSV files that CleverCSV could not accurately
determine when conducting the research that led to the tool development [9]. At the time of this
research, 244 of these files were available online. A filter was applied to exclude from the dataset
all files with a structure that did not visually look like a CSV. After filtering, the dataset ended up
with 179 CSV files (79 MB of data).

CSVW test dataset: provided by the CSV on the Web Working Group.11 This dataset consists of 221
CSV files (33.5 MB).

Overall, the dataset used in the experiments comprises 548 CSV files (216.5 MB).

5.2. Ground truth

The CleverCSV testing dataset were filtered to extract from them a subset of CSVs that we can call
“messy”; the structure of these being unconventional and whose dialect is much more difficult to infer.
This last step is required since the dataset contains files that fall under the “normal forms” classification
implemented in CleverCSV, which refers to CSV files with such a simple structure that they allow the
determination of their dialects using only data inference.12 Each dataset was then manually reviewed
and analyzed to produce a reliable ground truth. For each dataset, a file containing the dialect for each
CSV file was produced. Each dialect was determined objectively, with RFC-4180 specifications predom-
inance.

5.3. Tools

Since the research in [11] was conclusive positioning CleverCSV as a tool with the state-of-the-art
methodology for CSV dialect determination, the latter will be the only used in the comparative experi-
ments in the present research.

CleverCSV v0.8.2: a Python package for handling messy CSV files that aims to provide a direct re-
placement for the built-in CSV module with improved dialect detection. This package uses a set
of techniques to discern between dialects by determining the data types and patterns followed by
the structure of CSV file records. The tool uses some techniques to detect potential dialects in
early stages, discarding the others at analysis beginning, with performance improvement as a main
objective.

6. Experiments

The manually annotated files were used for returned dialects and ground truth comparison in order to
validate the automatic detection. Both tools were evaluated for the accuracy with which they determine

10An open-source tool for working with messy data: https://openrefine.org/.
11https://github.com/w3c/csvw/tree/gh-pages/tests
12https://clevercsv.readthedocs.io/en/latest/source/clevercsv.html#module-clevercsv.normal_form

https://openrefine.org/
https://github.com/w3c/csvw/tree/gh-pages/tests
https://clevercsv.readthedocs.io/en/latest/source/clevercsv.html#module-clevercsv.normal_form
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the dialects of the CSV files for each test dataset. In this context, we define the accuracy of dialect
detection as the ratio of correctly detected dialects to the total number of test files with no error after
execution.

The experiments with CleverCSV were conducted by running scripts from the clevercsv_test.py file.
The results are stored in the “Current research” folder for the results obtained by the proposed method-
ology and in the “cleverCSV” folder for the results obtained by CleverCSV.

In parallel, the tests were designed to measure the execution times of each methodology, even though
it is known that there is no possible comparison between the two solutions. This is because CleverCSV
precision in detecting dialects is closely related to reading all the information contained in CSV files,13

which is a clear disadvantage in a performance test where the competing solution only needs to load a
few records to infer dialects.

6.1. Closer look

Let’s examine a preliminary behavior comparison example for the studied methodologies. The Fig. 3
shows a preview from the modified content of one file used during the testing phase. File was accessed
from the CleverCSV repository on GitHub.14 The star character has been replaced by the vertical bar “|”
to include in the detection a potential dialect with this character. As the author points out, the CSV file
is comma delimited, using double quotes as the quote and escape character, then this file is compliant
with RFC-4180 specifications. When running dialect detection, CleverCSV gets the vertical bar “|” as
the delimiter because this field pattern gets a P = 93.6395 score vs a P = 37.647059 from patterns
with the “,” character as delimiter. This behavior is because the implemented logic heavily weights the
delimiter count over the detected data types, where dialects containing the comma as delimiter obtain
a type score of T = 0.942647 against the type score of T = 0.843074 obtained by dialects with the
vertical bar as delimiter.

By executing the algorithms presented in this research, we get the following for dialects with the
vertical bar as the delimiter λ = 448.2243, τ0 = 0.2056, τ1 = 12, and � = 29.5883. For the comma
we get λ = 897.3315, τ0 = 1, τ1 = 0, and � = 179.4663. Then the comma “,” character is selected as
delimiter.

Fig. 3. Messy CSV file preview.

13https://github.com/alan-turing-institute/CleverCSV/issues/15
14https://github.com/alan-turing-institute/CleverCSV/issues/99

https://github.com/alan-turing-institute/CleverCSV/issues/15
https://github.com/alan-turing-institute/CleverCSV/issues/99
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7. Results

In this section, the results from experiments execution are disclosed. It’s pivotal to underscore that
priority will be given to the accuracy in dialects detection due to the precision diminished experienced
by CleverCSV when the complete file content is not read during dialect determination. Specific details
on this particular will be given upon in the discussion section.

7.1. Dialect detection accuracy

The Table 1 shows the results after running the dialect detection tests over the simple Pollock testing
dataset. It can be seen that the new proposed heuristic gets a perfect score when using a table with a
threshold of fifty records (50R) to be imported from the target CSV file.

When using tables of ten or twenty-five records (10R, 25R) for dialect determination, the proposed
method was not able to determine dialect of the “dd_Wickenburg_nobmp_623.csv” file for the testing
dataset. This file has been selected to show the variation of certainty as the considered table size increases
across computations. As can be seen in the Fig. 4, when the proposed heuristic is applied, it is settled that

Table 1

Accuracy on dialect detection in simple Pollock testing dataset. An erroneous detection
implies that the method has failed to infer either the delimiter or quote character, or both

Method Success rate % Erroneous rate %
Actual (10R) 99.32 0.68
Actual (25R) 99.32 0.68
Actual (50R) 100.00 0.00

CleverCSV 94.59 5.41

Fig. 4. Scoring variation of three different delimiters and their dialects when applying the uniformity heuristic over tables from
the dd_Wickenburg_nobmp_623.csv file.
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Table 2

Accuracy on dialect detection in the failed CleverCSV dataset. An erroneous detection
implies that the method has failed to infer either the delimiter or quote character, or both

Method Success rate % Erroneous rate %
Actual (10R) 88.83 11.17
Actual (25R) 89.39 10.61
Actual (50R) 88.83 11.17

CleverCSV 79.58 20.42

Table 3

Accuracy on dialect detection over really messy CSV files. An erroneous detection im-
plies that the method has failed to infer either the delimiter or quote character, or both

Method Success rate % Erroneous rate %
Actual (10R) 86.51 13.49
Actual (25R) 87.30 12.70
Actual (50R) 87.30 12.70

CleverCSV 76.98 23.02

delimiter is the equal sign “=”, since the dialects containing it divide each record into known data types:
an alphanumeric field/column and a field with structured data delimited by square brackets. Increasing
the table size to twenty-five (25R) induces the heuristic begins to highlight the semicolon “;” as a possible
field delimiter character. Finally, the semicolon is correctly detected as a delimiter when the threshold of
fifty records (50R) in the table is specified. This behavior demonstrates that the proposed methodology
is strongly related to changes in the structure of tables used in dialect inference.

The results obtained after running the tests over dataset from CleverCSV are shown in Table 2. In
this dataset the percentage of incorrectly detected dialects became approximately 10%. This metric in-
dicates the presence of CSV files with unconventional structures. Notwithstanding the foregoing, dialect
detection improves by 9.81% compared to CleverCSV.

CleverCSV running in verbose mode indicates that the tool failed to read 37 of the test files with errors
related to the file encoding. These files, along with ones listed as “normal forms”, were excluded from
the dataset, producing a really messy subset of CSV files. Executing the tests over this selective filtered
subset yields the results shown in Table 3. For this subset of files there is a slight increase in the rate of
incorrect detections, preserving the 10% improvement of the new methodology over CleverCSV. On av-
erage, the heuristic proposed in this research shows an improvement of 7.51% compared to CleverCSV,
outperforming the latter with 10% when handling messy CSV files.

The results after running tests over the CSVW dataset are shown in Table 4. CleverCSV exhibits a
fall in accuracy, being successful in only 56.56% of CSV files, when attempting to infer dialects in this
dataset. By contrast, the current research’s methodology retains a high level of success with dialects
satisfactorily determined in 96.83% of the CSV files. This is a completely unexpected finding that will
be the subject of a closer inspection in the discussion section.

7.2. Performance

Run times were quantified for both CleverCSV and the proposed new methodology. By reviewing the
results shown in Table 5, we confirm that the performance of dialect detection is directly related to the
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Table 4

Accuracy on dialect detection over CSVW dataset. An erroneous detection implies that
the method has failed to infer either the delimiter or quote character, or both

Method Success rate % Erroneous rate %
Actual (10R) 96.38 3.62
Actual (25R) 96.83 3.17
Actual (50R) 96.83 3.17

CleverCSV 56.56 43.44

Table 5

Run time over datasets, in seconds

Method Pollock CleverCSV-Messy W3C-CSVW
Actual (10R) 124.39 70.75 41.41
Actual (25R) 127.19 116.93 50.09
Actual (50R) 132.39 112.84 73.21

CleverCSV 302.07 157.48 132.5

amount of data loaded from the CSV files. CleverCSV is particularly affected by the required loading of
all data from CSV files, as mentioned earlier in this document.

8. Discussion

By looking closely at the results obtained, it can be deduced that there are two main categories that
influence the certainty of determined dialects: the type of heuristics used, the CSV file parser behavior
while producing tables using a certain dialect. In this section both categories are discussed in order to
briefly qualify the experiments results.

8.1. Heuristic

In contrast to CleverCSV, in whose heuristic the detection of data types serves as a factor to scale
down the score obtained by a certain pattern; the table consistency method uses data detection as a base
score to be narrowed using the table consistency and data dispersion parameters. The results therefore
indicate that the factors obtained are not commutative.

Since data type detection is a fundamental part of both methods, it is necessary to include a wide
range of known data typologies. This factor is undoubtedly determining in dialect detection. According
to Mitlohner’s research [8], with a base of 104,826 CSV files, the vast majority of data commonly stored
in this type of files are numeric, tokens (words separated by spaces), entities, URLs, dates, alphanumeric
fields and general text, so these data types must be recognized. Additionally, in the field of programming,
there are other types of data frequently dumped in CSV files, namely: structured data with the Regex
pattern (([a − zA − Z] + [\([a − zA − Z] + [\[{][∧\]] ∗ [\]}])[{][∧\]] ∗ [\]}]), numerical lists, tuples,
arrays among others.

It is worth mentioning that dialect detection is prone to failure when the CSV file is composed of
unknown data types. In these cases, the table uniformity tends to select dialects that produce registers
with a single field. When reviewing the cases where CleverCSV was not able to determine the dialect, it
has been observed that the common denominator has been the high count of a potential delimiter with
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more occurrences than the expected delimiter. In this sense, both solutions have poor performance when
the space character appears in the list of potential delimiters.

The routines used by CleverCSV to obtain potential dialects behaves unexpectedly when the target
CSV file contains a table with a single column, where potential delimiters are not part of the field
content in any of its records. This leads to the fact that, for a file with a structure similar to that exhibited
by the test165.csv file, test sample from the CSVW dataset, it is impossible to determine the dialect
since the comma is not considered in any potential dialect by the referred routines, even though it is the
default field separator in CSV files. In this case, the detected dialect has the space character as a field
separator, ignoring the fact that it is not part of the file content. The ground truth considers this file to be
comma separated due to the full knowledge that the file in question was created by the CSV on the Web
Working Group following the RFC-4180 specifications.15 In the same vein, it was found that this type of
file makes it difficult to determine dialects in CleverCSV even when the comma is present in the content
of the CSV files. This is the case for files with a structure similar to that illustrated in the file test168.csv.

There are files where the threshold of records in the target table is decisive; however, tests have found
that the dialect of some files is determined incorrectly as the value of this parameter is increased and
more records are loaded into the table. This peculiarity allows us to conclude that the first records can
adequately describe the structure of CSV files, avoiding, to a certain extent, the need to read the whole
file. In this particular, it was found that CleverCSV had a running time of approximately 19 minutes
before completing the tests it was subjected to. The results obtained lead to conclude that the default
option when detecting dialects in CSV files should be to read only a sample of the file instead of reading
its entire contents.

As pointed out earlier, the table uniformity method prefers grouped data over those that appear to
be sparse data. In these cases, detection tends to depend exclusively on the data types detected in the
records. This fact is evidenced by plotting the values of the uniformity parameter τ0.

Looking at Fig. 5, it can be seen that, even though the score obtained by the semicolon dialect is very
close to zero, the value of τ0 is maximum. In contrast, this value fluctuates to nearly zero for the dialect
containing semicolon; it remains almost unchanged among the dialects using other fields delimiters
characters. In these cases, the dialect determination is relegated to data type detection and fine-grained
monitoring of changes in table structures through the τ1 parameter. It is noted that the parameters τ0 and
τ1 work together for well-defined tables, selectively overriding each other when processing tables with
poorly defined data structures.

8.2. CSV parser basis

The accuracy of dialect determination is intimately related to the way CSV parsers behave when
confronted with atypical situations. This is because heuristics use these results to infer the configuration
that returns the most suitable data structures.

One of the capabilities required for dialect determination is the recovery of data after the occurrence of
a critical error. This is the case when import CSV files where there is no balanced quotation count. This
situation breaks the RFC-4180 specifications and causes an import error in almost all solutions intended
to work with CSV files. In this sense, the recovery of this error should include a specific message after
which the loading of information should continue until the whole file is processed.

Since the determination of dialects can be done with a few records received from a CSV file, there is
a probability that some of the parameters that compose the dialect cannot be determined properly. Given

15https://w3c.github.io/csvw/primer/#tabular-data

https://w3c.github.io/csvw/primer/#tabular-data
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Fig. 5. Uncertainty caused by analyzing tables with a single field across all their records.

this reality, it is preferable that CSV parsers be able to convert between one escaping mechanism and
another instead of making the escape character mutually exclusive as established in the most relevant
proposals on these topics16. This results in the correct interpretation of escape sequences that use the “\”
for those files in which a quote character has been detected as part of their dialect.

9. Conclusion

A method based on the uniformity of tables for CSV dialect determination has been presented. This
new methodology evaluates the homogeneity and dispersion over tables structures, weighting them by
detecting data types over fields. It is clear that implementing the heuristics developed on CSV parsing
systems will provide high accuracy in dialects determination using only a few records form CSV files,
ensuring efficient and high precision routines.

Performance in dialect determination is closely linked to the amount of information loaded. However,
in the case of CleverCSV, the loss of accuracy is a limitation when trying to circumvent this drawback
with a reduction in the amount of information read. Research by its creator suggests that the loss of
accuracy can be as high as 20%, which is by no means negligible. This is a compelling reason why
dialect detection by table uniformity is a solid alternative to be implemented in different CSV parsers.

9.1. Further work

Despite the improvement obtained in terms of accuracy, the tool can be complemented with new
routines that allow adjustments to be made as the information is ingested by the systems. For this, an

16https://specs.frictionlessdata.io/csv-dialect/

https://specs.frictionlessdata.io/csv-dialect/
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alternative would be to use an LLM at a late stage to take advantage of its advanced contextual un-
derstanding to validate and refine the parsed data, correcting residual errors, fill in missing values and
ensure consistency. In this particular case, a traditional CSV file parser would be implemented to make
the information loading more efficient. Analysts and data scientists would then be able to produce and
implement a hybrid solution that allows them to reduce human intervention to a minimum, as the prob-
lems of dialect determination would be marginal. Also, the resource-intensive LLM workload would be
optimized by delegating the data input to a specialised piece of CSV file uploading software. Further-
more, this type of solution would solve the problem related to the late appearance of dialect elements,
such as escape sequences, that could cause anomalies and data loss on loading, avoiding the need to read
the entire CSV content at dialect determination phase.

Appendix. Algorithms pseudocode

Algorithm 3 Table score
Input: CSV table �δ with n records, threshold �

Output: the score � for given table
1: function TSCORE(�δ, �)
2: λ ← SUMSCORE(�δ)

3: if n > 1 then
4: (τ0, τ1) ← TUNIFORMITY(�δ)

5: return λ · ( τ0
�

+ 1
(τ1+n)

)

6: else
7: η ←

√
λ

10

8: return λ · η+ 1
k

k−�η·k	+1

Algorithm 4 Sum of records score
Input: CSV table �δ with n records containing ki fields
Output: the sum of records score for the given table

1: function SUMSCORE(�δ)
2: for i ← 0 to n − 1 do
3: for j ← 0 to ki − 1 do
4: if KNOWNDATATYPE(�δ[i, j ]) then
5: � ← � + 100
6: else
7: � ← � + 0.1
8: χ ← χ + ( �2

100·k2
1
)

9: return χ
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