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Abstract. Many approaches to computer-aided electrocardiogram (ECG) arrhythmia detection have been performed, several of
which combine persistent homology and machine learning. We present a novel ECG signal processing pipeline and method of
constructing predictor variables for use in statistical models. Specifically, we introduce an isoelectric baseline to yield non-trivial
topological features corresponding to the P, Q, S, and T-waves (if they exist) and utilize the N -most persistent 1-dimensional ho-
mological features and their corresponding area-minimal cycle representatives to construct predictor variables derived from the
persistent homology of the ECG signal for some choice of N . The binary classification of (1) Atrial Fibrillation vs. Non-Atrial
Fibrillation, (2) Arrhythmia vs. Normal Sinus Rhythm, and (3) Arrhythmias with Morphological Changes vs. Sinus Rhythm
with Bradycardia and Tachycardia Treated as Non-Arrhythmia was performed using Logistic Regression, Linear Discriminant
Analysis, Quadratic Discriminant Analysis, Naive Bayes, Random Forest, Gradient Boosted Decision Tree, K-Nearest Neigh-
bors, and Support Vector Machine with a linear, radial, and polynomial kernel Models with stratified 5-fold cross validation. The
Gradient Boosted Decision Tree Model attained the best results with a mean F1-score and mean Accuracy of (0.967, 0.946),
(0.839, 0.946), and (0.943, 0.921) across the five folds for binary classifications of (1), (2), and (3), respectively.

Keywords: Arrhythmia classification, electrocardiogram, persistent homology, topological data analysis, signal analysis

1. Introduction

Cardiovascular diseases are among the leading causes of death per the World Health Organization and
the Centers for Disease Control and Prevention [8,64]. Arrhythmias are heart rhythms other than normal
sinus rhythm with a heart rate between 60 beats/minute and 100 beats/minute; that is, arrhythmias are
heart rhythms that are either too fast, too slow, abnormal, and/or irregular. Most arrhythmias must be
treated since they can either lead to 1) more chaotic electrical activity of cardiac muscle resulting in
loss of cardiac output and/or 2) the formation of thromboemboli (e.g. as in atrial fibrillation) possibly
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resulting in stroke [40]. The overall prevalence of arrhythmias among adults is estimated to be around
2% with atrial fibrillation being among the most common arrhythmias [13,30]. The global prevalence of
atrial fibrillation has been estimated to be about 0.51% [35].

The contraction and relaxation of cardiac muscle cells is driven by ion movement across cell mem-
branes and must be coordinated in order for the heart to pump blood effectively. This ion movement
is governed by an electrochemical potential comprised of 1) ion concentration gradients and 2) electric
potentials. The depolarization and subsequent repolarization of cardiac muscle cells causes changes in
electric potential on the body surface which can be measured non-invasively using an electrocardiogram
(ECG). ECG analysis is important for accurate diagnosis, treatment, and prevention of cardiovascular
diseases.

Topological data analysis (TDA) refers to a collection of methods concerned with quantifying ‘shapes’
of data which are invariant under continuous deformations such as stretching and twisting. The main tool
of TDA is persistent homology which quantifies the homology of structures within the data which persist
over a range of scales. Persistent homology has been applied to many tasks across various fields such
as electroencephalogram analysis [3], genomics [4,7,14,37,44,50,57,63], classifying skin lesions based
on images [10], and tumor segmentation on histology slides [49]. Cycle representatives – which will be
described in Section 1.1 – of topological features have shown utility in various fields outside of ECG
analysis such as analyzing structures on the atomic scale [47] and in structural engineering [24].

Several approaches to computer-aided ECG rhythm classification have been performed, including
neural networks [5,15,17,21,25,39,46,48,51,56,61,62,66–68], wavelet transformation and independent
component analysis [31,65], using higher-order statistics of wavelet-packet decomposition coefficients
as features [32], and support vector machines using projected and dynamic ECG features [9]. An
overview of TDA applied to cardiovascular signals has recently been performed [23]. In the field of
computer-aided ECG analysis, TDA has been used to construct metrics of heart rate variability [11,20].
Additionally, the Mapper algorithm has been applied to predict the presence and severity of heart disease
[2]. Computer-aided ECG rhythm classification methods which utilize TDA include neural networks
with topological-based features [16,53], fractal dimension in tandem with neural networks [55], mapping
ECG signals to a higher dimensional space prior to computing topological features [26,27,34,36,41],
and utilizing a sliding window and Fast Fourier Transform to process the ECG signal prior to computing
topological features [43]. These approaches construct topological predictor variables utilizing informa-
tion directly derived from the birth and death radii statistics along with extra information such as heart
rate, fractal dimension statistics, and persistent entropy.

To the author’s knowledge, constructing predictor variables for use in machine learning models to
classify ECG rhythms based off information derived from cycle representatives has not yet been per-
formed. Additionally, to our knowledge, there has been no computer-aided ECG analysis which utilizes
only the N-most persistent topological features for use in rhythm classification, nor has there been an ap-
proach which introduces an isoelectric baseline into ECG signals to yield non-trivial topological features
corresponding to P, Q, S, and T-waves (if they are present to begin with). Introducing an isoelectric base-
line prior to computing persistent homology and utilizing the N-most persistent topological features and
properties of their area-minimal cycle representatives for use in constructing predictor variables makes
the approach taken here distinct from other combinations of TDA and machine learning described in the
literature.

In Section 1.1, we give a brief overview of the aspects of persistent homology utilized in this study.
Appendix A formalizes the intuition underlying persistent homology described in Section 1.1. The Meth-
ods portion is split into three parts: Section 2.1 describes the novel ECG processing pipeline, Section 2.2
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describes the construction of predictor variables primarily based off the topological features of the pro-
cessed ECG signal, and Section 2.3 describes the specific classification tasks along with the statistical
models and evaluation metrics used. The Results/Discussion section presents the evaluation metrics and
ROC curves for each statistical model used. The Conclusion section contains a brief comparison be-
tween the method proposed here and other methods which use TDA and machine learning for rhythm
classification in addition to describing some future directions.

1.1. Intuition behind persistent homology

The background on persistent homology presented both here and in Appendix A is restricted to two-
dimensional data and one-dimensional homology features. The methods discussed generalize to higher
dimensions, but we restrict our focus to the relevant dimensions used in the ECG analysis presented
here. A toy example dataset X and its persistent homology are used to build some intuition for persistent
homology. The informal treatment of persistent homology described in this section is made rigorous in
Appendix A.

Consider the set of points in the plane R2 shown in Fig. 1. Consider drawing a circle around each point,
each with the same radius r . We will refer to the union of these circles as the Geometric Čech Complex of
radius r , denoted C̆r(X), not to be confused with the Čech complex of radius r , which commonly refers
to an abstract simplicial complex. Observe that for r < 0.57, none of the circles comprising C̆r(X)

overlap around a “void” of non-overlapping space. Furthermore, observe that for r ∈ [0.57, 0.81), the
circles comprising the smaller loop of points nearby the point (1, 1) overlap such that there is a “void”
of non-overlapping space enclosed by their region of overlap. Hence for r ∈ [0.57, 0.81), there exists
a non-contractible loop within C̆r(X). “Non-contractible” here means that the loop drawn around the

Fig. 1. Example dataset with persistence diagram. A: example dataset; B–E: radius 0.57, 0.81, 1.55, and 3.01 Geometric
Čech Complex depicted in black, respectively; F: persistence diagram of equivalence classes of non-contractible loops.
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void of non-overlapping space cannot be continuously deformed down to a single point without leaving
C̆r(X); that is, the loop gets “stuck” on the void encircled by C̆r(X). This non-contractible loop can be
continuously deformed to construct another non-contractible loop “stuck” around the same void. These
two non-contractible loops are homotopic to one another. For example, the green and red loops in Fig. 1
are homotopic. The set of all possible non-contractible loops “stuck” around some void encircled by
C̆r(X) forms an equivalence class of non-contractible loops, i.e. a set of non-contractible loops where
any two non-contractible loops in the set are homotopic. In practice, rather than homotopy – of which
is relatively straightforward to garner intuition in the context of TDA – we use a weaker but more
technically-involved equivalence relation on loops called homology to utilize efficient algorithms such
as Ripser [6] and GUDHI [38] in computing topological features. For a rigorous treatment of homotopy
and homology, see [22].

For a given two-dimensional dataset X such that there exists a non-contractible loop � within C̆r(X),
we define the birth radius of the equivalence class of non-contractible loops containing � as the smallest
real number b such that some loop in C̆r(X) which is equivalent to � and which is contained in the
subset C̆b(X) of C̆r (X) exists. Similarly, we define the death radius of the equivalence class of non-
contractible loops containing � as the smallest real number d such that r � d and such that � becomes
contractible when regarded as a loop in C̆d(X). That is, the birth radius of an equivalence class of non-
contractible loops is the smallest radius at which the equivalence class of that non-contractible loop
forms, and the death radius is the smallest radius at which it vanishes (i.e., becomes contractible). For
r ∈ [b, d], the equivalence class of non-contractible loops ‘persists,’ and this motivates the definition
of the persistence of an equivalence class of non-contractible loops as the difference between the death
radius and the birth radius. The two non-trivial equivalence classes of non-contractible loops in Fig. 1
have coordinates (0.57, 0.81) and (1.55, 3.01) in the persistence diagram and correspond to the subset
of data clustered near (1, 1) and the subset of data clustered near (8, 8), respectively. Note that the larger
loop-like structure of data in the upper-right corner of each subplot has a larger persistence than the
smaller loop-like structure of data in the lower-left corner of each subplot (i.e. 3.01 − 1.55 = 1.46 >

0.81 − 0.57 = 0.24).
The cycle representatives of a given equivalence class of non-contractible loops {�α}α∈I (note that I

is an uncountable indexing set) with birth radius b and death radius d are the subsets of the data which
give rise to non-contractible loops in C̆r(X) with birth radius b and death radius d. For example, the
cycle representatives of the equivalence class of non-contractible loops with birth radius 0.5 and death
radius

√
2

2 ≈ 0.71 in Fig. 2 are given by {{a, b, c, d}, {a, b, c, d, e}}. The Python package Homcloud can
be used to identify cycle representatives which are optimal in some sense such as having the minimum
number of points or spanning the minimum area among all cycle representatives [45]. Associating a
single optimal cycle representative to each equivalence class of non-contractible loops is important 1)
for reproducibility and 2) to select cycle representatives which more closely resemble the P, Q, S, and
T-waves for the relevant equivalence classes of non-contractible loops.

2. Methods

The free and publicly available Shaoxing Hospital Zhejiang University School of Medicine electro-
cardiogram (ECG) database was used in this study [69]. This database consists of 10646 12-lead ECG
signals, each spanning 10 seconds with a sampling frequency (i.e. the number of electric potential dif-
ferences recorded per second) of 500 Hz, of which 10605 have non-empty Lead 2 signals. This study
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Fig. 2. Relationship between Geometric Čech Complex of radius r and geometric realization of radius r Vietoris Rips
Complex. A–C: Geometric Čech Complex of radius 0.2, 0.5, 0.71 depicted in black, respectively; D–F: geometric realization
of radius 0.2, 0.5, 0.71 Vietoris Rips Complex, respectively.

strictly utilizes Lead 2, i.e. the ‘rhythm lead’, so the term ‘ECG signal’ is henceforth used to refer to
Lead 2 ECG signals. Each ECG signal is labeled with one of 11 rhythms by professional experts. The
distribution of these 11 rhythms across the 10605 ECG signals is shown in Table 1.

ECG signals are typically characterized as 1-dimensional lists of real numbers of length F · tmax

where F is the sampling frequency of the ECG machine (i.e. the number of electric potential differ-
ences recorded per second), tmax is the total amount of time (in seconds) over which the signal was
gathered, and each real number in the list represents the signal amplitude at the given time index. In
order to compute 1-dimensional topological features of an ECG signal, the ECG signal must be con-
sidered as a subset of R2. Therefore, rather than treat a given ECG signal S as a one-dimensional list
with a sampling frequency F over a length of time tmax, we use the equivalent formulation of S given by
S = {(t, f (t))|t ∈ D} ⊂ R

2 where D = { i
F
|i ∈ {1, . . . , F · tmax}} represents the set of time indices and

f : D → R defines the signal amplitude at each time index.
In the remainder of this section, we describe 1) ECG signal processing prior to extraction of topo-

logical features, 2) the construction of predictor variables derived from persistent homology, and 3) the
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Table 1

Rhythm distribution

Rhythm Count (total = 10605) Percentage of all signals
Atrial Flutter 445 4.20%
Atrial Fibrillation 1780 16.78%
Atrial Tachycardia 121 1.14%
Atrioventricular Node Reentrant Tachycardia 16 0.15%
Atrioventricular Reentrant Tachycardia 8 0.08%
Sinoatrial Block 399 3.76%
Sinus Atrium to Atrial Wandering 7 0.07%
Sinus Bradycardia 3888 36.67%
Sinus Rhythm 1826 17.22%
Sinus Rachycardia 1568 14.79%
Supraventricular Tachycardia 547 5.16%

Fig. 3. Flowchart of ECG signal processing and arrhythmia classification.

statistical modeling approaches and evaluation metrics used. A flowchart providing an overview of our
approach to arrhythmia detection is shown in Fig. 3.
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2.1. Electrocardiogram signal processing

Given a raw ECG signal S = {(t, f (t))|t ∈ D} ⊂ R
2 with time domain D = { h

F
|h ∈ {1, . . . , F ∗tmax}}

and signal amplitude given by f : D → R, the signal is first normalized by applying the transformation
g : f (D) → [0, 1] given by:

g
(
f (t)

) = f (t) − min{f (D)}
max{f (D)} − min{f (D)} . (1)

The resulting signal Snormalized = {(t, g(f (t)))|t ∈ D} ⊂ R
2 has maximum amplitude

max{g(f (D))} = 1 and minimum amplitude min{g(f (D))} = 0. Since equivalence classes of non-
contractible loops are not scale-invariant, this normalization is necessary for the magnitude of persistent
homology-derived statistics to be comparable across ECG signals.

Next, an isoelectric baseline is included in Snormalized in order to form ‘loop-like’ structures with non-
trivial topological properties in the ECG signal corresponding to the P, Q, S, and T-waves (if they are
present). The inclusion of this baseline emphasizes the shape of the P, Q, S, and T-waves (if they exist to
begin with), as illustrated in Fig. 4. This is done by inserting the baseline value computed as the median
of g(f (D)) at the beginning of the signal and between every pair of consecutive time indices, doubling
the number of points of the signal while still spanning the same amount of time. More explicitly, after
the inclusion of the isoelectric baseline to Snormalized, we obtain the signal:

Sprocessed = {(
t, h

(
g
(
f (t)

)))|t ∈ E
}
,

E =
{

i

2F

∣∣∣i ∈ {1, . . . , 2 · F · tmax}
}
,

h : [0, 1] → [0, 1] : g

(
f

(
i

F

))
�→

{
median{g(f (D))} if i is odd

g(f ( i
F
)) if i is even.

(2)

Note the appearance of highly-persistent equivalence classes of non-contractible loops around birth ra-
dius 0.005 once the isoelectric baseline is included in the normal sinus rhythm ECG signal in Fig. 5.
Also observe in Fig. 5 that for a rhythm such as atrial fibrillation with the property of absent/attenu-
ated P-waves, the isoelectric baseline does not produce additional highly-persistent equivalence classes
of non-contractible loops to the same extent that it does for rhythms with normal wave-shape such as
normal sinus rhythm.

The onset of each QRS-complex in the processed ECG signal Sprocessed is identified using Zong,
Moody, and Jiangs’ approach of “passing Sprocessed through a low-pass filter, applying a transformation
with a non-linear scaling factor to enhance the QRS-complexes and suppress unwanted noise, and apply-
ing adaptive thresholds to the signal to determine the onset of each QRS-complex” [70]. An illustration
of the preprocessing transformations applied to a raw signal is shown in Fig. 5.

2.2. Construction of predictor variables

Each equivalence class of non-contractible loops with birth radius b and death radius d corre-
sponds to a set of subsets of Sprocessed given by Yprocessed = {S� ⊂ Sprocessed|(birth radius of S� =
b) and (death radius of S� = d)}. That is, there may be multiple subsets of data which generate a given
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Fig. 4. Illustration depicting the effect of the isoelectric baseline on the persistence diagrams of ECG signals. PD: persistence
diagram. A–B) normal sinus rhythm ECG signal without baseline and corresponding PD. C–D) same as A–B but with the
isoelectric baseline included. Note the cluster of topological features that appeared and the P, S, and T-waves their area-minimal
cycle representatives correspond to. E–F) atrial fibrillation without baseline included and corresponding PD. G–H) same as E–F
but with the isoelectric baseline included. H1 features: equivalence classes of non-contractible loops.

equivalence class of non-contractible loops. Equivalently, for a single point in a persistence diagram,
there may be multiple subsets of data such that the Geometric Čech complex births and vanishes the
given equivalence class of non-contractible loops with the same birth and death radii. The Python pack-
age Homcloud is used to compute a single unique area-minimal cycle representative S� from Yprocessed for
each equivalence class of non-contractible loops in the signal Sprocessed [45]. Given an equivalence class
of non-contractible loops with centroid coordinates of the area-minimal cycle representative (T , A), the
effective centroid coordinates (x, y) are computed as

• x = tR − T where tR is the time-coordinate of the onset of the subsequent QRS-complex.
• y = A−baseline

1−baseline where baseline represents the amplitude value of the isoelectric baseline
median{g(f (D))}.

The computation of the effective centroid coordinates of an area-minimal cycle representative is depicted
in Fig. 6. The equivalence classes of non-contractible loops with centroid time coordinate T larger than
the largest of all onsets of the QRS-complexes are not considered to ensure that the effective centroid
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Fig. 5. Depiction of preprocessing transformations applied to a normal sinus rhythm ECG signal. A) raw ECG signal with
normal sinus rhythm. B) normalized ECG signal with maximum amplitude 1 and minimum amplitude 0. C) normalized ECG
signal with isoelectric baseline included and R-waves identified.

time coordinates can always be computed. This effectively trims Sprocessed to end with a point representing
the onset of a QRS-complex. Furthermore, all equivalence classes of non-contractible loops with area-
minimal cycle representative centroid amplitude coordinate A larger than 1−baseline

2 where baseline =
median{g(f (D))} are discarded to obtain a larger proportion of highly-persistent equivalence classes of
non-contractible loops corresponding to clinically-relevant subsets of ECG signals such as P, Q, S, and
T-waves. For example, the computation of the effective centroid time coordinate for area-minimal cycle
representatives that represent P-waves is a proxy of the clinically-relevant PR-interval. The computation
of the effective centroid amplitude coordinate normalizes the amplitude coordinates of centroids of area-
minimal cycle representatives across signals with differing isoelectric baselines.

The persistent homology of the processed signal Sprocessed is then computed, and the N most persistent
equivalence classes of non-contractible loops are used to construct predictor variables for use in rhythm
classification for N ∈ {5, 6, . . . , 29, 30}. Specifically, for each of the N-th most persistent equivalence
classes of non-contractible loops, the persistence, birth radius, effective time-coordinate of the centroid
of the area-minimal cycle representative relative to the subsequent QRS-complex, effective amplitude-
coordinate of the centroid of the area-minimal cycle representative relative to the isoelectric baseline, and
Shannon entropy of the vector (a,b,c,d,e)

sum((a,b,c,d,e))
where a = persistence, b = birth radius, c = death radius,

d = centroid time-coordinate, and e = centroid amplitude-coordinate are used as predictor variables.
Additional predictor variables include the mean and standard deviation of the persistences, birth radii,
area-minimal cycle representative centroid time coordinates, and area-minimal cycle representative cen-
troid amplitude coordinates of the N-most persistent equivalence classes of non-contractible loops along
with the mean and standard deviation of the RR-intervals. Lastly, the total number of R-waves, the total
number of equivalence classes of non-contractible loops, and the Shannon entropy of the normalized
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Fig. 6. Computation of the effective centroid coordinates of an area-minimal cycle representatives. A) processed ECG signal
with normal sinus rhythm and R-waves, an area-minimal cycle representative corresponding to a P-wave, and an area-minimal
cycle representative corresponding to a T-wave identified. B) zoomed-in region depicting the computations of the effective
time-coordinates of the two area-minimal cycle representatives. C) zoomed-in region depicting the computation of the effective
amplitude-coordinate of the area-minimal cycle representative corresponding to the T-wave.

distribution of all persistences are also used as predictor variables. Note that death radii statistics are not
included as predictor variables since their inclusion would introduce undesired collinearity due to the
persistence of a given equivalence class of non-contractible loops being the difference between the death
radius and the birth radius.

2.3. Statistical modeling and evaluation

Three different binary classifications are carried out:

• Atrial Fibrillation vs. Non-Atrial Fibrillation
• Arrhythmia vs. Normal Sinus Rhythm
• Arrhythmias with Morphological Changes vs. Sinus Rhythm with Bradycardia and Tachycardia

Treated as Non-Arrhythmia

For each of the three binary classifications, Logistic Regression, Linear Discriminant Analysis,
Quadratic Discriminant Analysis, Naive Bayes, Random Forest, Gradient Boosted Decision Tree, K-
Nearest Neighbors, and Support Vector Machine with Linear, Radial, and Polynomial Kernel Models
are constructed. For background on the theory and/or implementation of these statistical models, see
[28]. Stratified 5-fold cross-validation is performed, and in each of the 5 folds, the true positives (TP),
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Fig. 7. Confusion matrix.

false positives (FP), false negatives (FN), and true negatives (TN) are recorded in a confusion matrix like
that shown in Fig. 7 for each statistical model used. The mean and standard deviation of the F1-Scores,
Accuracies, Sensitivities, Specificities, Positive Predictive Values (PPVs), and Negative Predictive Val-
ues (NPVs) across the five folds are recorded. Definitions of these evaluation metrics can be found in
[52].

The optimal hyperparameters for the Random Forest, Gradient Boosted Decision Tree, K-Nearest
Neighbors, and Support Vector Machines with Radial and Polynomial Kernel Models were chosen as
the hyperparameters which yielded the largest mean F1-Score across all folds in 5-fold stratified cross
validation. The grid search spaces of hyperparameters for the relevant models are:

• Random Forest:

∗ number of trees ∈ {500, 1250, 2000, 3000}
∗ number of variables randomly sampled ∈ {int(0.25 · T ), int(0.5 · T ), int(0.75 · T ), T } where T

is the total number of predictor variables.

• Gradient Boosted Decision Tree:

∗ number of trees ∈ {500, 1250, 2000, 3000}
∗ interaction depth ∈ {5, 10, 15, 20}

• K-Nearest Neighbors:

∗ K ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
• Support Vector Machine with Radial Kernel:

∗ cost = 1.
∗ γ ∈ {0.5, 1, 2, 3, 4, 5}.

• Support Vector Machine with Polynomial Kernel:

∗ cost = 1.
∗ degree ∈ {2, 3, 4, 5}.

For each of the three binary classifications, the relative influence of the predictor variables in the sta-
tistical model yielding the largest mean F1-score across the five folds is quantified using the methods
described in Section 8.1 of “Greedy Function Approximation: A Gradient Boosting Machine” by Fried-
man [18].

3. Results/discussion

The mean and standard deviation across the five folds for the binary classifications of (i) Atrial Fib-
rillation vs. Non-Atrial Fibrillation, (ii) Arrhythmia vs. Normal Sinus Rhythm, and (iii) Arrhythmia



40 H. Dlugas / ECG arrhythmia detection with TDA-derived predictors

Table 2

Binary classification outcomes: atrial fibrillation vs. Non-atrial fibrillation

Model F1-score Accuracy Sensitivity Specificity PPV NPV Optimal
N

Logistic
regression

0.938 ± 0.002 0.896 ± 0.004 0.947 ± 0.005 0.646 ± 0.018 0.930 ± 0.003 0.712 ± 0.018 24

Linear
discriminant
analysis

0.934 ± 0.002 0.890 ± 0.004 0.941 ± 0.004 0.637 ± 0.019 0.928 ± 0.003 0.686 ± 0.015 30

Quadratic
discriminant
analysis

0.917 ± 0.004 0.864 ± 0.008 0.908 ± 0.008 0.642 ± 0.063 0.927 ± 0.012 0.585 ± 0.019 25

Naive Bayes 0.890 ± 0.006 0.818 ± 0.009 0.880 ± 0.011 0.511 ± 0.034 0.899 ± 0.006 0.463 ± 0.024 5
Random forest 0.955 ± 0.004 0.925 ± 0.007 0.964 ± 0.004 0.734 ± 0.043 0.947 ± 0.008 0.803 ± 0.016 4
Gradient
boosted model

0.967 ± 0.003 0.946 ± 0.006 0.959 ± 0.004 0.880 ± 0.019 0.975 ± 0.004 0.813 ± 0.018 20

K-Nearest
Neighbors

0.942 ± 0.004 0.894 ± 0.007 0.925 ± 0.006 0.712 ± 0.021 0.952 ± 0.004 0.660 ± 0.035 23

Support Vector
Machine:
linear kernel

0.941 ± 0.003 0.898 ± 0.005 0.935 ± 0.004 0.706 ± 0.020 0.942 ± 0.006 0.705 ± 0.022 29

Support Vector
Machine:
radial kernel

0.927 ± 0.002 0.868 ± 0.003 0.869 ± 0.003 0.856 ± 0.025 0.991 ± 0.002 0.272 ± 0.016 5

Support Vector
Machine:
polynomial
kernel

0.937 ± 0.004 0.890 ± 0.007 0.908 ± 0.005 0.749 ± 0.022 0.964 ± 0.002 0.539 ± 0.031 17

with Morphological Changes vs. Sinus Rhythm with Bradycardia and Tachycardia Treated as Non-
Arrhythmia with the hyperparameters yielding the largest F1-Score are shown in Tables 2, 3, and 4,
respectively. The results corresponding to the top-performing model with respect to each evaluation
metric are displayed in bold. Observe that the Gradient Boosted Decision Tree Model outperforms all
other models with respect to F1-Score and Accuracy across each of the three binary classification tasks,
closely followed by the Random Forest Model. The maximum mean F1-Score attained by the Gradient
Boosted Decision Tree Model across the five folds was 0.967, 0.839, and 0.943 for binary classification
of Atrial Fibrillation vs. Non-Atrial Fibrillation, Arrhythmia vs. Normal Sinus Rhythm, and Arrhythmia
with Morphological Changes vs. Sinus Rhythm with Bradycardia and Tachycardia Treated as Non-
Arrhythmia, respectively. The corresponding mean Accuracy attained by the Gradient Boosted Decision
Tree Model across the five folds was 0.946, 0.946, and 0.921 for binary classification of Atrial Fib-
rillation vs. Non-Atrial Fibrillation, Arrhythmia vs. Normal Sinus Rhythm, and Arrhythmia with Mor-
phological Changes vs. Sinus Rhythm with Bradycardia and Tachycardia Treated as Non-Arrhythmia,
respectively. The Gradient Boosted Decision Tree and Random Forest models outperformed all other
models with respect to the area under the Receiver-Operator Characteristic Curves (AUC) for all three
classification tasks as seen in Fig. 8, Fig. 9, and Fig. 10. This may be due to heterogeneity of the data;
regardless, in computer-aided ECG analysis, interpretability of statistical models may be less impor-
tant than the performance of said models, rendering more support in favor of ensemble and tree-based
modeling approaches given their favorable performance.
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Table 3

Binary classification outcomes: arrhythmia vs. Normal sinus rhythm

Model F1-score Accuracy Sensitivity Specificity PPV NPV Optimal
N

Logistic
regression

0.634 ± 0.019 0.876 ± 0.004 0.622 ± 0.029 0.929 ± 0.002 0.647 ± 0.009 0.922 ± 0.005 10

Linear
discriminant
analysis

0.629 ± 0.023 0.867 ± 0.008 0.652 ± 0.028 0.912 ± 0.006 0.607 ± 0.022 0.927 ± 0.006 20

Quadratic
discriminant
analysis

0.481 ± 0.012 0.709 ± 0.010 0.783 ± 0.016 0.694 ± 0.011 0.347 ± 0.010 0.939 ± 0.004 24

Naive Bayes 0.460 ± 0.010 0.673 ± 0.016 0.809 ± 0.025 0.644 ± 0.022 0.322 ± 0.010 0.942 ± 0.006 24
Random forest 0.829 ± 0.010 0.942 ± 0.003 0.812 ± 0.017 0.969 ± 0.003 0.847 ± 0.014 0.961 ± 0.003 8
Gradient
boosted model

0.839 ± 0.011 0.946 ± 0.003 0.815 ± 0.019 0.974 ± 0.002 0.866 ± 0.009 0.962 ± 0.004 12

K-Nearest
Neighbors

0.722 ± 0.004 0.899 ± 0.007 0.747 ± 0.006 0.924 ± 0.021 0.664 ± 0.004 0.964 ± 0.035 5

Support Vector
Machine:
linear kernel

0.638 ± 0.003 0.889 ± 0.005 0.743 ± 0.004 0.910 ± 0.020 0.563 ± 0.006 0.958 ± 0.022 20

Support Vector
Machine:
radial kernel

0.720 ± 0.002 0.912 ± 0.003 0.869 ± 0.003 0.918 ± 0.025 0.612 ± 0.002 0.982 ± 0.016 5

Support Vector
Machine:
polynomial
kernel

0.631 ± 0.004 0.891 ± 0.007 0.797 ± 0.005 0.902 ± 0.022 0.516 ± 0.002 0.975 ± 0.031 21

Recall that TDA quantifies the ‘shape’ of data. Thus, the motivation behind presenting the classi-
fications of both (i) Arrhythmia vs. Normal Sinus Rhythm and (ii) Arrhythmias with Morphological
Changes vs. Sinus Rhythm with Bradycardia and Tachycardia Treated as Non-Arrhythmia is to illustrate
how the results are improved when TDA is used to classify two groups that primarily have different
shapes, not frequencies. With this in mind, it may not be surprising that the presented TDA approach
performs much better when classifying arrhythmias when the only two arrhythmias characterized solely
by abnormal periodicity (assuming the individual has at most one rhythm as is the case in the data used
in this study) – i.e. tachycardia and bradycardia – are not considered to be part of the arrhythmia group.

The relative influence [18] of each predictor variable in the top-performing model with respect to
mean F1-score (i.e. Gradient Boosted Decision Tree model) across the five folds in the classifications
of Atrial Fibrillation vs. Non-Atrial Fibrillation, Arrhythmia vs. Normal Sinus Rhythm, and Arrhythmia
with Morphological Changes vs. Sinus Rhythm with Bradycardia and Tachycardia Treated as Non-
Arrhythmia are shown in Fig. 11, Fig. 12, Fig. 13 in Appendix B. Atrial fibrillation is characterized
by (1) absent/attenuated P-waves and (2) irregularly irregular frequency, so it is not surprising that the
standard deviation of the RR-interval holds most influence for the classification of Atrial Fibrillation
vs. Non-Atrial Fibrillation. Note that 9 of the 15 most influential predictor variables in the classifica-
tion of Atrial Fibrillation vs. Non-Atrial Fibrillation stem from area-minimal cycle representatives and
that 44

115 = 38.3% of all predictor variables stem from area-minimal cycle representatives. In the case
of Arrhythmia vs. Normal Sinus Rhythm, 8 of the 15 most influential predictor variables stem from
area-minimal cycle representatives and 28

76 = 36.8% of all predictor variables stem from area-minimal
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Table 4

Binary classification outcomes: arrhythmia with morphological changes vs. Sinus rhythm with bradycardia and tachycardia
treated as non-arrhythmia

Model F1-score Accuracy Sensitivity Specificity PPV NPV Optimal
N

Logistic
regression

0.904 ± 0.002 0.865 ± 0.004 0.932 ± 0.003 0.717 ± 0.011 0.878 ± 0.004 0.828 ± 0.007 30

Linear
discriminant
analysis

0.905 ± 0.002 0.866 ± 0.003 0.927 ± 0.007 0.734 ± 0.012 0.884 ± 0.004 0.821 ± 0.012 30

Quadratic
discriminant
analysis

0.857 ± 0.004 0.797 ± 0.003 0.884 ± 0.014 0.607 ± 0.025 0.831 ± 0.007 0.706 ± 0.018 25

Naive Bayes 0.859 ± 0.004 0.794 ± 0.006 0.912 ± 0.008 0.536 ± 0.013 0.812 ± 0.005 0.735 ± 0.018 27
Random forest 0.933 ± 0.005 0.906 ± 0.007 0.952 ± 0.005 0.805 ± 0.012 0.915 ± 0.005 0.885 ± 0.012 10
Gradient
boosted model

0.943 ± 0.004 0.921 ± 0.006 0.955 ± 0.004 0.847 ± 0.013 0.932 ± 0.005 0.896 ± 0.009 10

K-Nearest
Neighbors

0.905 ± 0.004 0.861 ± 0.007 0.883 ± 0.006 0.807 ± 0.021 0.923 ± 0.004 0.741 ± 0.035 19

Support Vector
Machine:
linear kernel

0.905 ± 0.003 0.866 ± 0.005 0.886 ± 0.004 0.815 ± 0.020 0.923 ± 0.006 0.745 ± 0.022 29

Support Vector
Machine:
radial kernel

0.883 ± 0.002 0.828 ± 0.003 0.813 ± 0.003 0.896 ± 0.025 0.968 ± 0.002 0.507 ± 0.016 5

Support Vector
Machine:
polynomial
kernel

0.897 ± 0.004 0.845 ± 0.007 0.848 ± 0.005 0.833 ± 0.022 0.949 ± 0.002 0.637 ± 0.031 16

Fig. 8. Receiver operator characteristic curve for classification of atrial fibrillation vs. Non-atrial fibrillation.

cycle representatives. Lastly, for the classification of Arrhythmia with Morphological Changes vs. Sinus
Rhythm with Bradycardia and Tachycardia Treated as Non-Arrhythmia, 11 of the 15 most influential
predictor variables are derived from area-minimal cycle representatives while 24

66 = 36.4% of all pre-
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Fig. 9. Receiver operator characteristic curve for classification of arrhythmia vs. Sinus rhythm.

Fig. 10. Receiver operator characteristic curve for classification of arrhythmia with morphological changes vs. Sinus rhythm
with bradycardia and tachycardia treated as non-arrhythmia.

dictor variables are derived from area-minimal cycle representatives. These results demonstrate that the
predictor variables constructed from properties of the area-minimal cycle representatives are highly in-
fluential in the top-performing model regardless of the arrhythmia classification task.

The methods used in other studies that approach computer-aided ECG rhythm classification through
a combination of TDA and machine learning are summarized in Table 5. Due to the wide range of
classification tasks performed and evaluation metrics used in these studies, the classification tasks and
evaluation metrics are not shown in Table 5 to avoid (i) presenting misleading comparisons and (ii)
subjectivity in choosing the results from other studies to present. These other studies use a variety of
databases [19,42] and sometimes a sample size on the scale of tens or hundreds, in addition to having
longer – and consequently more informative – signals compared to the database used in this study [69].
Another factor to consider when comparing analyses of TDA and machine learning in ECG rhythm
classification is the fact that different ECG databases often have signals labeled with different rhythms
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Table 5

Comparison of studies applying TDA and machine learning to arrhythmia classification

Title Database(s) Preprocessing Features Model(s)
Topological Data
Analysis for
Arrhythmia Detection
Through Modular
Neural Networks [16]

PhysioNet MIT-BIH
Normal Sinus
Rhythm, Arrhythmia,
Supraventricular
Arrhythmia,
Malignant Ventricular
Arrhythmia, and
Long Term Database

Resample as different
frequency, remove
baseline, finite impulse
response filter, Kalman
filter, rescale, translate

Coefficients from Discrete
Fourier Transform of sliding
windows; linear relationships
between P, Q, R, S, &
T-waves; extrema, mean,
standard deviation, kurtosis,
skewness, entropy,
crossing-overs, PCA
reduction of persistence
statistics

Autoencoder

Nonlinear dynamic
approaches to identify
atrial fibrillation
progression based on
topological methods
[55]

PhysioBank
long-term atrial
fibrillation database;
PhysioNet MIT-BIH
normal sinus rhythm
database

Normalize, time-delay
embedding

Number and persistence of
1-dimensional topological
features and fractal dimension

Feed-forward
back
propagation
neural
network

Classification of
Single-Lead
Electrocardiograms:
TDA Informed
Machine Learning
[26]

Alivecor Butterworth filter and
time-delay embedding

Sum, mean, standard
deviation, skewness, kurtosis
of birth, death, and/or
persistence of 0, 1, &
2-dimensional topological
features

Random
forest
classifier

Persistence
Landscape-based
Topological Data
Analysis for
Personalized
Arrhythmia
Classification [36]

PhysioNet MIT-BIH
Long-Term database

Resample at different
frequency, Butterworth
filter, detect R waves
and segment signal,
time-delay embedding,
downsample

Persistence landscape-derived
statistics

Random
forest
classifier

Early Ventricular
Fibrillation Prediction
Based on Topological
Data Analysis of
ECG Signal [34]

PhysioNet CUDB,
SDDB, PTBDB

Resample at different
frequency, moving
average filter,
normalization,
time-delay embedding

Sum, mean, and variance of
persistences of 0, 1, &
2-dimensional topological
features; box-counting
features; heart rate variability
features

Logistic
regression,
decision
trees, SVM,
KNN
classifier

Ventricular
Fibrillation and
Tachycardia
Detection Using
Features Derived
from Topological
Data Analysis [41]

AHA 2000 series and
PhysioNet MIT-BIH
Malignant
Arrhythmia Database

Infinite impulse
response filter,
time-delay embedding

Derived from representations
of time domain signal,
embedded signal, persistence
diagram, persistence
landscape representation,
weighted silhouettes
representation

KNN
classifier

A Topology Informed
Random Forest
Classifier for ECG
Classification [27]

PhysioNet/Comput-
ing in Cardiology
Challenge 2020

Time-delay embedding Persistence entropy and
statistics derived from
persistence diagram and
persistence landscape

Two-level
random
forest
classifier

A Novel Heart
Disease Classification
Algorithm based on
Fourier Transform
and Persistent
Homology [43]

PhysioNet MIT-BIH
Arrhythmia Database

Butterworth filter,
sliding window fast
Fourier Transform to
embed signal in higher
dimension

Persistence entropy and
persistence statistics

SVM
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that may not be found in other ECG databases. The approach presented here attains similar results
as these previous studies with respect to classification outcomes while utilizing a novel ECG signal
processing pipeline and topological predictor variable construction, particularly with respect to using
information derived from area-minimal cycle representatives.

4. Conclusion

The method presented here differs from other methods utilizing TDA and machine learning in three
main ways:

• by using information about optimal cycle representatives of equivalence classes of non-contractible
loops when constructing topological predictor variables.

• by focusing only on the N-most persistent equivalence classes of non-contractible loops when con-
structing topological predictor variables.

• by introducing an isoelectric baseline to create non-trivial equivalence classes of non-contractible
loops corresponding to the P, Q, S, and T-waves (if they are present to begin with).

This novel approach to ECG signal processing and construction of topological predictors yields clas-
sification results on par with other methods proposed in the literature and demonstrates the utility of
optimal cycle representatives in TDA. Future directions include multiclass rhythm classification, other
methods of defining the isoelectric baseline to account for baseline wander in longer ECG signals, in-
cluding statistics derived from optimal cycle representatives in other approaches such as sliding window
and Fast Fourier Transform embeddings, and including an isoelectric baseline prior to embedding ECG
signals in higher dimensions. Several studies have used TDA-derived statistics as input to neural net-
works [16,53,55]; however, to the author’s knowledge, there has been no study performed which utilizes
persistence images [1] as the TDA-derived input for neural networks in arrhythmia detection, yielding
another direction for future work.

There have been people working on computer-aided ECG analysis since the invention of the ECG
machine. Over the past 20 years, there have been many machine learning approaches taken, yielding
encouraging results. Some of these methods have involved TDA. Regardless of the type of method taken
in computer-aided ECG analysis and the goodness of the evaluation metrics, we must take care to not
rush to replace ECG interpretation by skilled health care professionals, however tempting the potential
time and cost savings may be. In addition to the obvious danger of automated arrhythmia classification
algorithms missing a harmful arrhythmia that a skilled healthcare professional would not have missed,
bells and whistles from automated arrhythmia detection algorithms can lead to unnecessary medical staff
fatigue and an increase in stress and adverse outcomes in hospitalized patients [12,29,33,54,58,59].

The data used in this study are free and publicly available at https://figshare.com/collections/
ChapmanECG/4560497/2 [69]. The code used in this study is free and publicly available and can be
found on GitHub: https://github.com/hdlugas/ekg_tda_arrhythmia_detection.
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Appendix A. Formalization of persistent homology intuition

We now set out to formalize the notion of “equivalence classes of non-contractible loops that per-
sist for a given range of radius values.” Given a set of data X represented as a finite set of points in
R

2, a simplicial complex is constructed as a topological space that approximates the structure of the
data.

Definition A.1. A simplicial complex is a collection K of subsets of a finite set V such that:

• {v} ∈ K for all v ∈ V , and
• if τ ⊂ σ for σ ∈ K , then τ ∈ K .

An element of V is referred to as a vertex, and an element of K with cardinality n + 1 is referred to as
an n-simplex.

There are several ways to construct a simplicial complex given a finite set of points in R
2, and to be

consistent with the geometry of the toy examples discussed in Section 1.1, we consider the Radius r

Vietoris–Rips complex, a simplicial complex constructed by considering a circle of radius r around each
point in our dataset and then including S ⊂ X as a simplex if the intersection of the balls of radius r for
each point in S is non-empty. An example of the Radius r Vietoris–Rips complex and its corresponding
geometric realization for several values of r is shown in Fig. 2.

Definition A.2. Given a dataset X represented as a finite subset of R2, and given a positive real number
r , the radius r Vietoris–Rips complex of X, denoted VRr (X), is the simplicial complex given by the
collection of all subsets U of X with the property that if x1, x2 ∈ U , then |x1 − x2| < r .

Note that if S ⊂ U for U ∈ VRr (X), then |x1 − x2| < r for all x1, x2 ∈ U implies |x1 − x2| < r for all
x1, x2 ∈ S. Thus the radius r Vietoris Rips complex of a finite subset of R2 defines a simplicial complex.

We are now in a position to be more concrete about the notion of an “equivalence class of non-
contractible loops” within the geometric Čech complex, as discussed in Section 1.1. By an “equivalence
class of non-contractible loops,” we are referring to an element of the 1-dimensional homology group of
some radius r Vietoris–Rips complex, which we now set out to define.

Let X be a finite subset of R2, let r be a positive real number, and let Cn be the vector space over
F2 with basis consisting of the elements of VRr (X) of cardinality n + 1 for n = 0, 1, 2. Further-

more, suppose there is an ordering on VRr (X). Consider 0
δ−1←− C0

δ0←− C1
δ1←− C2

δ2←− 0 where
δn([x0, . . . , xn]) = ∑i

i=0(−1)n[x0, . . . , x̂i , . . . , xn] and x̂i indicates that xi is omitted from the or-
dered simplex. The elements of C1 are referred to as 1-chains, the elements of ker(δ0) are referred
to as 1-cycles, and elements of im(δ1) are referred to as 1-boundaries. Since δ0(δ1(v)) = 0 for all
v ∈ C2, every 1-boundary is an 1-cycle. However, it is not necessarily true that every 1-cycle is an
1-boundary. Intuitively, if we think of X as a point cloud in the plane R

2, the 1-dimensional homology
group of VRr (X) is defined such that its dimension over F2 counts the number of “holes” in that point
cloud.
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Definition A.3. Given r > 0 and VRr (X) where X is a finite subset of R2, we follow the construction
of F2-vector spaces C0, C1, C2 and linear transformations δ−1, δ0, δ1, δ2 as outlined above and define
the first homology group of VRr (X) as the quotient vector space H1(VRr (X)) = ker(δ0)/ im(δ1). The
F2-vector space dimension β1 = dim(H1(VRr (X))) = dim(ker(δ0)) − dim(im(δ1)) of H1(VRr (X)) is
called the first Betti number.

By increasing r , we create a sequence of Vietoris–Rips Complexes where VRr (X) ⊂ VRr ′(X) for
r < r ′. We then construct

VRr0(X)
i0−→ VRr1(X)

i1−→ · · · im−1−−→ VRrm(X)

where VRri (X) is a proper subset of VRrj (X) for i < j and i0, i1, . . . , im−1 are inclusion homomor-
phisms. This induces a sequence of F2-linear functions i∗0 , i∗1 , . . . , i∗m−1 such that

H1
(
VRr0=0(X)

) i∗0−→ H1
(
VRr1(X)

) i∗1−→ · · · i∗m−1−−→ H1
(
VRrm(X)

)
and i∗n([c]V ) = [in(c)]W for V = VRrn(X), W = VRrn+1(X), and all n = 0, 1, . . . , m − 1. We now give
a name to the “smallest” and “largest” r > 0 such that a given 1-cycle belongs to H1(VRr (X)).

Definition A.4. Let [c] ∈ H1(VRr (X)) for some r > 0. The birth filtration of [c] is defined as the
greatest lower bound of the set of all ε > 0 such that [c] is in the range of the F2-linear function
H1(VRε(X)) → H1(VRr (X)). Similarly, the death filtration of [c] is defined as the least upper bound of
the set of all ε > 0 such that [c] maps to zero under the F2-linear function H1(VRr (X)) → H1(VRε(X)).
The persistence of [c] is defined as the difference between the death filtration and the birth filtra-
tion.

Up to a scaling factor in the variable r , the Geometric Čech complex of radius r is homotopy equivalent
to the Radius r Vietoris–Rips complex due to the Nerve Lemma (see Corollary 4G.3 in Hatcher) [22].
Consequently, the definitions of the birth and death radius of an equivalence class of non-contractible
loops presented in Section 1.1 are equivalent to the definitions of the birth and death filtration of a class
[c] ∈ H1(VRr (X)) given in Definition A.4. For a more thorough treatment of persistent homology, see
[60].

Appendix B. Relative influence of predictor variables in top-performing models

Figures depicting the relative influence of the top-performing models with respect to F1-score in
each of the three classification tasks are displayed. Note that for each of the three classification
tasks, the top-performing model with respect to F1-score was the Gradient Boosted Decision Tree
Model.
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Fig. 11. Relative influence of predictor variables in top-performing gradient boosted decision tree model in classification of
atrial fibrillation vs. Non-atrial fibrillation.
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Fig. 12. Relative influence of predictor variables in top-performing gradient boosted decision tree model in classification of
arrhythmia vs. Normal sinus rhythm.
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Fig. 13. Relative influence of predictor variables in top-performing gradient boosted decision tree model in classification of
arrhythmia with morphological changes vs. Sinus rhythm with bradycardia and tachycardia treated as non-arrhythmia.
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