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Abstract. In this data article, we present and describe datasets designed to address multiskilled personnel assignment problems
(MPAP) under uncertain demand. The data article introduces simulated datasets and a real dataset obtained from a retail store
in Chile. The real dataset provides details on the structure of the store, including the number of departments and workers, the
type of labor contract, the cost parameter values, and the average demand across all store departments. The simulated datasets,
consisting of 18 categorized text files, were generated through Monte Carlo simulation to encapsulate information about the
stochastic demand for store departments. These text files are classified based on: (i) type of sample (in-sample or out-of-
sample), (ii) type of truncation method (zero-truncated or percentile-truncated), and (iii) demand coefficient of variation (5%,
10%, 20%, 30%, 40%, 50%). This categorization allows academics and practitioners to select the scenarios that meet with their
specific research or application needs, increasing the flexibility and applicability of the datasets. In addition, researchers and
practitioners can use these comprehensive real and simulated datasets to benchmark the performance of diverse optimization
methods under uncertain demand, thereby ensuring robust multiskilling levels for similar MPAPs. Furthermore, we offer an
Excel workbook with the capability to generate up to 10,000 demand scenarios for varying coefficients of variation in demand.
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1. Introduction

Optimizing workforce composition, task and shift assignments, and ensuring cost-effectiveness are
critical aspects of personnel scheduling for companies ([22,24]). Comprehensive investigations con-
ducted by Henao et al. [19], Henao et al. [21], and Mercado et al. [33] have identified six primary
personnel scheduling problems (PSPs): staffing, shift scheduling, days-off scheduling, tour scheduling,
assignment, and workforce training. Staffing involves determining the required workforce for each task
type and shift, while shift scheduling involves the daily allocation of work shifts to the hired workforce.
Days-off scheduling focuses on allocating weekly rest days, and the tour scheduling problem integrates
the weekly assignment of work shifts and rest days. The assignment problem allocates specific task
types to employees without assigning shifts or rest days. Finally, the workforce training problem aims
to establish the optimal training plan for the hired employees.

The combination of the following two PSPs – the assignment problem and the workforce training
problem – results in what is known in the literature as the Multiskilled Personnel Assignment Problem
(MPAP). The objective of the MPAP is to cost-effectively design a workforce training plan that addresses
key aspects, such as: (i) determining the number of single-skilled employees (those trained for a one task
type) and multiskilled employees (those trained for two or more task types), (ii) specifying the types of
tasks in which each employee should be trained, and (iii) devising a weekly work-hour distribution for
each employee based on their trained skills. Therefore, as multiskilled employees can be transferred
from tasks with staffing surplus to those facing a staffing shortage, solving the MPAP enables the design
of a workforce that can flexibly adapt to fluctuating demand patterns (e.g., [3,4,6,31,45,46]). In turn, an
optimal training plan not only improves demand coverage but also minimizes labor costs arising from
mismatches between staffing levels and staff demand ([5,8,10,12,13,18,26,38]).

The MPAP solution is relevant to a wide range of industries, including both manufacturing and ser-
vice sectors such as transportation, call centers, healthcare, and retail. However, the MPAP solution
is particularly crucial to the retail industry. Retail is known for its need to employ large numbers of
workers to meet highly seasonal and uncertain demand ([11,27,35]). This means that retail stores ex-
perience significant fluctuations in staffing requirements on a monthly, weekly, daily, and even hourly
basis ([2,9,39,40]). This underscores the imperative need for an effective workforce training plan. There-
fore, in the context of the retail industry and considering stochastic demand, solving the MPAP becomes
paramount to effectively minimize both training costs and the costs associated with under/overstaffing.

As detailed in the following section, extensive research has been conducted on the crucial role of PSPs
for retail industry managers, with a specific focus on the MPAP, addressing the challenges related to mul-
tiskilled employees. However, despite the numerous research articles and solution methods outlined in
the literature for tackling these issues in the context of the retail industry and its inherent demand uncer-
tainty, a notable gap remains evident. Essentially, there is a need for datasets that offer academics and
practitioners access to the necessary data for input into their mathematical models. This is particularly
valuable because optimization models rely on the assumption that the model’s parameters are accurate.
Consequently, the lack of data availability or errors in data estimation can lead to biased assessments
of the multiskilling requirements for the workforce. In line with the above, the accessibility of such
datasets would enable both academics and practitioners to conduct benchmarking exercises for similar
or identical MPAPs that are addressed through different optimization approaches amidst the backdrop
of uncertain demand.

To fill the identified gap, this data article presents and describes datasets used (but not previously
published) by Henao et al. [19] to solve a MPAP in the context of uncertain demand in a retail setting.
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The datasets contain real and simulated data taken from a Chilean retail store. The real dataset was
collected from a home improvement retail store, while the simulated datasets were randomly generated
using Excel formulas associated with the inverse normal probability distribution. It is important to note
that, using these same datasets, Henao et al. [20], Henao et al. [23], and Henao et al. [19] solved a MPAP
using the robust optimization (RO), closed-form equation (CF), and two-stage stochastic optimization
(TSSO) approaches, respectively.

In conclusion, this data article contributes to the academic and practitioner community through the
following key aspects:

1. A MPAP in a retail store with uncertain demand can be solved using the real and simulated datasets
provided in this article.

2. Robust multiskilling levels that minimize the cost of personnel training and the cost of over/under-
staffing can be determined using the datasets in this article.

3. Academics and practitioners can find robust solutions to a similar or identical MPAP performing a
benchmark of different approaches for optimizing under uncertainty using the datasets provided in
this article.

4. For different coefficients of variation of the staff demand, an Excel workbook with a Monte Carlo
simulation that generates up to 10,000 demand scenarios is provided. This feature adds an extra
layer of practicality and scalability, enabling users to customize and generate demand scenarios
tailored to their specific requirements.

2. Literature review

2.1. Background on PSPs in different industries

Table 1 presents a list of research articles that have addressed PSPs in application contexts other than
retail, sometimes considering multiskilled workers and sometimes not. In addition, the articles listed
in Table 1 are characterized by having an associated data repository with public access, thus providing
valuable datasets for researchers or practitioners to conduct experiments and/or benchmarking. The table
categorizes the articles according to the following characteristics:

1. Personnel scheduling problem (PSP): Indicates the PSP addressed in the article, which is subject
to the application context of the problem: (a) tour scheduling (TS), (b) multi-skilled resource-
constrained project scheduling problem (MS-RCPSP), (c) integrated truck and workforce schedul-
ing (ITWS), and (d) unit load devices scheduling problem (ULDSP).

Table 1

Characteristics of datasets used to solve PSPs in different industries

PSP MS DT ADR AP PY Research article
TS No RD + SD Vanhoucke and Maenhout [52] H 2007 Vanhoucke and Maenhout [53]
MS-RCPSP Yes SD Myszkowski et al. [36] - 2015 Myszkowski et al. [37]
TS No SD Liu and Liu [28] H 2018 Liu et al. [29]
ITWS No SD Tadumadze et al. [50] T 2019 Tadumadze et al. [51]
ULDSP No SD Emde et al. [14] T 2020 Emde et al. [15]
TS Yes SD Wu et al. [55] R 2022 Wu et al. [56]
MS-RCPSP Yes SD Snauwaert and Vanhoucke [48] SC, RC 2023 Snauwaert and Vanhoucke [49]
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2. Multiskilling (MS): Indicates whether the PSP considered the presence of multiskilled employees.
3. Data type used (DT): Indicates whether the datasets used in the research article contain real data

(RD) and/or simulated data (SD).
4. Available data repository (ADR): Provides the specific reference where the reader can find the data

repository used by the research article to solve the PSP.
5. Application (AP): Indicates the economic sector or industry in which the research article applied

its solution methodology. This may be: (a) healthcare (H), (b) transportation (T), (c) restaurant (R),
(d) software company (SC), and (e) railway construction (RC).

6. Publication year (PY): Indicates the year in which the research article was published.

2.2. Background on PSPs involving multiskilled staff in a retail setting

To illustrate the gap addressed by this data article, Table 2 presents an exhaustive classification of re-
search articles with applied case studies in the retail industry, focusing on PSPs considering multiskilled
employees. This classification is based on the following characteristics:

1. Personnel scheduling problem (PSP): Indicates the PSP addressed in the article: (a) staffing (S), (b)
shift scheduling (SS), (c) days-off scheduling (DOS), (d) tour scheduling (TS), (e) assignment (A),
and (f) workforce training.

2. Solution method (SM): Indicates the solution methods used in the article to solve the PSP: (a) linear
programming (LP), (b) constraint programming (CP), (c) integer programming (IP), (d) mixed
integer programming (MIP), (e) two-stage stochastic optimization (TSSO), (f) robust optimization
(RO), (g) column generation (CG), (h) heuristic (H), and (i) closed-form equation (CF).

3. Data type used (DT): Indicates whether the datasets used in the research article contain real data
(RD) and/or simulated data (SD).

4. Availability of complete datasets (ACD): Indicates whether the research article published a data
repository or has an associated data article, allowing any researcher or practitioner to access all the
data used in the research article for experimentation.

5. Publication year (PY): Indicates the year in which the research article was published.

Several aspects can be highlighted from Table 2. First, it can be noted that most articles used MIP
models or a combination of MIP models and heuristic approaches as their chosen solution method.
Notably, articles such as Henao et al. [20], Henao et al. [23], Abello et al. [1], Fontalvo Echavez et al.
[16], Mercado and Henao [32], Mercado et al. [33], and Henao et al. [19] also incorporated optimization
techniques such as RO, TSSO, or CF to address the challenge of uncertain demand.

Second, among the 17 articles listed in Table 2, twelve of them addressed a workforce training prob-
lem (i.e., [1,16,19–23,32,33,41,44,54]). Therefore, in each of these articles, one of the objectives was
to establish the optimal training plan for the staff. However, 8 of these 12 articles specifically addressed
a MPAP (i.e., [19–21,23,32,33,44,54]), which is identified in the table by the nomenclature A + WT.
Remember that a MPAP simultaneously solves an assignment problem along with a workforce train-
ing problem. We emphasize that, unlike other workforce training problems that may also involve shift
scheduling, days-off scheduling, or tour scheduling, the MPAP specifically focuses on multiskilling de-
cisions rather than on scheduling decisions (such as weekly schedules with work shifts and rest days).

Third, while Mirrazavi and Beringer [34] did not explicitly define whether they used real data, simu-
lated data, or a combination of both, the articles by Henao et al. [22], Mac-Vicar et al. [30], and Hassani
et al. [17] used real data only, while the rest of the articles used a combination of real and simulated
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Table 2

Characteristics of research articles addressing PSPs that involve multiskilled staff in a retail setting

PSP SM DT ACD PY Research article
TS LP + CP - No 2007 Mirrazavi and Beringer [34]
TS + WT MIP RD No 2015 Henao et al. [22]
A + WT MIP + H + RO RD + SD Yes 2016 Henao et al. [20]
TS MIP RD + SD No 2016 Cuevas et al. [11]
TS MIP + CG + H RD No 2017 Mac-Vicar et al. [30]
TS IP RD + SD No 2019 Bürgy et al. [7]
A + WT CF + H + LP RD + SD Yes 2019 Henao et al. [23]
S + TS + WT MIP RD + SD Yes 2019 Porto et al. [41]
DOS + WT MIP + TSSO RD + SD No 2021 Abello et al. [1]
DOS + WT MIP + TSSO RD + SD No 2021 Fontalvo Echavez et al. [16]
TS H RD No 2021 Hassani et al. [17]
A + WT MIP + TSSO RD + SD No 2021 Mercado and Henao [32]
A + WT MIP RD + SD No 2021 Vergara et al. [54]
A + WT MIP + TSSO RD + SD No 2022 Mercado et al. [33]
A + WT MIP + TSSO + CF + RO + H RD + SD Yes 2022 Henao et al. [19]
A + WT MIP RD + SD Yes 2022 Porto et al. [44]
A + WT MIP RD + SD No 2023 Henao et al. [21]

data. It is noteworthy that a common element in those articles that used simulated data was the inclusion
of staff demand for each store department within the simulated datasets, incorporating various levels of
variability in these demands.

Fourth, most of the articles in Table 2 did not disclose 100% of the data used in the experimentation
and validation stages of their research. This notable limitation poses a challenge for practitioners and
researchers seeking to replicate the published results of such articles with the utmost precision. Continu-
ing the discussion, only five research articles reported the complete datasets used in their investigations.
These are as follows:

1. Three articles – Henao et al. [19], Henao et al. [20], and Henao et al. [23] – using the datasets
disclosed in this data article (previously unpublished), addressed the same MPAP but used differ-
ent optimization techniques under uncertainty. Thus, these datasets are valuable to practitioners
and researchers because they allow fair benchmarking of different approaches. This in turn demon-
strates the applicability and validity of the datasets, as they have been used in articles published in
high-impact journals.

2. Porto et al. [41] have a related data article, Porto et al. [42], which, similar to our data article,
contains real and simulated datasets from a home improvement retail store. However, despite these
similarities, there is a clear difference between the two data articles. Our data article aligns with the
data requirements for solving a MPAP, while the data article written by Porto et al. [42] aligns with
the data requirements of a tour scheduling problem. In essence, the datasets presented in our data
article can be used to solve an assignment problem, defining the MPAP as a PSP where rest days
or work shifts are not assigned. This distinguishes the MPAP from other PSPs, as staff demand
is aggregated on a weekly basis (typically in man-hour units). In contrast, PSPs that involve shift
scheduling, days-off scheduling, or tour scheduling decisions require the disaggregation of staff
demand into days and even short periods within each day (typically less than an hour) to address
the strong seasonality of demand.
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3. Porto et al. [44] have an associated data repository, Porto et al. [43], with real, processed, and
simulated datasets obtained from a home improvement retailer. These datasets were used to solve
an extended version of the MPAP, but with consideration for a deterministic demand. Unlike the
MPAP addressed by Henao et al. [19], Henao et al. [20], and Henao et al. [23], the authors of Porto
et al. [44] considered a planning horizon of 54 weeks instead of one. This choice is driven by the
examination of the labor flexibility strategy known as annualization of hours, where employees’
weekly work assignments are distributed irregularly throughout the year to address the weekly
seasonality of demand. Furthermore, Porto et al. [43] limited the simulated staff demand data to 10
instances per department per week due to their adoption of a deterministic approach. In contrast,
our data article reports up to 10,000 demand instances per department, as optimization approaches
under uncertainty require extensive data for models’ experimentation and validation.

3. Data description

This section provides a full description of the real and simulated datasets used in Henao et al. [19],
Henao et al. [20], and Henao et al. [23].

3.1. Real data

The Chilean workforce management company SHIFT SpA [47] provided us with real data from a
prominent home improvement retailer. The real dataset consists of information related to the number
of store departments, number of single-skilled workers hired for each department, weekly hours that
each worker has to work given his/her labor contract, average staff demand per week per department,
and staff costs related to a Chilean retail store. For a better understanding of the data, consider that
a retail store has a known number of departments, and these store departments usually have hired a
set of workers originally single-skilled and, thus, skilled to work in one department. In addition, each
department requires possessing certain basic skills and the working hours of workers depend on what is
stipulated in their labor contracts.

Table 3 shows a full description of the parameters and sets associated with the real dataset. Also pro-
vided with these sets and parameters is a file named ‘real-data.txt’ written in the mathematical program-
ming language AMPL. This file can be accessed from the Zenodo data repository archived at https://
zenodo.org/records/10570229 ([25]). In Table 3, the store departments (L), store workers (I ), workers
under contract in the department (Il), and store department where each worker was originally skilled
(mi) are data associated with the case study. Whereas the weekly hours that each worker must work
according to his/her labor contract (h) is set at 45 hours per week, since this is what the Chilean labor
law stipulates for a full-time contract. A complete explanation of how the average demand for all depart-
ments (rl) was obtained and how we estimated the cost of training (c), the cost of understaffing (u), and
the cost of overstaffing (b), is presented in Section 4.

Now, it is important to note that the MPAPs addressed in Henao et al. [19], Henao et al. [20], and Henao
et al. [23] have two notable assumptions: (1) Unscheduled personnel absenteeism is not considered; that
is, all employees are available 100% of the time for which they were hired. (2) Employees are assumed
to be homogeneous; thus, all employees have maximum productivity in all departments for which they
are trained. However, aiming to enrich the versatility and usefulness of this data article, we have included
new real data derived from the experience of Chilean retailers. These data, which focus on unscheduled
personnel absenteeism and the phenomena of learning and forgetting, are included in the file named

https://zenodo.org/records/10570229
https://zenodo.org/records/10570229
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Table 3

Full description of the real data

Notation Description Value
Sets
L Departments, indexed by l |L| = 6
I Workers, indexed by i |I | = 30
Il Number of hired single-skilled workers in

department l, indexed by i
|I1| = 7; |I2| = 5; |I3| = 3; |I4| = 3; |I5| = 4; |I6| = 8

Parameters
mi Store department where the worker i is originally

skilled, ∀i ∈ I
mi = 1, ∀i = 1, 2, . . . , 7;
mi = 2, ∀i = 8, 9, . . . , 12;
mi = 3, ∀i = 13, 14, 15;
mi = 4, ∀i = 16, 17, 18;
mi = 5, ∀i = 19, 20, 21, 22;
mi = 6, ∀i = 23, 24, . . . , 30

h Weekly hours that each worker has to work given
his/her labor contract

45 hours

rl Weekly average demand (in hours) for the
department l, ∀l ∈ L

r1 = 315; r2 = 225; r3 = 135; r4 = 135; r5 = 180; r6 = 360

c Cost of training one worker 1 US$ − week/employee
u Cost of staff shortage 60 US$/hour
b Cost of staff surplus 15 US$/hour

‘real-data.txt’. Notably, these data have already been used in two of our published research articles,
Mac-Vicar et al. [30] and Henao et al. [21].

On the one hand, in Mac-Vicar et al. [30], the authors addressed a tour scheduling problem considering
multiskilled employees. In order to assess the effectiveness of a set of flexible labor strategies to mitigate
the negative effects of uncertain demand and unscheduled absenteeism, they conducted experiments with
three probable absenteeism scenarios: 5%, 10%, and 15%. Specifically, the authors assumed that the
probability of an employee missing a scheduled shift followed a Bernoulli distribution, with probabilities
set at p = 5%, 10%, and 20%. These values were determined through consensus among various store
managers affiliated with a leading home improvement retailer in Chile.

On the other hand, in Henao et al. [21], the authors addressed a MPAP involving a multiskilled and
heterogeneous workforce, which was subject to the learning/forgetting phenomena. In other words, they
considered a heterogeneous workforce, where the productivity of multiskilled employees may vary de-
pending on the number of departments to which they are assigned. Therefore, to address their MPAP,
the authors modeled three parameters related to the learning and forgetting phenomena, as follows:

o The first, Kil, represents the maximum productivity achievable by each employee in each depart-
ment. In their case study, the authors set Kil = 1 for each employee-department combination,
treating productivity as a decision variable ranging from 0 to 1.

o The second parameter, Lil, represents the learning rate for each employee based on the department.
In the case study, the authors considered the most optimistic learning case, i.e., Lil = 1 for each
employee-department combination. This indicates that an employee needs one workweek to reach
approximately 50% of the maximum productivity.

o The third parameter, Fil, is the forgetting rate for each employee by department. In their case study,
the authors considered the most pessimistic forgetting scenario and set Fil = 1 for each employee-
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department combination. This value implies that if an employee is not assigned to a specific depart-
ment for one week, he/she will lose about 50% of the maximum productivity in that department.

The values for Lil and Fil were chosen considering the strong correlation observed between the rates
of learning and forgetting. In general, fast learning tends to be associated with fast forgetting.

3.2. Simulated data

The simulated datasets consist of information related to the stochastic demand of the store depart-
ments. They consider two sample data types related to the uncertain demand: in-sample and out-of-
sample. In-sample refers to the data employed to obtain the in-sample solutions of the MPAP with the
TSSO approach. Conversely, out-of-sample refers to the data employed to compare the performance of
the reported solutions with the three optimization approaches: TSSO, RO, and CF.

To generate the in-sample data, Monte Carlo Simulation (MCS) was used to randomly create 2,000
demand scenarios for the random parameter rl(s), ∀l ∈ L, s ∈ S, such that |S| = 2, 000. In each
department, this simulation is carried out for 6 coefficients of variation of the demand: CV =
5, 10, 20, 30, 40, 50%. These six levels of demand variability were established to determine how mul-
tiskilling requirements in the workforce can increase as demand uncertainty increases. Specifically, a
normal probability distribution was used to create the realizations of the stochastic demand in each store
department. Then, two distinct datasets were generated to assess and compare the level of conservatism
in the TSSO approach solutions. Each dataset involves a distinct truncation type in the probability den-
sity functions (pdfs) for store department demand. In the first dataset the pdfs were truncated at the 5th
and 95th percentiles, while in the second dataset the pdfs were zero-truncated. Both datasets avoid cre-
ating negative demand values, but the first dataset also avoids creating atypical values. Similarly, a MCS
was also used to generate random demand scenarios for the out-of-sample data. In this case, 10,000
demand scenarios were created for each department in a single dataset, following a normal distribution
truncated at zero.

Summarizing, this subsection provides three datasets: two in-sample and one out-of-sample. Each
dataset contains 6 files (one for each CV) as listed in Table 4. Each file presents the stochastic demand
realizations for six store departments, such that each row represents a department and each column
represents a demand scenario (2,000 if it is in-sample and 10,000 if it is out-of-sample). The name of the
files is coded by three characters i-j -k, where i = IS, OS specifies the type of sample (in-sample, out-
of-sample); j = PT, ZT specifies the type of truncation method for the normal distribution (percentile-
truncated, zero-truncated); and k = 05, 10, 20, 30, 40, 50 specifies the coefficient of variation (CV =
5, 10, 20, 30, 40, 50%). These files can be accessed from the Zenodo data repository archived at https://
zenodo.org/records/10570229 ([25]).

Table 4

Datasets with the realizations of the stochastic demand in a retail store

CV In-sample Out-of-sample
Percentile-truncated Zero-truncated Zero-truncated

5% IS-PT-05.txt IS-ZT-05.txt OS-ZT-05.txt
10% IS-PT-10.txt IS-ZT-10.txt OS-ZT-10.txt
20% IS-PT-20.txt IS-ZT-20.txt OS-ZT-20.txt
30% IS-PT-30.txt IS-ZT-30.txt OS-ZT-30.txt
40% IS-PT-40.txt IS-ZT-40.txt OS-ZT-40.txt
50% IS-PT-50.txt IS-ZT-50.txt OS-ZT-50.txt

https://zenodo.org/records/10570229
https://zenodo.org/records/10570229
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Fig. 1. Percentile-truncated vs zero-truncated, with a coefficient of variation of 50% in the 6 store departments.

Fig. 2. Percentile-truncated vs zero-truncated, in the second department with 6 coefficients of variation.

Boxplots were created to visualize the simulated data. Figure 1 graphically compares both truncation
types for the in-sample data, considering a coefficient of variation of 50% in the 6 store departments
(i.e., ‘IS-PT-50.txt’ vs ‘IS-ZT-50.txt’ files). For the same coefficient of variation (50%) the percentile-
truncated data range from 24 to 655 hours, whereas the zero-truncated data is broader and has atypical
values, ranging from 0 to 937 hours, considering all departments.

In addition, for the second department and each CV, Fig. 2 graphically compares both truncation types
for the in-sample data. Remember that the second department has an average weekly demand of 225



10 C.A. Henao et al. / A benchmark dataset for the retail multiskilled personnel planning under uncertain demand

hours. Here, it is evident that as the coefficient of variation increases, the range of the weekly hours
demand values systematically expands. Similar to Fig. 1, the zero-truncated data is broader, ranging
from 1 to 565 hours, whereas the percentile-truncated data ranges from 40 to 410 hours, considering all
the coefficients of variation.

The boxplots for the out-of-sample data are not shown, but as expected, they have a similar distribution
to the in-sample data. However, in this case, the number of demand scenarios for each box plot is 10,000,
instead of 2,000.

4. Experimental design, materials, and methods

This section outlines the methods utilized to estimate the mean demand in weekly hours for each
department and explains the source of information related to the staff costs. Also, it is provided a detailed
description of the MCS used to generate the stochastic demand realizations.

4.1. Calculating the mean weekly hours demand and staff costs

SHIFT SpA provided us with the real data for this case study. SHIFT SpA is a company that optimizes
the shift schedules of thousands of employees across Latin America, which validates the quality and
relevance of the real data they provided. Specifically, they used a specialized software to estimate the
average weekly person-hours demand values for each department. This software works in two stages:
(1) forecasting transactions and expected sales and (2) generating workforce requirements.

First, the software uses multiple linear regression to forecast the expected sales and number of trans-
actions for each department in the store. The regression requires between 24 and 72 months of historical
data to ensure greater accuracy. Second, considering typical customer service times, the software con-
verts the forecast of transactions and expected sales into a staff demand quantified in person-hours.

Regarding the staff costs, it was assumed that each worker has a minimal cost of training (c = 1 US$−
week/employee). Henao et al. [19], Henao et al. [20], Henao et al. [23], Vergara et al. [54], and Mercado
et al. [33] expressed that the outcomes found under this supposition represent an upper bound on the
possible benefits of using multiskilled staff. In relation to the over/understaffing costs, it was assumed
that these are the same across all departments. Using historical data from the retail store, the cost of
understaffing is calculated as the average cost of the expected lost sales. Such that u = 60US$/hour, a
value similar to that reported in [1] and [16]. Also, using historical data from the retail store, the cost of
overstaffing is calculated as the average wage cost of having idle staff. Such that b = 15US$/hour, a
value similar to that reported in [1,16], and [32].

4.2. Monte Carlo simulation

The MCS utilized to generate the stochastic demand realizations in Sect. 3.2 (simulated data), was
carried out in an Excel workbook available in the Zenodo data repository archived at https://zenodo.
org/records/10570229 ([25]). This workbook contains two worksheets that can be used to generate up
to 10,000 scenarios of random demand realizations (outputs). The first worksheet is called ‘percentile-
truncated’ and generates a normal distribution truncated at the 5th and 95th percentiles. The second
worksheet is called ‘zero-truncated’ and can be used to generate a normal distribution truncated at zero.

The weekly hours demand follows a normal probability distribution; therefore, two parameters are
needed to create the stochastic demand realizations in the 6 store departments: (i) the average weekly

https://zenodo.org/records/10570229
https://zenodo.org/records/10570229
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person-hours demand, which was shown in Table 3; and (ii) the standard deviation in weekly hours,
which is calculated as the product between the average value and the coefficient of variation (CV) of the
demand. Thus, the CV value can be chosen by the store manager to indicate the degree of uncertainty in
the demand that best fits the store’s operations. In the Excel worksheets, both parameters are denoted in
yellow cells, indicating that they can be changed.

Some statistics were also calculated in the Excel worksheets. In the ‘percentile-truncated’ worksheet,
the 5th and 95th percentiles were calculated. Meanwhile, in the ‘zero-truncated’ worksheet, the standard
score (z), denoting a weekly person-hours demand value equal to zero, along with its corresponding
quantile in percent, were calculated. These results are presented in cells with gray text, indicating that
these cells must not be modified because they are being calculated using Excel formulas.

Then, by using random values and using Excel formulas associated with the inverse normal distribu-
tion, it becomes possible to calculate the outputs. In the ‘percentile-truncated’ worksheet, the random
values vary between 0.05 and 0.95 with a step size of 0.000001, following a normal distribution. Con-
versely, in the ‘zero-truncated’ worksheet, the random values vary between the quantile associated with
the standard score (z) and 1, with the same step size, ensuring that the realizations of the stochastic
demand are non-negative. In both worksheets, the stochastic demand realizations are organized into six
rows representing the store departments, and up to 10,000 columns representing the demand scenarios.
These results are presented in cells with blue text, indicating that these cells are the results calculated by
Excel formulas and must not be modified.

Finally, we emphasize that the detailed description provided above regarding the implementation of the
MCS method can be easily cross-referenced and verified by carefully examining the Excel worksheets
and the set of Excel formulas used. All these details are readily available to the reader in the Excel
workbook.

5. Conclusions

In this article, we have introduced comprehensive datasets that include real-world data from a Chilean
retail store with simulated data. This dual-source proposal enriches the data article by providing a diverse
and representative collection of scenarios for addressing MPAPs under uncertain demand in a retail
setting. The versatility of the datasets emerges as a key strength, providing a valuable resource for fair
benchmarking different optimization approaches under uncertain conditions. In addition, the categorized
simulated datasets, along with an Excel workbook capable of generating up to 10,000 demand scenarios
with different coefficients of variation, enhance the scalability and flexibility of the datasets. This feature
allows users to test and evaluate different approaches under diverse conditions, accommodating the
varied needs of researchers and practitioners, thus enabling a wide range of experiments and analyses.
Finally, this resource effectively addresses a significant gap in the literature, serving as a practical tool for
researchers and practitioners to explore and overcome challenges associated with designing workforce
training plans in environments characterized by uncertain demand.

6. Limitations and future research

Despite the valuable contributions provided by this data article and its datasets, future publications
could complement or address the potential limitations of the datasets. More specifically, we have identi-
fied two potential limitations and, in turn, possible directions for future research.
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First, the datasets presented in this article focus on a retail store with six departments and thirty
hired employees. This may limit researchers and practitioners who wish to test instances of the problem
involving stores with more departments and employees. However, we believe that other researchers and
practitioners can extrapolate or simulate missing data for larger instance sizes based on the information
we provide, or alternatively, present new real data. Therefore, future data articles may present datasets
associated with larger retail stores.

Second, the MPAP focuses specifically on multiskilling decisions rather than scheduling decisions.
Thus, the datasets provided in our article facilitate solving an assignment problem in which employees
are not assigned rest days or work shifts, and staff demands are aggregated on a weekly basis. How-
ever, this aggregation may limit the solution of PSPs that require more detailed scheduling decisions.
PSPs that emphasize scheduling decisions require more granular estimates of staff demand to accurately
reflect the seasonality across days of the week and within each day. For example, days-off scheduling
needs daily disaggregation, shift scheduling requires hourly disaggregation, and tour scheduling entails
further disaggregation of staff demand into days and even shorter periods within each day. Therefore, al-
though the authors in Porto et al. [42] presented datasets associated with a standard-sized retail store that
allow solving tour scheduling problems considering multiskilled employees, future work could aim to
present new datasets with representations of staff demand that fit shift scheduling and days-off schedul-
ing problems. In addition, such datasets could also provide data associated with larger retail stores.
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