
Data Science 2 (2019) 205–227 205
DOI 10.3233/DS-190016
IOS Press

Enabling text search on SPARQL endpoints
through OSCAR

Ivan Heibi a,∗, Silvio Peroni b and David Shotton c

a Digital Humanities Advanced Research Centre, Department of Classical Philology and Italian
Studies, University of Bologna, Bologna, Italy
E-mail: ivan.heibi2@unibo.it; ORCID: https://orcid.org/0000-0001-5366-5194
b Digital Humanities Advanced Research Centre, Department of Classical Philology and Italian
Studies, University of Bologna, Bologna, Italy
E-mail: silvio.peroni@unibo.it; ORCID: https://orcid.org/0000-0003-0530-4305
c Oxford e-Research Centre, University of Oxford, Oxford, UK
E-mail: david.shotton@oerc.ox.ac.uk; ORCID: https://orcid.org/0000-0001-5506-523X

Editor: Alejandra Gonzalez-Beltran (https://orcid.org/0000-0003-3499-8262)
Solicited reviews: Eric Prud’hommeaux (https://orcid.org/0000-0003-1775-9921); Simon Cox
(https://orcid.org/0000-0002-3884-3420); Riccardo Albertoni (https://orcid.org/0000-0001-5648-2713)

Received 19 December 2018
Accepted 13 February 2019

Abstract. In this paper we introduce the latest version (Version 2.0) of OSCAR, the OpenCitations RDF Search Application,
which has several improved features and extends the query workflow comparing with the previous version (Version 1.0) that
we presented at the workshop entitled Semantics, Analytics, Visualisation: Enhancing Scholarly Dissemination (SAVE-SD
2018), held in conjunction with The Web Conference 2018. OSCAR is a user-friendly search platform that can be used to
search any RDF triplestore providing a SPARQL endpoint, while hiding the complexities of SPARQL, thus making the search
operations accessible to those who are not experts in Semantic Web technologies. We present here the basic features and the
main extensions of this latest version of OSCAR. In addition, we demonstrate how it can be adapted to work with different
SPARQL endpoints containing scholarly data, using as examples the OpenCitations Corpus (OCC) and the OpenCitations
Index of Crossref open DOI-to-DOI citations (COCI), both provided by OpenCitations, and also the Wikidata dataset provided
by the Wikimedia Foundation. We conclude by reporting the usage statistics of OSCAR, retrieved from the OpenCitations
website logs, so as to demonstrate its uptake.

Keywords: OSCAR, OpenCitations, OCC, COCI, SPARQL, free-text search, scholarly data, advanced search

1. Introduction

The amount of data available on the World Wide Web (the Web) is increasing rapidly, and finding
relevant information by searching the Web is a daily challenge. Traditional search techniques rely on

*Corresponding author. E-mail: ivan.heibi2@unibo.it.

This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

2451-8484 © 2019 – IOS Press and the authors.

mailto:ivan.heibi2@unibo.it
https://orcid.org/0000-0001-5366-5194
mailto:silvio.peroni@unibo.it
https://orcid.org/0000-0003-0530-4305
mailto:david.shotton@oerc.ox.ac.uk
https://orcid.org/0000-0001-5506-523X
https://orcid.org/0000-0003-3499-8262
https://orcid.org/0000-0003-1775-9921
https://orcid.org/0000-0002-3884-3420
https://orcid.org/0000-0001-5648-2713
mailto:ivan.heibi2@unibo.it


206 I. Heibi et al. / Enabling text search on SPARQL endpoints through OSCAR

a textual matching of words and do not take into consideration the semantic information behind the
textual content. The Semantic Web [1] is an approach which attempts to overcome these limitations
by representing knowledge on the World Wide Web in a way that can be interpreted by machines.
In particular, these data are expressed by means of RDF [2], a data model that enables one to define
information in the form of machine-readable subject-predicate-object statements. Usually, these RDF
statements are stored in a particular kind of RDF database called triplestore, which can be queried by
means of SPARQL [4], the query language for RDF data.

SPARQL is a very powerful query language that can be used to look for data that follow specific
patterns. When institutions such as the British Library1 and the British Museum,2 and projects such as
Wikidata3 and DBpedia,4 want to make available their RDF data to the public, they usually provide a
specialised Web interface to a SPARQL endpoint of their triplestore, so as to enable users to conduct
programmatic searches for particular information, which is returned in one or more formats (usually
HTML, XML, JSON and CSV). However, this SPARQL query language is quite complex to learn and
is normally usable only by experts in Semantic Web technologies, remaining completely obscure to
ordinary Web users.

In order to make such SPARQL endpoints usable by a broader audience, without obliging such users
to become experts in Semantic Web technology, we have developed OSCAR, the OpenCitations RDF
Search Application, previously described at the SAVE-SD 2018 Workshop5 (co-located with The Web
Conference 20186) [6]. OSCAR is a user-friendly search platform that can be used with any RDF triple-
store providing a SPARQL endpoint, and which is entirely built without the need for integration of
external application components. It provides a configurable mechanism that allows one to query a triple-
store by means of a textual user input following definable rules, while in the background one or more
SPARQL queries elaborate the user requests. The main idea is that Semantic Web experts need only be
employed in the initial configuration of the system to work with a particular triplestore, by customizing
a particular configuration file that provides the text-search interface and that then enables any user to
query and filter the results returned by the underlying SPARQL queries by means of appropriate facets
and parameters.

The development of OSCAR is one of the outcomes of the OpenCitations Enhancement Project,7

funded by the Alfred P. Sloan Foundation8 and run by OpenCitations9 [13,18]. One of the main aims of
OpenCitations is to build open repositories of scholarly citation data with accurate citation information
(bibliographic references) harvested from the scholarly literature. Currently, OpenCitations provides
two different datasets, i.e. the OCC10 (the OpenCitations Corpus) [14] and COCI11 (the OpenCitations
Index of Crossref open DOI-to-DOI citations). These datasets are provided in RDF format and available
for querying via two separate SPARQL endpoints. OSCAR was successfully configured and integrated

1http://bnb.data.bl.uk/
2https://collection.britishmuseum.org/
3https://www.wikidata.org/
4http://dbpedia.org/sparql
5https://save-sd.github.io/2018/
6https://www2018.thewebconf.org/
7https://opencitations.wordpress.com/2017/05/15/the-sloan-foundation-funds-opencitations/
8https://sloan.org/
9http://opencitations.net/
10https://w3id.org/oc/corpus
11https://w3id.org/oc/index/coci

http://bnb.data.bl.uk/
https://collection.britishmuseum.org/
https://www.wikidata.org/
http://dbpedia.org/sparql
https://save-sd.github.io/2018/
https://www2018.thewebconf.org/
https://opencitations.wordpress.com/2017/05/15/the-sloan-foundation-funds-opencitations/
https://sloan.org/
http://opencitations.net/
https://w3id.org/oc/corpus
https://w3id.org/oc/index/coci


I. Heibi et al. / Enabling text search on SPARQL endpoints through OSCAR 207

inside the OpenCitations website so as to enable searches on these datasets, thus permitting ordinary
Web users to compose and obtain responses to simple textual queries.

The original version of OSCAR (Version 1.0), described in [6], was able to accept free-text queries
that were analysed so as to understand the user intent, and then executed in the background by employing
the appropriate SPARQL query. Since then, we have developed new features in response to users needs
and the outcomes of the usability studies described in [6]. This paper reports these new features, made
possible by additions of the OSCAR architecture. Specifically:

• Users now have the ability, using an advanced query interface, to create multiple field queries and to
combine them using logical connectors. For example, it is possible to query for articles published in
2015 that have ‘John Michael’ as one of the authors. The logical connectors available are “AND”,
“OR”, and “AND NOT”, as in existing approaches for building such complex queries, such as that
implemented in Scopus.12

• A set of preprocessing functions are available that can be applied to the initial input in order to
modify its form, so as to make it suitable for use within the specified SPARQL queries – e.g.
“provide the lowercase version of the input DOI”.

• The table of results returned by a SPARQL query is extended, with new columns containing addi-
tional data retrieved by calling external services, such as REST APIs.

• Users can specify conversion rules, which are employed to modify the values in the results table
into formats more appropriate for visualisation purposes – e.g. an ISO date such as “2018-11-27”
can be presented as “27 November 2018”.

• The organisation of the configuration file that has to be created to customise OSCAR for a particular
SPARQL endpoint has been restructured into a more intuitive and comprehensible form. In addition,
the customization of additional stylistic and filtering features are enabled.

To demonstrate the current usage of OSCAR, and its reusability in contexts different from the one for
which had been developed (i.e. searching the OpenCitations Corpus), we have analysed the traffic log of
its use on the OpenCitations databases, and we demonstrate a configuration of an OSCAR instance that
works the Wikidata SPARQL endpoint [19]. Although our focus is on the scholarly domain, from which
we take our examples of SPARQL endpoints to query, we would like to stress the fact that OSCAR is
fully customizable to any domain and applicable for SPARQL endpoints of RDF triplestores containing
other types of data.

The rest of the article is organized as follows. In Section 2, we describe some of the most important
existing SPARQL-based searching tools. In Section 3, we describe OSCAR and discuss its model def-
inition and architectural form, with a special focus on the new features introduced in Version 2.0. In
Section 4, we demonstrate its use with two OpenCitations datasets (COCI and OCC) and with Wikidata,
while, in Section 5, we give some statistics about its use within OpenCitations. Finally, in Section 6, we
conclude the article and sketch out some future works.

2. Related works

In the past, several projects that allow the customisation of SPARQL queries according to user needs
have been presented. They can be classified into two categories. The first generate and apply SPARQL
queries starting from a free text or a form-based input search, hiding the complexities of the SPARQL

12https://www.scopus.com/

https://www.scopus.com/


208 I. Heibi et al. / Enabling text search on SPARQL endpoints through OSCAR

query behind a simple and familiar-looking search interface. We say that these interfaces are ’unaware-
user’ tools since they permit users to make textual queries without needing to understand the complexity
of the Semantic Web languages used for storing and querying the data.

Scholia [11] is such a tool. It is a Web application to expose scientific bibliographic information
through Wikidata. In particular, its Web service creates on-the-fly scholarly profiles for researchers,
organizations, journals, publishers, individual scholarly works, and research topics, by querying the
SPARQL-based Wikidata Query Service. A search field on the front page of Wikidata permits a user to
look for a particular name and displays its data by means of well-structured visual interfaces.

Another tool of this type is BioCarian [20]. This is an efficient and user-friendly search engine for per-
forming exploratory searches on biological databases, providing an interface for SPARQL queries over
RDF triplestores, and providing a graphical interface for the results based on facets. It allows complex
queries to be constructed and has additional features like filtering and ranking the results according to
user-selected facet values.

A further striking example of this category of tools, fully customisability by users wishing to define
a user-friendly SPARQL query service on their datasets, is Elda, the Epimorphics implementation of
the Linked Data API.13 ELDA is a Java implementation of the Linked Data API,14 that provides a
configurable way to create an API to access RDF datasets using simple RESTful URLs. These URLs
are mapped into the corresponding SPARQL queries to be executed on the defined SPARQL endpoints.
It can be configured into a web application that permits users to access and view the data easily through
a web browser.

OSCAR, of course, is a further member of this category of ‘unaware-user’ tools.
The other category refers to tools that aim at helping the user to build a SPARQL query by using

specific visual constructs that mimic the various operations made available by SPARQL (filters, values
selections, etc.). In this case, the users are very aware that they are using Semantic Web technologies,
and the function of these tools is only to guide the user in creating the query of interest. These tools are
grouped under the label ‘aware-user’ tools.

Within this category, we have the Wikidata Query Service (WDQS) [10], which is a Web interface that
enables the creation of a SPARQL query by writing the actual label associated to each item and property,
instead of employing the URL customarily used for identifying it. In addition, it makes available several
visualisation interfaces for the results, from a simple table to very complex diagrams and graphs. The
strategy adopted in WDQS is close to that proposed by two other tools: NITELIGHT [17], a Graphical
Tool for Semantic Query Construction, and YASGUI [15] [16] (Yet Another SPARQL GUI). YASGUI
does not actually offer the possibility of building the SPARQL query graphically, nor does it translate
the SPARQL query in any graphical representation. However, an important feature of YASGUI is that it
provides the automatic completion of the query at real time.

ViziQuer [21] is another tool which extracts and visualizes graphically the data schema of the end-
point. The user is then able to overview the data schema and use the understanding gained to construct a
SPARQL query according to that schema.

Along the same lines is Visual SPARQL Builder (VSB),15 a tool which allows users to create and
run SPARQL queries with a browser’s graphical interface. While WDQS exposes the SPARQL query
to the user, VSB hides it entirely behind blocks which explicitly represent all the SPARQL constructs,

13http://www.epimorphics.com/web/tools/elda.html
14https://code.google.com/p/linkeddata-api
15https://leipert.github.io/vsb/

http://www.epimorphics.com/web/tools/elda.html
https://code.google.com/p/linkeddata-api
https://leipert.github.io/vsb/


I. Heibi et al. / Enabling text search on SPARQL endpoints through OSCAR 209

including filters. Upon execution, the visual queries are translated to SPARQL code, which is made
accessible to the user, and the results are shown in structured tables.

2.1. Tools comparison

Here we compare these aforementioned tools with OSCAR. The comparison is based on a set of
relevant features common to SPARQL-based searching engines. The chosen features are based on our
personal observations of the related tools and of OSCAR usage. Table 1 lists the selected features and
provides a brief description of each one.

Taking into consideration these features, we have built a comparison table, shown in Fig. 1, illustrating
how each tool rates for these features. OSCAR is included, although detailed descriptions of all its
properties are given later in this paper. The tools having a green background indicate the ‘unaware-user’
tools: applications that let users query the dataset without explicit knowledge of the SPARQL query,
using instead simple textual values as input. The tools with yellow background indicate the ‘aware-user’
tools: applications that let users edit a shown SPARQL query directly, in some cases with the assistance
of visual constructs and graphical instruments provided by the tool.

From the data presented in Fig. 1, we notice that ELDA is the closest tool to OSCAR. The main
difference is regarding the ‘Post operations’. In OSCAR we wanted to let the adopter permit additional
customizable actions over the results retrieved from the SPARQL query execution. We achieve this by
combining SPARQL with Javascript to build a more powerful mechanism to control the display of the
final results generated in response to the SPARQL query. On the other hand, ELDA upstages OSCAR in
supporting the customization of the SPARQL query and presenting query execution statistics.

Table 1

A brief description of the features used to compare the tools mentioned in the previous section. These features cover important
common aspects of SPARQL-based search engines

Feature Description
Searching options The type of actions available in the tool interface to let users query the

RDF dataset
Dataset The type of datasets the tool handles
Pre-processing The set of operations the tool performs before the SPARQL query

execution
Post-processing The set of operations the tool performs after the SPARQL query

execution, these operations taking effect on the retrieved SPARQL
query results

Filtering options The filters that can be applied to the results from the tool interface
View and edit the SPARQL query Indicates that it is possible to preview the SPARQL query and edit it

manually
Statistics and performances of the executed Query Indicates that the tool calculates and shows statistics regarding the

SPARQL query execution (e.g. time of execution)
Layout The way results are represented and shown
Presentation The set of available operations to alter the graphical presentation of the

results
Export data Whether is possible to export the shown results, the data-format will

also be specified
Customisability The options the tool guarantee to let users customize it to there own

needs and usage through one or more configuration file
Programming language The programming language used to develop the tool



210
I.H

eibietal./E
nabling

textsearch
on

SPA
R

Q
L

endpoints
through

O
SC

A
R

Fig. 1. Comparison table for SPARQL-based searching tools. The first column lists the features used to compare the tools presented individually in each following
column. The features are: searching options; dataset; pre-processing; post-processing; filtering options; view and edit the SPARQL query; layout; presentation;
export data; system requirements; customisability, programming language. The tools are represented in 3 categories: (1) OSCAR, our proposed tool, (2) other
‘unaware-user’ tools: Scholia, Elda and BioCarian, (3) ‘aware-user’ tools: ViziQuer, VSB, NITELIGHT, YASGUI and WDSQ.



I. Heibi et al. / Enabling text search on SPARQL endpoints through OSCAR 211

When looking at the ‘Layout’ feature, we can see that Scholia is the one that offers the greatest number
of graphical presentations, these visual representations being generated by the integration of the WDQS
components. While the main purpose of OSCAR is for searching a triplestore and presenting a list of the
items matching the search criteria, the additional activity of browsing the resources is the function of a
separate additional application we have created, called LUCINDA. LUCINDA16 is compatible with and
integrates with OSCAR, but is separate from it.

From the listed tools, there are only three (including OSCAR) which can be customized and redefined
according to personal needs. Of these, only OSCAR and ELDA provide a customizable configuration
for the generated GUI.

Of those ‘aware-user’ tools (with yellow background), where the user acts explicitly on the SPARQL
queries, few permit any pre/post query operations. The common approach is to work directly on
the SPARQL query, by helping users build queries that satisfy their needs, without additional post-
processing. The fact that they don’t have any pre-processing operation is due to the fact that users have
full control of the values inserted inside the SPARQL queries.

3. OSCAR, the OpenCitations RDF Search Application

OSCAR, the OpenCitations RDF Search Application, is an open-source stand-alone javascript appli-
cation which can be embedded in a webpage so as to provide a human-friendly interface to search for
data within RDF triplestores by means of SPARQL queries. It is possible to configure OSCAR to work
with a particular SPARQL endpoint by configuring a JSON document which specifies how the SPARQL
queries are sent to that endpoint, and how the returned query results should be visualized, according to
the predefined tabular view that OSCAR provides. The source code and documentation of OSCAR are
available on GitHub at https://github.com/opencitations/oscar. OSCAR is currently licensed under the
ISC License.17 The second version of OSCAR presented in this paper is also available for download
through the Zenodo service [5]. This published version of OSCAR on Zenodo is a stable one, uploaded
after the last commit made on the GitHub repository before submitting this paper.

When OSCAR was presented for the first time at the SAVE-SD 2018 Workshop [6], we had configured
it to meet the need for a number of specific requirements, based on our experience and observation of
the requirements of users while requesting data included in the OpenCitations datasets. In particular:

• OSCAR must permit one to operate on and post-process the result set returned by the execution of
a SPARQL query. These operations could be applied to one or more of the result fields included in
the tabular interface presented to a user, and needed to be done dynamically at real time without
any further querying of the SPARQL endpoint;

• each part of OSCAR – interface, functionalities and queries – must be customizable according to
the user needs. This operation should be handled easily through a specific configuration module;

• OSCAR must be easily configured to work with any RDF triplestore providing a SPARQL endpoint,
and must also be easy to integrate as a new module within any webpage.

As a consequence of the outcomes of the usability test described in [6] and in response to additional
feedback gathered from users of OSCAR through personal communication, we have extended the afore-
mentioned requirements with the following ones, so as to significantly improve the searching experience
and potentials of OSCAR:

16https://github.com/opencitations/lucinda
17https://github.com/opencitations/oscar/blob/master/LICENSE

https://github.com/opencitations/oscar
https://github.com/opencitations/lucinda
https://github.com/opencitations/oscar/blob/master/LICENSE


212 I. Heibi et al. / Enabling text search on SPARQL endpoints through OSCAR

• To allow an additional more sophisticated advanced search form, which connects a number of rule-
oriented queries using logical connectors, specifically “AND”, “OR” and “AND NOT”.

• To pre-process the query input provided by a user into a more useful form for the construction of
the SPARQL query, by the application of some heuristics.

• To make available additional post-processing operations, such as to integrate additional data on the
table of results by calling external services (e.g. REST API) and/or converting specific values in
the result table into a more appropriate form for visualisation purposes, e.g. converting ISO dates
(“2018-11-27”) into natural dates (“27 November 2018”).

In the following subsections, we describe the general architecture of OSCAR, its workflow, and how its
customisation (via the configuration file) works, focusing in particular on the new components integrated
into Version 2.0 of OSCAR presented in this article, since a detailed discussion of the features of Version
1.0 has already been provided [6].

3.1. Architecture of OSCAR

All the functionalities implemented by OSCAR are executed in the browser (client side), so as to make
it easily reusable in different contexts and with different Web sites without the need of handling specific
programming languages for running the back-end scripts. In particular, each OSCAR instance is defined
by three files:

(1) search.js, the main core of the tool, which handles its behaviour and defines its model;
(2) search-conf.js, the configuration file which defines all the parameters and customises OSCAR to

work with a specific SPARQL-endpoint;
(3) search.css, the CSS stylesheet that defines the layout and other stylistic aspects of the OSCAR user

interface.

All these files need first to be imported into an HTML page that will provide the user with the OSCAR
text query interface. In addition, a skeleton HTML snippet needs to be included in such a Web page, that
will be populated with the result of the OSCAR search operation. This snippet is defined as follows:

<div id="search" class="search">
<div id="search_extra" class="search-extra"></div>
<div id="search_header" class="search-header">
<div id="rows_per_page"></div>
<div id="sort_results"></div>

</div>
<div id="search_body" class="search-body">
<div id="search_filters" class="search-filters">

<div id="limit_results"></div>
<div id="filter_btns"></div>
<div id="filter_values_list"></div>

</div>
<div id="search_results" class="search-results"></div>

</div>
</div>



I. Heibi et al. / Enabling text search on SPARQL endpoints through OSCAR 213

The skeleton layout of the aforementioned OSCAR results interface (element div with attribute
@id = search) is composed of three main sections, defined by specific div elements: the section
extra (@id = search_extra), the section header (@id = search_header), and the section
body (@id = search_body).

The section extra can be used to make available additional functionalities and operations to the results
of a search operation. Currently, it includes a mechanism for exporting the results shown as a CSV file.
The section header contains components that allow one to modify the table of results from a visual
perspective – e.g. by specifying the maximum number of rows to be visualized per page, and by sorting
the results according to a specific column or field. Finally, the section body is where the results are
actually shown. It contains a table populated with the results obtained from the query execution, and a
series of filters that enable a user to refine the results, so as to retain or exclude specific values.

The organisation of the structure of the aforementioned sections (and of all the subsections they con-
tain) can be customized according to particular needs. In particular, one can decide which components
are to be included within or excluded from the results Web page by keeping within that Web page the
relevant HTML fragment, or by omitting it. Furthermore, while OSCAR provides a set of basic layout
rules for all the components, these can be freely customised so as to align them with the particular style
required by the Web site under consideration.

3.2. The workflow

The workflow implemented by OSCAR is described in Fig. 2, where we introduce all the operations
that OSCAR enables, and the various steps it runs as consequences of such operations. The process starts
with the generation of the search interface, which is the mechanism used to permit someone to decide
between two searching options: either (1) to input a simple free textual query within the text search box
provided by the interface, or (2) to perform an advanced search using multiple field queries, connecting
them by means of the “AND”, “OR”, and “AND NOT” logical operations. This results in two different
workflows, according to the searching choice made by the user.

In case of a free text search, when a query is run (by pressing the enter key or by clicking on the lens
provided in the interface to the right of the free-text field), OSCAR determines which SPARQL query it
has to execute in order to provide results to match the particular textual input specified. As described in
more detail in Section 3.3, the configuration file allows one to specify a sequence of rules, each defining
a SPARQL query and a particular regular expression. OSCAR iterates each rule as it appears in the
sequence, and it runs the related SPARQL query with the application of a number of heuristics (defined
in the configuration file) only if the input text matches the regular expression specified in the rule under
consideration. If no results are returned by that particular SPARQL query, OSCAR iterates to the next
rule and its associated SPARQL query until a result is returned, or until no result is found.

On the other hand, if a user chooses to run an advanced search, the workflow will directly start from
the application of the heuristics and the execution of a complex SPARQL query, which is made through
the combination of several SPARQL group patterns combined through the appropriate connectors (e.g.
“UNION” and “FILTER NOT EXISTS”) according to the logical connectors chosen by the user from
the Web interface. Once we have a set of results returned by the SPARQL query, we move directly to the
post-processing phase. This workflow is shown by means of red arrows in Fig. 2.

Once a result is returned, additional operations are executed. First, OSCAR checks if some of the
fields returned in the result table actually represent URL links for values of other fields – according to
what is specified in the configuration file – and, if that is the case, it creates explicit links in the resulting



214 I. Heibi et al. / Enabling text search on SPARQL endpoints through OSCAR

Fig. 2. The workflow implemented by OSCAR (in blue, at the top) and the set of operations that a user can perform by using
the search interface and the results interface (in yellow, below). The bold elements are the new extensions added in Version
2.0 as a result of the feedback gathered during the usability testing session described in the SAVE-SD 2018 workshop [6]. The
red arrows define the specific workflow of the advanced search. Each operation is connected to the particular step within the
workflow that will be executed as a consequence of that operation. The set of operations are possible only after precise steps in
the workflow (the dashed lines specify these steps). After the execution of an operation, the workflow execution will move to
the next linked step.

Web page. For instance, if we consider a simple two-column table where each row describes the title
of an article and the URL from which one can retrieve its full metadata, OSCAR can be configured to
show the article title as a clickable link that allows one to go to the descriptive page for that article,
by incorporating into the title the related URL that would otherwise have been displayed in the second
column.

Then, OSCAR performs two new operations we have built for Version 2.0 if they are activated in
the configuration file. First, it calls external services using as parameters the values present in the table
returned by the SPARQL query, so as to integrate and/or extend the current table of results with addi-
tional information (e.g. a new column). For instance, considering the metadata describing a particular
bibliographic resource (such as those available in the OpenCitations Corpus), it is possible to call the
Crossref API18 with the DOI of the bibliographic resource (already specified in the table returned after
the SPARQL query), to retrieve the ISSN of the related journal where such bibliographic resource has
been published, and then to integrate such a new value under a new ‘issn’ column. Second, OSCAR
enables one to expose the values of specific columns in the table according to a new format following
precise transformation rules (expressed as regular expressions) specified in the configuration file. For
instance, the given name of a person (e.g. “John”) could be mapped into a new shape which keeps only
its first letter followed by a dot (e.g. “J.”).

After these passages, OSCAR performs a grouping operation following the parameters indicated in
the configuration file. This kind of operation allows one to group multiple rows of the results table
according to a particular field (a key). All the fields of such rows will be collected together, for example
by concatenating their textual values. For instance, consider the following query to be executed on the
OpenCitations Corpus SPARQL endpoint:

18https://api.crossref.org/

https://api.crossref.org/


I. Heibi et al. / Enabling text search on SPARQL endpoints through OSCAR 215

SELECT ?title ?iri ?author {
?iri
dcterms:title ?title ;
pro:isDocumentContextFor [

pro:withRole pro:author ;
pro:isHeldBy [
foaf:familyName ?author

]
]

}

This query will return a three column table which includes the title of a bibliographic resource, its IRI,
and the name of the author. Where a certain bibliographic resource has multiple authors, multiple rows
will be returned (one for each author of the article), each repeating the title and IRI of the bibliographic
resource and listing one of its authors in the third field. The grouping operation performed by OSCAR
groups all of these authors into one “author” cell in the third column, so as to provide just one row per
bibliographic resource in the result table.

Finally, OSCAR allows one to specify just a specific subset of the fields returned by the SPARQL
endpoint to display in the Web page, according to the specification given within the configuration file.
For instance, using the same example provided above, in this phase we can exclude the second column
depicting the IRI of the bibliographic resource since this IRI could have already been incorporated into
a clickable link added to the article title in the first column.

All the data obtained by the aforementioned operations are initialized and stored internally in four
different forms, called native data, filtered data, sorted data and visualised data respectively. Native
data are the complete original result-set after the execution of the aforementioned search operations.
Filtered data are the subset of the native data after the application of filtering operations executed by a
user through the OSCAR web interface (e.g. “show only the articles published in 2016”). Sorted data
are the subset of the filtered data after the execution (still by the user, through the Web interface) of
sorting operations (e.g. “sort the rows in descending order according to the number of citations that the
bibliographic resources have received”). Finally, visualised data are the subset of the sorted data that are
displayed in the Web page (for example, the first twenty results), while the others are hidden behind a
pagination mechanism so as to avoid filling up the entire page with all the results.

It is worth mentioning that, in the initialization phase, before filtering and sorting, all the filtered data
and sorted data are equivalent to the native data, while the visualised data (i.e. those actually shown in
the webpage) are a subset of the sorted data initially created using the display parameters specified in the
configuration file. The filtered and sorted data are then subsequently modified as a consequence of the
filtering and sorting operations undertaken by a user through the OSCAR Web interface. In fact, once
all the various data are initialised, OSCAR builds its layout and interface, and thus enables the user to
interact with the results by executing certain types of operation on the data – i.e. exporting, filtering,
sorting and visualising – introduced above. All the aforementioned operations, with the exception of the
exporting operation, result in updating the user interface, which shows only the new subset of visualised
data obtained as a consequence of each operation, as summarized in Table 2.



216 I. Heibi et al. / Enabling text search on SPARQL endpoints through OSCAR

Table 2

All the possible operations that a user can perform on the results returned by a free-text search, arranged by the steps in the
OSCAR workflow in the order that they are executed

Step Operation Data modified Description
Export Export into a CSV file Sorted data The sorted data are exported into a CSV file
Filter Show all results Filtered data The filtered data are reset to the native data
Filter Modify number of results Filtered data Reduce the filtered data to a specified number of rows
Filter Filter by field Filtered data Exclude or show only the filtered data equal to some specific

values of a certain field
Sort Sort results by field Filtered data Sort (in ascending or descending order) all the filtered data

according to the value of a particular field
Visualize Browse pages Visualised data Show the visualized data, organized into pages, page by page
Visualize Modify number of rows Visualised data Increase or decrease the number of visualized data row shown at

any one time in the Web page

3.3. Customising OSCAR

OSCAR offers a flexible way to customise its behaviour according to different needs. In particular,
an adopter has to modify a particular configuration file (i.e. search-conf.js, which contains a JSON
object) so as to customize the tool for the particular SPARQL endpoint to be queried – as illustrated
in the documentation of the tool available on the GitHub repository.19 An excerpt of an exemplary
configuration file is shown as follows (while a full example20 is available online):

{
"sparql_endpoint": "https://w3id.org/oc/sparql",

"prefixes": [
{ "prefix":"cito", "iri":"http://purl.org/spar/cito/" },
{ "prefix":"dcterms", "iri":"http://purl.org/dc/terms/" },
...

],

"rules": [
{
"name":"doi",
"advanced": true,
"freetext": true,
"heuristics": [[lower_case]],
"category": "document",
"regex":"(10.\\d{4,9}\/[-._;()/:A-Za-z0-9][^\\s]+)",
"query": [

"{",
"?iri datacite:hasIdentifier/literal:hasLiteralValue ’[[VAR]]’ .",
"}"

]
},
...

],

"categories": [
{

19https://github.com/opencitations/oscar/blob/master/doc/README.md
20http://opencitations.net/static/js/search-conf.js

https://github.com/opencitations/oscar/blob/master/doc/README.md
http://opencitations.net/static/js/search-conf.js


I. Heibi et al. / Enabling text search on SPARQL endpoints through OSCAR 217

"name": "document",
"label": "Document",
"macro_query": [

"SELECT DISTINCT ?iri ?short_iri ?short_iri_id ?browser_iri ?doi ...",
"WHERE {",

"[[RULE]]",
"OPTIONAL { ... }}",

],
"fields": [

{
"iskey": true, "value":"short_iri",
"label":{"field":"short_iri_id"},
"title": "Corpus ID", "column_width":"15%",
"type": "text",
"sort": {"value": "short_iri.label", "type":"int"},
"link": {"field":"browser_iri","prefix":""}

},
...

],
"group_by": {"keys":["iri"], "concats":["author"]},
"ext_data": {

"crossref4doi": {
"name": call_crossref, "param": {"fields":["doi"]},
"async": true}

},
...

],
...

}

This configuration file allows one to specify the SPARQL endpoint against which the SPARQL queries
are to be run, and the SPARQL prefixes to use in the various queries. In addition, it enables the spec-
ification of the rules for executing the appropriate SPARQL queries. In particular, each rule includes a
name, an activator (i.e. a regular expression shaping a particular string pattern), a category describing the
types of data that will be collected (see below), and the SPARQL query to include into the macro query,
defined under the specified category, in order to build the correct sequence of SPARQL group patterns
to execute once the activator matches with the textual input query provided by the user. In the case of
an advanced search, we might have multiple queries from several rules which need to be connected, fol-
lowing the logical connectors specified in the user interface (“AND”, “OR”, and “AND NOT”), with the
corresponding SPARQL constructs. These segments are then moved inside the extended macro query
defined under the corresponding category of the rule. A specific boolean flag can determine whether a
specific rule should be taken into consideration for the free-text and/or the advanced search. The pre-
processing functions (key “heuristics”) are also defined in the ‘rule’ block. They are listed in the order
they must be called, and the result returned by the first will be used as the input for the second, and so
on.

Finally, the configuration file also comprises the categories, i.e. particular descriptive operations that
are applied to the results returned by the built SPARQL query defined inside them, after the combination
of the queries for the selected rules. Each category includes a name and a set of SPARQL query SELECT
variables. Each of these variables is accompanied by information about its presentation mechanisms (e.g.
the label to use for presenting it in the Web page, and the width of the table column in which to put the
related values), and about other filtering operations that can be applied to the values associated with that
variable (e.g. the operations link, group and select described in Section 3.2).



218 I. Heibi et al. / Enabling text search on SPARQL endpoints through OSCAR

4. Configuring OSCAR for OpenCitations and Wikidata

An important aspect of OSCAR concerns its flexibility to be adapted to work with any SPARQL
endpoint. The first version of OSCAR, presented at the SAVE-SD workshop [6], was demonstrated to
work with three RDF datasets: the OpenCitations Corpus [14], ScholarlyData [12] and Wikidata [19].

In this article, we present new and more detailed configurations compliant with the new version of
OSCAR which enables one to search on the two main datasets of OpenCitations, i.e. the OpenCitations
Corpus (OCC) and COCI, and on a precise Wikidata subset, i.e. that dedicated to the description of
scholarly articles. In the following subsections, we analyse each case separately and show the config-
urations made to OSCAR for each chosen search strategy (free-text and advanced search), the features
included, and the appearance of the final interface generated.

4.1. The OpenCitations Corpus

The OpenCitations Corpus (OCC) is an open repository of scholarly citation data and bibliographic
information that we have developed. Originally this database was the main target and incentive for the
development of OSCAR. Currently, the OCC contains 14 million citation links between more than 7
million bibliographic resources.

The OSCAR search interface for the OCC is available at http://opencitations.net/search. The use of
OSCAR, in this case, enables the search of two entities included in the OCC: documents (bibliographic
resources) and authors.

We have now configured OSCAR for both the free-textual and advanced search. In particular:

• The free-text search allows the recognition of two different types of input: unique global identifiers
(DOIs and ORCIDs, that identify published articles and authors, respectively), and any other textual
string which could be used to identify the title of a document or the name of an author. It is worth
mentioning that this text search string is not matched against the abstracts and the keywords of
documents since these data are not currently stored within the OCC. In Fig. 3, we show a screenshot
of OSCAR after the execution of a free text search using the string ‘machine learning’.

• The form used for the advanced search changes, depending on the kind of entities we are looking
for. In the case of bibliographic resources (i.e. published articles), three searching parameters are
available which can be combined/connected by using logical operations: the DOI value, a keyword
to search for inside the title/subtitle of the bibliographic resource, and the author last name of such
resource. Alternatively, where the user is interested in searching for authors, three parameters are
available through the interface: the ORCID, the last name, the first name of the author. In Fig. 4,
we show a screenshot of the advanced search interface available for the OCC. In that example, we
are looking for all the documents containing either the words ‘semantic’ or ‘open citations’ in their
title/subtitle, and having “shotton” as string specified to one of the authors’ last name. Once the
button ‘Search in OC’ is clicked and the query is executed, the results will appear in a table which
looks like the one in Fig. 3.

The configuration file of this instance of OSCAR is available online at http://opencitations.net/static/
js/search-conf.js.

4.2. The COCI dataset

COCI, the OpenCitations Index of Crossref open DOI-to-DOI references, is an RDF dataset contain-
ing details of all the citations that are specified by the open references to DOI-identified works present in

http://opencitations.net/search
http://opencitations.net/static/js/search-conf.js
http://opencitations.net/static/js/search-conf.js


I. Heibi et al. / Enabling text search on SPARQL endpoints through OSCAR 219

Fig. 3. The Results interface of OSCAR for the OCC: the results shown are those obtained after the application of a free-text
search using the string ‘machine learning’ (http://opencitations.net/search?text=machine+learning). Each row represents a bib-
liographic resource, while the fields represent (from left to right): the resource identifier in the OpenCitations Corpus (Corpus
ID), the year of publication (Year), the title (Title), the list of authors (Authors), and how many times the bibliographic resource
has been cited by other resources according to the data available in the OCC (Cited by).

Crossref. These citations are treated as first-class data entities, with accompanying properties including
the citation timespan, modelled according to the data model described in the Open Citation model web-
page.21 COCI was first created and released on June 2018, and currently contains almost 450 million
citations link between 46 million bibliographic resources.

For searching COCI, we have configured OSCAR to be used only through an advanced search in-
terface, which is currently available at http://opencitations.net/index/coci/search. Users will have three
possible searching parameters available to be combined: the value of the citing DOI, the value of the
cited DOI, the Open Citation Identifier (OCI) of the citation. These fields may be combined and con-
nected in a complex query using the usual logical connectors. Figure 5 shows the result interface of
OSCAR after searching for the value ‘10.1186/1756-8722-6-59’ as citing DOI in COCI. In this case, the
values within the fields “Citing references” and “Cited references” are provided by querying the Crossref
REST API with the DOI of the citing and cited entities.

The configuration file of this instance of OSCAR is available online at http://opencitations.net/static/
js/search-conf-coci.js.

4.3. Wikidata

Wikidata is a free open knowledge base which acts as a central store for the structured data of Wikime-
dia Foundation projects including Wikipedia, and of other sites and services. Wikidata offers a SPARQL
query service and already has its own powerful Web graphical user interface for facilitating the users to
construct SPARQL queries. Our OSCAR customisation to the Wikidata SPARQL endpoint is thus made

21https://w3id.org/oc/model

http://opencitations.net/search?text=machine+learning
http://opencitations.net/index/coci/search
http://opencitations.net/static/js/search-conf-coci.js
http://opencitations.net/static/js/search-conf-coci.js
https://w3id.org/oc/model


220 I. Heibi et al. / Enabling text search on SPARQL endpoints through OSCAR

Fig. 4. The advanced search interface for the OCC. In this example we are looking for all the documents containing either
the words ‘semantic’ or ‘open citations’ in their title/subtitle, and having one of the authors with last name ‘shotton’ –
http://opencitations.net/search?text=shotton&rule=author_text&bc_1=and&text=semantic&rule=any_text&bc_2=or&text=
shotton&rule=author_text&bc_3=and&text=open+citations&rule=any_text.

entirely for demonstration purposes, rather than to provide new functionality for Wikidata users. While
Wikidata contains a wide variety of information, we decided to limit our customisation of OSCAR to
bibliographic entities within the scholarly domain.

We have consulted previous articles which talk about how to query the Wikidata dataset [9], and the
actual data model used by Wikidata [3]. Based on this information, we have built an entirely new OSCAR
interface dedicated to Wikidata querying, available at the following link https://opencitations.github.io/
oscar/example/v2/wikidata.html. This interface has been also recently presented at the WikiCite 2018
conference in Berkeley, California [7].

The OSCAR configuration for Wikidata includes both the free-text and the advanced search options.
Users can decide whether they want to search for scholarly documents or their authors. In the case of
scholarly documents, users can retrieve them by typing: (1) a DOI, (2) the name of the journal where such
document has been published, (3) the cited articles, (4) the articles referenced, (5) the earliest publication
year, (6) the Wikidata QID, or (7) a free textual input. All these options can be combined to build a
complex query through the advanced searching option. For instance, in Fig. 6 the advanced query built
asks to retrieve all the articles citing the scholarly document with DOI “10.1145/2362499.2362502”,
where the citing articles have been published in the “Journal of Documentation”.

Where the required results concern authors rather than publications, users can retrieve results by typ-
ing: (1) the ORCID, (2) a DOI of a specific work, (3) the job or profession of the author, (4) the last

http://opencitations.net/search?text=shotton&rule=author_text&bc_1=and&text=semantic&rule=any_text&bc_2=or&text=shotton&rule=author_text&bc_3=and&text=open+citations&rule=any_text
http://opencitations.net/search?text=shotton&rule=author_text&bc_1=and&text=semantic&rule=any_text&bc_2=or&text=shotton&rule=author_text&bc_3=and&text=open+citations&rule=any_text
https://opencitations.github.io/oscar/example/v2/wikidata.html
https://opencitations.github.io/oscar/example/v2/wikidata.html


I. Heibi et al. / Enabling text search on SPARQL endpoints through OSCAR 221

Fig. 5. The results interface for COCI in the OpenCitations OSCAR website after using its advanced search option and executing
a query to look for all the resources (citation entities) having the value ‘10.1186/1756-8722-6-59’ as citing DOI – http://
opencitations.net/index/coci/search?text=10.1186%2F1756-8722-6-59&rule=citingdoi.

name, or (5) the first name. As for queries concerning publications, users can also decide to build a
complex query and combine these options using the “AND” / “OR” / “AND NOT” logical connectors.

The current demo available online already presents a set of query examples to try. In Fig. 7 we
demonstrate the way OSCAR shows the results retrieved after asking for the list of articles citing the
scholarly article with DOI “10.1016/J.WEBSEM.2012.08.001”, with a publication year no earlier than
2015.

The configuration file of this instance of OSCAR is available online at https://opencitations.github.io/
oscar/example/v2/static/js/search-conf-wikidata.js.

5. Usage statistics from OpenCitations

We have been collecting and monitoring the usage of OSCAR within the OpenCitations website for
searches of both the OCC and COCI datasets. These data refer to the access information to OSCAR
since its launch in OpenCitations in February 2018. The statistics and graphics we show in this section
highlight the community uptake of OSCAR, and the way it has been used by the users.

This section of the paper is divided in two parts. First, we discuss the general usage of OSCAR since
its first integration within the OpenCitations website. In the second part, we analyse the different kinds
of query that have been performed by the users.

All the data of the charts described in this section are freely available for download and further analysis
[8].

http://opencitations.net/index/coci/search?text=10.1186%2F1756-8722-6-59&rule=citingdoi
http://opencitations.net/index/coci/search?text=10.1186%2F1756-8722-6-59&rule=citingdoi
https://opencitations.github.io/oscar/example/v2/static/js/search-conf-wikidata.js
https://opencitations.github.io/oscar/example/v2/static/js/search-conf-wikidata.js


222 I. Heibi et al. / Enabling text search on SPARQL endpoints through OSCAR

Fig. 6. The OSCAR interface for querying the Wikidata scholarly documents. On the top right of the page we have an input
box for free-text search, while on the bottom we have a section dedicated to advanced search. The constructed query retrieves
all the articlesciting “10.1145/2362499.2362502” published in “Journal of Documentation”.

5.1. General usage

We gathered the statistics regarding the accesses to OSCAR through the OpenCitations website on
both the OCC and COCI datasets maintained by OpenCitations. In Fig. 8 the graph shows the number of
queries launched for each different dataset, from February 2018 (the date when OSCAR was launched
and integrated inside the OpenCitations website) to September 2018. In addition to the total number
of accesses, the graph shows the number of queries that led to further navigation to browse one or
more of the resources that had been found and listed in the results table (OCC-browse, COCI-browse).
In particular, this navigation starts by clicking on the contents of the results table, so as to access the
metadata related to that particular entity (e.g. a document or an author). The resources are browsed using
another tool called LUCINDA, which is a separate tool made available by OpenCitations to provide an
HTML presentation of the data of a particular entity included the OpenCitations datasets. The description
of LUCINDA goes beyond the scope of this paper – for further details we recommend visiting the
repository and documentation of LUCINDA at https://github.com/opencitations/lucinda.

https://github.com/opencitations/lucinda


I. Heibi et al. / Enabling text search on SPARQL endpoints through OSCAR 223

Fig. 7. The results interface of OSCAR for Wikidata after using its advanced search, after asking OSCAR to retrieve the list of
articles citing 10.1016/J.WEBSEM.2012.08.001, where the citing publications have a publication year of 2015 or later. Each
row represents a publication, while the fields represent (from left to right): the resource identifier in Wikidata (Q-ID), the title
(Work title), the list of authors (Authors), the number of citations (Cited), and the year of publication (Date).

From Fig. 8 we can notice a peak in the usage of OSCAR for OCC during March 2018 (the month
after its launch) and June 2018. The latter peak is probably due to the integration of LUCINDA in the
website, enabling the searched items to be browsed and visualized. We can see a high number of accesses
that led to a redirection from OSCAR to the LUCINDA resource browser page. In the COCI case, the
peak point happened in July 2018, i.e. the month after its official release.

We wanted also to monitor the usage of the new advanced search feature added to OSCAR Version
2.0, and its ability to build complex queries with multiple restrictions by means of logical connectors.
From Fig. 9 we can notice that this new feature is still not so popular among the users searching the
OpenCitations datasets. This statistic is significant and might suggest the need to make further analysis
of the usability of the advanced search and how we could improve it, to encourage users using it.

5.2. Queries

In this section, we wanted to answer the question ‘what type of queries users do?’. We made two
different analysis for the OCC and the COCI case.

In the case of the OCC dataset, we wanted to see which are the categories mostly searched by users
among documents and authors. Figure 10 shows these queries for each month starting from March to



224 I. Heibi et al. / Enabling text search on SPARQL endpoints through OSCAR

Fig. 8. The number of queries launched through OSCAR from the OpenCitations web site, searching for OCC or COCI re-
sources, for each different month starting from February 2018 to September 2018. For each dataset we show the number of
queries that led to subsequent LUCINDA browsing of the metadata returned by the OSCAR search. Note that the vertical axis
uses a logarithmic scale.

September 2018. No values are reported for February 2018, due to the fact that the first version of
OSCAR did not have any feature to distinguish between an author query or a document query since
the input accepted was only free-text without any category attribution to it. The results show that users
search for documents more frequently than they do for authors. However, since the results returned for
a document query includes the authors’ names, which could be further browsed, it may be that users
search for authors indirectly by first looking up one of their works.

In the OSCAR instance for COCI, we have just one possible category, since the only type of resources
included in the dataset are citations. Therefore, we made an analysis on the type of queries that users
specified, among the three possible queries that can be made to retrieve information from COCI: (1) a
query for a citing bibliographic resource, made by specifying its DOI, (2) a query for a cited biblio-
graphic resource, made by specifying its DOI, or (3) a query for a citation, made by specifying its Open
Citation Identifier (OCI),22 the globally unique persistent identifier for a bibliographic citation. As we
can see from the histogram in Fig. 11, the number of queries increases markedly from the month of
July 2018 (as is also confirmed from the previous Fig. 8), and we notice that users prefer typing a citing
DOI as input, and retrieve the list of all the citations made by that paper (i.e. its reference list). It is not
unexpected to see the low numbers of OCI searches since it is uncommon for a user to know the specific
OCI identifier of the citation.

6. Conclusions

In this paper, we have introduced a new extended version, Version 2.0, of OSCAR, the OpenCitations
RDF Search Application. OSCAR is a user-friendly searching tool to use with RDF triplestores having

22http://opencitations.net/oci

http://opencitations.net/oci


I. Heibi et al. / Enabling text search on SPARQL endpoints through OSCAR 225

Fig. 9. The number of complex queries (with logical connectors) launched through OSCAR from the OpenCitations web site,
searching for COCI or OCC resources, for each different month starting from February 2018 to September 2018.

Fig. 10. The number of queries launched through OSCAR from the OpenCitations web site, searching for author or document
resources inside the OCC corpus, for each different month starting from February 2018 to September 2018.

a SPARQL endpoint. We have introduced its main features and discussed its additional features, mainly
concerning the new advanced search option.

To test its adaptability to work with different SPARQL endpoints, we defined three different configu-
rations of OSCAR, to permit it to search three datasets: OCC and COCI (both maintained by OpenCi-



226 I. Heibi et al. / Enabling text search on SPARQL endpoints through OSCAR

Fig. 11. The number of queries launched through OSCAR from the OpenCitations web site, searching inside the COCI dataset,
for each different month starting from April 2018 to September 2018. The results show the number of searches per month for a
citing entity by specifying its DOI (blue), for a cited entity by specifying its DOI (orange), and for a citation itself by specifying
its open citation identifier (OCI),23 the globally unique persistent identifier for a bibliographic citation.

tations), and the Wikidata sub-dataset of scholarly data. To monitor the usage of OSCAR we retrieved
access statistics from the OpenCitations website and analysed the frequency of different types of queries
and the types of results users most frequently looked for.

As mentioned in the Section 5, we have separately developed a related tool, named LUCINDA, to
browse the resources accessible through a SPARQL endpoint. In particular, LUCINDA has the ability to
visualize the attributes of the resources and provide detailed information about bibliographic resources
such as journal names, page numbers, and additional identifiers. As with OSCAR, this new browsing
tool is already integrated within the OpenCitations website so as to provide human-readable descriptions
of the OpenCitations Corpus and COCI entities, but it is also fully customizable to work with OSCAR
over other SPARQL endpoints. LUCINDA will be described in a separate paper. Future extensions of
OSCAR will focus on its strong integration with this browsing tool.

OSCAR is currently licensed under the ISC License and is available to be integrated as a Web ap-
plication for any service wishing to build an RDF dataset text search engine. OSCAR is available for
download through the Zenodo service [5]. While this integration and configuration of OSCAR is made
using a single configuration file which contains all the parameters (SPARQL and GUI), we have not yet
published a properly structured user guide describing how to define such configuration file from scratch.
We are planning to rectify this deficiency with the next version of OSCAR. In the meantime, we highly
recommend anyone interested to try configuring and using OSCAR, and we are available to provide
advice and help as required.

23http://opencitations.net/oci

http://opencitations.net/oci


I. Heibi et al. / Enabling text search on SPARQL endpoints through OSCAR 227

Acknowledgements

We gratefully acknowledge the financial support provided to us by the Alfred P. Sloan Foundation for
the OpenCitations Enhancement Project (grant number G-2017-9800).

References

[1] T. Berners-Lee, J. Hendler and O. Lassila, The semantic web, Scientific American 284(5) (2001), 34–43. doi:10.1038/
scientificamerican0501-34.

[2] R. Cyganiak, D. Wood and M. Lanthaler, RDF 1.1 Concepts and abstract syntax, 2014, W3C Recommendation 25 Febru-
ary 2014, https://www.w3.org/TR/rdf11-concepts/.

[3] F. Erxleben, M. Günther, M. Krötzsch, J. Mendez and D. Vrandečić, Introducing Wikidata to the linked
data web, in: Proceedings of the 13th International Semantic Web Conference (ISWC 2013), 2014, pp. 50–65.
doi:10.1007/978-3-319-11964-9_4.

[4] S. Harris and A. Seaborne, SPARQL 1.1 Query Language, 2013, W3C Recommendation 21 March 2013, https://www.
w3.org/TR/sparql11-query/.

[5] I. Heibi and S. Peroni, 2019, opencitations/oscar: OSCAR v2.0.0. Zenodo, DOI, http://doi.org/10.5281/zenodo.2587541.
[6] I. Heibi, S. Peroni and D. Shotton, OSCAR: A customisable tool for free – text search over SPARQL endpoints, in: Pro-

ceedings of the 2018 International Workshop on Semantics, Analytics, Visualization: Enhancing Scholarly Dissemination
(SAVE-SD 2018), 2018, pp. 121–137, doi:10.1007/978-3-030-01379-0_9.

[7] I. Heibi, S. Peroni and D. Shotton, OSCAR and LUCINDA with Wikidata (WikiCite2018 presentation), Figshare, 2018,
doi:10.6084/m9.figshare.7396667.

[8] I. Heibi, S. Peroni and D. Shotton, Statistical data for the paper “Enabling text search on SPARQL endpoints through
OSCAR”. Figshare, 2019. doi:10.6084/m9.figshare.7785092.v1.

[9] D. Hernández, A. Hogan, C. Riveros, C. Rojas and E. Zerega, Querying wikidata: Comparing SPARQL, relational and
graph databases, in: Proceedings of the 15th International Semantic Web Conference (ISWC 2015), 2016, pp. 88–103.
doi:10.1007/978-3-319-46547-0_10.

[10] S. Malyshev, M. Krötzsch, L. González, J. Gonsior and A. Bielefeldt, Getting the most out of wikidata: Semantic technol-
ogy usage in Wikipedia’s knowledge graph, in: Proceedings of the 17th International Semantic Web Conference (ISWC
2018), 2018, pp. 376–394. doi:10.1007/978-3-030-00668-6_23.

[11] F. Nielsen, D. Mietchen and E. Willighagen, Scholia, scientometrics and Wikidata, in: Proceedings of the Satellite Events
of the 14th Extended Semantic Web Conference (ESWC 2017), 2017, pp. 237–259. doi:10.1007/978-3-319-70407-4_36.

[12] A.G. Nuzzolese, A.L. Gentile, V. Presutti and A. Gangemi, Conference linked data: The ScholarlyData
project, in: Proceedings of the 15th International Semantic Web Conference (ISWC 2015), 2016, pp. 150–158.
doi:10.1007/978-3-319-46547-0_16.

[13] S. Peroni, A. Dutton, T. Gray and S. Shotton, Setting our bibliographic references free: Towards open citation data, Journal
of Documentation 71(2) (2015), 253–277. doi:10.1108/JD-12-2013-0166.

[14] S. Peroni, D. Shotton and F. Vitali, One year of the OpenCitations corpus – releasing RDF-based scholarly citation data
into the public domain, in: Proceedings of the 16th International Semantic Web Conference (ISWC 2017), 2017, pp. 184–
192. doi:10.1007/978-3-319-68204-4_19.

[15] L. Rietveld and R. Hoekstra, May. YASGUI: Not just another SPARQL client, in: Proceedings of the Satellite Events of
the 10th Extended Semantic Web Conference (ESWC 2013), 2013, pp. 78–86. doi:10.1007/978-3-642-41242-4_7.

[16] L. Rietveld and R. Hoekstra, The YASGUI family of SPARQL clients, Semantic Web 8(3) (2017), 373–383. doi:10.3233/
SW-150197.

[17] A. Russell, P.R. Smart, D. Braines and N.R. Shadbolt, Nitelight: A graphical tool for semantic query construction, in:
Proceedings of the 5th International Workshop on Semantic Web User Interaction (SWUI 2008), 2008, http://ceur-ws.org/
Vol-543/russell_swui2008.pdf.

[18] D. Shotton, Open citations, Nature 502(7471) (2013), 295–297. doi:10.1038/502295a.
[19] D. Vrandečić and M. Krötzsch, Wikidata: A free collaborative knowledge base, Communications of the ACM 57(10)

(2014), 78–85. doi:10.1145/2629489.
[20] N. Zaki and C. Tennakoon, BioCarian: Search engine for exploratory searches in heterogeneous biological databases,

BMC Bioinformatics 18 (2017), 435. doi:10.1186/s12859-017-1840-4.
[21] M. Zviedris and G. Barzdins, ViziQuer: A tool to explore and query SPARQL endpoints, in: Proceedings of the 8th

Extended Semantic Web Conference (ESWC 2011), 2011, pp. 441–445. doi:10.1007/978-3-642-21064-8_31.

https://doi.org/10.1038/scientificamerican0501-34
https://doi.org/10.1038/scientificamerican0501-34
https://www.w3.org/TR/rdf11-concepts/
https://doi.org/10.1007/978-3-319-11964-9_4
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
http://doi.org/10.5281/zenodo.2587541
https://doi.org/10.1007/978-3-030-01379-0_9
https://doi.org/10.6084/m9.figshare.7396667
https://doi.org/10.6084/m9.figshare.7785092.v1
https://doi.org/10.1007/978-3-319-46547-0_10
https://doi.org/10.1007/978-3-030-00668-6_23
https://doi.org/10.1007/978-3-319-70407-4_36
https://doi.org/10.1007/978-3-319-46547-0_16
https://doi.org/10.1108/JD-12-2013-0166
https://doi.org/10.1007/978-3-319-68204-4_19
https://doi.org/10.1007/978-3-642-41242-4_7
https://doi.org/10.3233/SW-150197
https://doi.org/10.3233/SW-150197
http://ceur-ws.org/Vol-543/russell_swui2008.pdf
http://ceur-ws.org/Vol-543/russell_swui2008.pdf
https://doi.org/10.1038/502295a
https://doi.org/10.1145/2629489
https://doi.org/10.1186/s12859-017-1840-4
https://doi.org/10.1007/978-3-642-21064-8_31

	Introduction
	Related works
	Tools comparison

	OSCAR, the OpenCitations RDF Search Application
	Architecture of OSCAR
	The workflow
	Customising OSCAR

	Configuring OSCAR for OpenCitations and Wikidata
	The OpenCitations Corpus
	The COCI dataset
	Wikidata

	Usage statistics from OpenCitations
	General usage
	Queries

	Conclusions
	Acknowledgements
	References

