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Limitations of Efficient Reducibility to the Kolmogorov Random Strings
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Abstract. We show the following results for polynomial-time reducibility to RC, the set of Kolmogorov random strings.

1. If P 6= NP, then SAT does not dtt-reduce to RC.
2. If PH does not collapse, then SAT does not nα--reduce to RC for any α < 1.
3. If PH does not collapse, then SAT does not nα-T-reduce to RC for any α < 1

2 .
4. There is a problem in E that does not dtt-reduce to RC.
5. There is a problem in E that does not nα--reduce to RC, for any α < 1.
6. There is a problem in E that does not nα-T-reduce to RC, for any α < 1

2 .

These results hold for both the plain and prefix-free variants of Kolmogorov complexity and are also independent of the choice
of the universal machine.
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1. Introduction
Because the Kolmogorov complexity function C(x) is noncomputable, the set

RC = {x | C(x) > |x|}

of Kolmogorov random strings is undecidable. In fact, RC has no infinite computably enumerable subset. From this
and the fact that the complement RC is computably enumerable, Arslanov’s completeness criterion implies that RC

is hard for the c.e. sets under Turing reductions. Kummer [7] showed a stronger result: H ≤dtt RC, where H is the
complement of the halting problem and ≤dtt denotes a disjunctive truth-table reduction. Neither of these reductions
from the halting problem to RC is efficient. This raises the question [1]: what can be efficiently reduced to RC?

Recall that the Kolmogorov complexity [9] of a binary string x is the length of a shortest program that prints x
on a universal Turing machine U:

CU(x) = min{|p| | U(p) prints x}.

For the most part, the theory of Kolmogorov complexity does not depend on the choice of the universal machine U:
for any two universal machines U and V , CU and CV are within an additive constant of each other. As usual, we fix
a universal machine U and omit it from the notation, writing C(x) instead of CU(x). There are, however, situations
when the choice of universal machine matters and then we will be explicit with the subscript. We use the notation
Pτ (A) to denote the class of problems that reduce to A by ≤p

τ -reductions.
Kummer’s result [7] implies there is a computable time bound t(n) such that for every decidable A, A ≤t(n)

dtt RC.
Kummer’s proof is nonconstructive and does not yield any information about the function t(n). In fact, Allender et al.
[1] show that some uncertainty about the time bound t(n) is inevitable. They show that the t(n) in Kummer’s theorem
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may be arbitrarily large, depending on the choice of the universal machine U. Formally, for every computable time
bound t(n), there exists a universal machine U and a decidable set A such that A does not ≤t(n)

dtt -reduce to RCU . On
the other hand, independent of U, there exist decidable sets with arbitrarily high time complexity that reduce to
RCU via a polynomial-time dtt-reduction: for every computable time bound t(n) and every universal machine U,
there is a set A ∈ DEC− DTIME(t(n)) such that A ≤p

dtt RCU . While this result shows Pdtt(RC) contains sets of high
time complexity, the set A in this theorem is constructed via padding, which makes A very sparse. Thus while A
has high time complexity, A is very simple in other terms. We show that this simplicity is inherent: any such A is
highly predictable in the sense of polynomial-time dimension. From this it follows that RC is not hard for E under
≤p

dtt-reductions. This holds for every universal machine, i.e. E 6⊆ Pdtt(RCU ) for every U. We also show that RC is not
polynomial-time dtt-hard for NP unless P = NP. Both of these results follow from showing that if a decidable set
≤p

dtt-reduces to RC, then the set ≤p
dtt-reduces to a tally set. These results complement the result of Allender et al.

[1] that

P = DEC ∩
⋂
U

Pdtt(RCU ),

where the intersection is over all universal machines. While the class DEC ∩ Pdtt(RCU ) contains arbitrarily complex
sets, it is intuitively “close” to P for every U, in that it has small dimension and cannot contain NP unless P = NP.

Allender et al. [2] showed that RC is hard for PSPACE under polynomial-time Turing reductions: PSPACE ⊆
PT(RC). Buhrman et al. [3] showed that RC is hard for BPP under polynomial-time truth-table reductions: BPP ⊆
Ptt(RC). We consider bounded query Turing and truth-table reductions. Based on the Winnow algorithm [10] and
polynomial-time dimension [6], we show that RC is not ≤p

nα-tt-hard for E, for any α < 1. This is an improvement of
a result in [1] which obtained the same consequence for EE. Also, we use the techniques of [4, 5] to show that RC is
not≤p

nα-tt-hard for NP unless NP ⊆ coNP/poly and the polynomial-time hierarchy collapses by Yap’s theorem [13].
Finally, we obtain the same consequences for ≤p

nα-T-reductions, for all α < 1
2 .

2. Preliminaries
We use standard notions of polynomial-time reducibilities [8]. We also need the following two notions of
reducibility.

Definition 2.1. Let B = (Bn | n ≥ 0) be a family of subsets of Σ∗. We say that A NP-reduces to B if there is an
NPMV function N such that for all n, for all x ∈ Σn, x ∈ A iff at least one output of N(x) is in Bn.

Definition 2.2. Let B = (Bn | n ≥ 0) be a family of subsets of Σ∗. We say that A disjunctively reduces to B in t(n)
time if there is an algorithm M such that for all n, for all x ∈ Σn, M(x) outputs a list of strings in t(n) time and x ∈ A
iff at least one output of M(x) is in Bn.

The following lemma is from [4], based on a technique of [5]. An AND-function (of order 1) for a set A is a
polynomial-time computable function g such that for all strings x1, x2, . . . , xn, |g(x1, . . . , xn)| = O

(∑n
i=1 |xi|

)
and

g(x1, x2, . . . , xn) ∈ A iff xi ∈ A for all i.

Lemma 2.3. Let A have an AND-function and let α < 1. Let B = (Bn | n ≥ 0) be a family of sets with |Bn| ≤ 2nα

for sufficiently large n. If A NP-reduces to B, then A ∈ NP/poly.

The p-dimension [11] of a complexity class is a real number in [0, 1]. The p-dimension of P is 0 and the
p-dimension of E is 1. For this paper, we do not need the full details of p-dimension; all we require is the fact
that a p-dimension 0 class cannot contain E and the following lemma. The proof of this lemma relies on the Winnow
online learning algorithm [10] and is straightforward to prove using the approach of [6].

Lemma 2.4. Let α < 1 and let c ≥ 1. Let X be the class of all A for which there exists a family B = (Bn | n ≥ 0)
with |Bn| ≤ 2nα

such that A disjunctively reduces to B in 2cn time. Then X has p-dimension 0. In particular, X does
not contain E.
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3. Disjunctive Reductions
Theorem 3.1. If A is decidable and A ≤p

dtt RC, then A ≤p
dtt B for some B ∈ TALLY.

Proof. We use the proof technique from [1] that A is decidable and A ≤p
mtt RC (monotone truth-table) implies

A∈P/poly, observing that we can encode in a tally set to obtain the stronger result.
Suppose A is decidable and A ≤p

dtt RC via a reduction computable in time nd. Let the queries on input x be
denoted by Q(x). For some constant c, we claim only the queries of length at most l(n) = c log n “matter.”

For any x, we have x ∈ A iff Q(x) ∩ RC 6= ∅. Define Q′(x) = Q(x) ∩ Σ≤l(n), where n = |x|. We claim that for
each x ∈ A, there is some q ∈ Q′(x) such that for all y with |y| = |x|, q ∈ Q′(y) implies y ∈ A.

Suppose the claim is false. Then given n, we can find the first string x of length n such that x ∈ A and each
query q ∈ Q′(x) belongs to Q′(y) for some y 6∈ A. This implies that Q′(x) ∩ RC = ∅. Since x ∈ A, it follows that
Q(x)− Q′(x) contains a string r ∈ RC. This string r has C(r) > l(n) because r 6∈ Q′(x). We can describe r by
describing n and the index of r in Q(x). Since |Q(x)| ≤ nd, this takes at most (d + 3) log n bits, a contradiction if we
choose c = d + 4.

Let {w1, . . . , wN} be an enumeration of Σ≤l(n). Let In be the collection of all i where for all y of length n,
wi ∈ Q(y) implies y ∈ A. Our desired tally set is {0〈n,i〉 | n ≥ 0 and i ∈ In}, where 〈·, ·〉 is a pairing function on the
natural numbers. �

Corollary 3.2. If P 6= NP, then NP 6⊆ Pdtt(RC).

Proof. Suppose that NP ⊆ Pdtt(RC). By Theorem 3.1, SAT ≤p
dtt B for a tally set B. Then SAT ≤p

ctt B ∩ 0∗. Ukkonen
[12] showed that P = NP if coNP has a sparse ≤p

ctt-hard set. �

Corollary 3.3. The class Pdtt(RC) ∩ DEC has p-dimension 0.

Proof. Theorem 3.1 implies Pdtt(RC) ∩ DEC ⊆ Pdtt(TALLY) ⊆ Pdtt(SPARSE). This last class was shown to have
p-dimension 0 in [6]. �

Corollary 3.4. E 6⊆ Pdtt(RC).

Proof. This follows from Corollary 3.3 because E has p-dimension 1. �

4. Truth-Table Reductions
Theorem 4.1. Let α < 1.

1. If A is decidable, A has an AND-function, and A ≤p
nα-tt RC, then A ∈ NP/poly.

2. The class Pnα−tt(RC) ∩ DEC has p-dimension 0.

Proof. The main idea of the proof is from [1]. We expound the argument here and show how to apply Lemmas 2.3
and 2.4.

Let A be decidable such that A ≤p
nα-tt RC. Write Q(x) for the truth-table reduction’s queries on input x and

Zx ⊆ Σnα

for the query answer sequences that cause the reduction to accept x. That is, if Q(x) = {q1, . . . , qnα} in
lexicographic order, then x ∈ A if and only if RC[q1] · · ·RC[qnα ] ∈ Zx.

Let l(n) = nε, where 0 < ε < 1− α. We claim that the truth-table reduction is still correct if we only use the
queries of length at most l(n). Formally, let Q′(x) = Q(x) ∩ Σ≤l(n) and let Z′x be the restriction of Zx with bits
corresponding to strings in Q(x)− Q′(x) removed.

Call two strings x and y of the same length equivalent if Q′(x) = Q′(y). We claim that for each x ∈ A, there is
some zx ∈ Z′x such that for all y equivalent to x, zx ∈ Z′y iff y ∈ A.

Suppose the claim is false. We can find the least x ∈ A such that for all z ∈ Z′x, there is some yz equivalent to x
such that z ∈ Z′y iff yz 6∈ A. Let v be the correct answer sequence for Q′(x) ∩ RC and let r be the number of 1’s in v;
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that is, r = |Q′(x) ∩ RC|. Given x and r, we can enumerate RC to compute Q′(x) ∩ RC and obtain v. Then we can
compute yv such that query answers v are incorrect for yv. This means that Q(yv)− Q′(yv) must contain a string in
RC with length > l(n). However, we can describe this string by describing n, r, and its index in Q(yv), which takes
O(log n) bits, a contradiction.

We define a family of sets B = (Bn | n ≥ 0) as follows. For each equivalence class [x] with queries Q′(x) =
{w1, . . . , wnα} and zx ∈ Z′x the answer sequence that is correct for all strings in the equivalence class, we put the
tuple 〈w1, . . . , wnα , zx〉 in Bn. Note that |Bn| < 2nγ

where α+ ε < γ < 1. By the claim, A NP-reduces to B. It follows
from Lemma 2.3 that A ∈ NP/poly if A has an AND-function.

We also have that A is disjunctively reducible in 2n time toB. Therefore Lemma 2.4 applies to show Pnα−tt(RC) ∩
DEC has p-dimension 0. �

Corollary 4.2. If NP ⊆ Pnα−tt(RC) for some α < 1, then NP ⊆ coNP/poly.

Proof. This follows from Theorem 4.1 because the hypothesis implies SAT ≤p
nα-tt RC and SAT has an AND-

function. �

Corollary 4.3. If the polynomial-time hierarchy does not collapse, then NP 6⊆ Pnα−tt(RC) for any α < 1.

Proof. This is immediate from Corollary 4.2 and Yap’s theorem [13] that NP ⊆ coNP/poly implies the polynomial-
time hierarchy collapses to its third level. �

Corollary 4.4. For any α < 1, E 6⊆ Pnα−tt(RC).

Proof. This follows from Theorem 4.1 because E has p-dimension 1. �

5. Turing Reductions
Theorem 5.1. Let α < 1

2 .

1. If A is decidable, A has an AND-function, and A ≤p
nα-T RC, then A ∈ NP/poly.

2. The class Pnα−T(RC) ∩ DEC has p-dimension 0.

Proof. Let α < β < 1
2 . Suppose that A ∈ DEC and A ≤p

nα-T RC via M. Let M′ be the Turing machine that simulates
M and whenever M makes a query of length at least nβ , M′ makes no query and proceeds as if the answer to the
query were no. We use the following concepts:

• An advice is a tuple (z, w1, . . . , wnα) such that z ∈ Σnα

and each wi ∈ Σ<nβ

.
• A string y is accepted with advice (z, w1, . . . , wnα) if M′(y) queries w1, . . . , wnα and accepts y when M′ is given

z[1], . . . , z[nα] as the query answers.
• An advice (z, w1, . . . , wnα) is safe if for all y ∈ Σn, y is accepted with advice (z, w1, . . . , wnα) implies y ∈ A.

We claim that for all x ∈ A=n, there is a safe advice (z, ~w) such that x is accepted with advice (z, ~w).
Suppose the claim is false. Then we can find the least x ∈ A=n that does not have a safe advice. We can specify

the correct answer sequence z ∈ Σnα

for M(x) when querying oracle RC. With this correct answer sequence z, M
must query some string in RC that is not in Σ<nβ

. Therefore we can describe a string r with C(r) ≥ nβ by describing
n, z, and the index of r in M(x)’s query set on query answer sequence z. Thus C(r) ≤ nα + O(log n), which is a
contradiction since α < β.

We define a family of sets B by putting into Bn all advices (z, w1, . . . , wnα) that are safe. Let 1 > γ > α+ β.
The total number of possible advices is at most 2nα · (2nβ

)nα

< 2nγ

, so |Bn| < 2nγ

. We have that A NP-reduces to B
and A disjunctively reduces in 2n time to B, so the theorem follows from Lemmas 2.3 and 2.4. �

Corollary 5.2. If NP ⊆ Pnα−T(RC) for some α < 1
2 , then NP ⊆ coNP/poly.
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Corollary 5.3. If the polynomial-time hierarchy does not collapse, then NP 6⊆ Pnα−T(RC) for any α < 1
2 .

Corollary 5.4. For any α < 1
2 , E 6⊆ Pnα−T(RC).

6. Open Problems
We believe the following open problems should be tractable but appear to require techniques beyond those used in
this paper.

Problem 6.1. Show that E 6⊆ Pnα−T(RC) for 1
2 ≤ α < 1.

Problem 6.2. Show that NP 6⊆ Pnα−T(RC) for 1
2 ≤ α < 1 under a reasonable hypothesis.

It is unknown whether even every decidable problem is polynomial-time Turing reducible to RC. We conjecture that
ESPACE 6⊆ PT(RC) and that this can be proved using resource-bounded dimension or measure:

Problem 6.3. Show that PT(RC) ∩ DEC has pspace-dimension 0.

Lastly, we know SAT ≤dtt RC and that SAT ≤p
dtt RC iff P = NP. What more can be said about the amount of time it

takes to disjunctively reduce SAT to RC?
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