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Abstract. In this paper we study von Neumann un-biasing normalisation for ideal and real quantum random number generators,
operating on finite strings or infinite bit sequences. In the ideal cases one can obtain the desired un-biasing. This relies critically
on the independence of the source, a notion we rigorously define for our model. In real cases, affected by imperfections in
measurement and hardware, one cannot achieve a true un-biasing, but, if the bias “drifts sufficiently slowly”, the result can be
arbitrarily close to un-biasing. For infinite sequences, normalisation can both increase or decrease the (algorithmic) randomness
of the generated sequences.

A successful application of von Neumann normalisation—in fact, any un-biasing transformation—does exactly what it
promises, un-biasing, one (among infinitely many) symptoms of randomness; it will not produce “true” randomness.
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1. Introduction
The outcome of some individual quantum-mechanical events cannot in principle be predicted, so they are thought of
as ideal sources of random numbers. An incomplete list of quantum phenomena used for random number generation
include nuclear decay radiation sources [29], the quantum mechanical noise in electronic circuits known as shot
noise [30], photons travelling through a semi-transparent mirror [23, 27, 32, 34, 36] or photon arrival times [4, 33,
39]. Our methods are primarily developed to address these latter photon-based quantum random number generators
(QRNGs), one of the most direct and popular ways to generate QRNs, but many of our mathematical results will be
applicable to other QRNGs.

Due to imperfections in measurement and hardware, QRNGs are biased and operate non-independently in their
generation of bits, two symptoms of non-randomness [10].1 The first and simplest technique for reducing bias was
invented by von Neumann [38]. It considers pairs of bits, and takes one of three actions: a) pairs of equal bits are
discarded; b) the pair 01 becomes 0; c) the pair 10 becomes 1. Contrary to wide spread claims, the technique works
for some sources of bits, but not for all. The source of constantly biased bits is effectively transformed into one
in which the probabilities of 0 and 1 are equal: 50% for each. As we shall show, a stronger property is true: the

*An extended abstract has appeared in A. A. Abbott, C. S. Calude. Von Neumann normalisation and symptoms of randomness: An application
to sequences of quantum random bits, in C. S. Calude, J. Kari, I. Petre, G. Rozenberg (eds.). Proc. 10th International Conference Unconventional
Computation, Lecture Notes Comput. Sci. 6714, Springer, Heidelberg, 2011, 40–51.
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1As discussed in [1], “true randomness” does not mathematically exist. Various forms of algorithmic randomness [15] are each defined

by an infinity of conditions, some “statistical” (like bias), some “non-statistical” (like lack of computable correlations).
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un-biasing works not only for bits but for all reasonably long bit-strings. However, if the bias is not constant the
procedure does not work. Furthermore, the von Neumann procedure cannot assure “true randomness” in its output.
We briefly emphasise that bias is a property of the source of bits which only gives the expected frequency of 0’s and
1’s in the strings produced.

To understand the behaviour of QRNGs we need to study the un-biasing transformations on both (finite) strings
and (infinite) sequences of bits produced by the source. In this paper we will focus on von Neumann normalisation2

because it is very simple, easy to implement, and (along with the more efficient iterated version due to Peres [26] for
which the results will also apply) is widely used by current proposals for QRNGs [18, 23, 24, 32]. Similar or stronger
normalisation procedures have been studied under additional assumptions in, for example, Blum [7] (the source is
a finite Markov chain) or Santha and Vazirani [28] (the source is semi-random) or Vadhan [37]; such additional
hypotheses are satisfied by some physical sources, like a zener diode, but not necessarily by quantum sources. The
widespread use of von Neumann normalisation, however, warrants a proper understanding of its operational quality
when used on non-ideal sources regardless of the existence of other methods.

The main results of this paper are the following. In the “ideal case”, the von Neumann normalised output of an
independent constantly biased QRNG is the probability space of the uniform distribution (un-biasing). This result is
true for both for finite strings and for the infinite sequences produced by QRNGs (the QRNG runs indefinitely in the
latter case).

It is important to note that independence in the mathematical sense of multiplicity of probabilities is a model
intended to correspond to the physical notion of independence of outcomes [20]. In order to study the theoretical
behaviour of QRNGs, which are based on the assumption of physical independence of measurements, we must
translate this appropriately into our formal model. We carefully define independence of QRNGs to achieve this aim.

As explained above, QRNGs do not operate in ideal conditions. We develop a model for a real-world QRNG in
which the bias, rather than holding steady, drifts slowly (within some bounds). In this framework we evaluate the
speed of drift required to be maintained by the source distribution to guarantee that the output distribution is as close
as one wishes to the uniform distribution.

We have also examined the effect von Neumann normalisation has on various properties of infinite sequences.
In particular, Borel normality and (algorithmic) randomness are invariant under normalisation, but for ε-random
sequences with 0 < ε < 1, normalisation can both decrease or increase the randomness of the source.

Finally, we present our results in a mathematical framework which avoids hasty claims which later are disproved.

2. Notation
We present the main notation used throughout the paper.

By 2X we denote the power set of X. By |X| we denote the cardinality of the set of X.
Let B = {0, 1} and denote by B∗ the set of all bit-strings (λ is the empty string). If x ∈ B∗ and i ∈ B then |x| is

the length of x and #i(x) represents the number of i’s in x. By Bn we denote the finite set {x ∈ B∗ | n = |x|}. The
concatenation product of two subsets X, Y of B∗ is defined by XY = {xy | x ∈ X, y ∈ Y}. If X = {x} then we write
xY instead of {x}Y . By Bω we denote the set of all infinite binary sequences. For x ∈ Bω and natural n we denote by
x(n) the prefix of x of length n. We write w < v or w < x in case w is a prefix of the string v or the sequence x.

A prefix-free (Turing) machine is a Turing machine whose domain is a prefix-free set of strings [10]. The
prefix complexity of a string, HW(σ), induced by a prefix-free machine W is HW(σ) = min{|p| : W(p) = σ}. Fix
a computable ε with 0 < ε ≤ 1. An ε–universal prefix-free machine U is a machine such that for every machine
W there is a constant c (depending on U and W) such that ε · HU(σ) ≤ HW(σ) + c, for all σ ∈ B∗. If ε = 1 then U
is simply called a universal prefix-free machine. A sequence x ∈ Bω is called ε–random if there exists a constant c
such that HU(x(n)) ≥ ε · n− c, for all n ≥ 1. Sequences that are 1–random are simply called random.

A sequence x is called Borel m–normal (m ≥ 1) if for every 1 ≤ i ≤ 2m one has: limn→∞ Nm
i (x(n))/b n

mc =
2−m; here Nm

i (y) counts the number of non-overlapping occurrences of the ith (in lexicographical order) binary

2Many improvements of the scheme have been proposed [16, 26].
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string of length m in the string y. The sequence x is called Borel normal if it is Borel m–normal, for every natural
m ≥ 1.

A probability space is a measure space such that the measure of the whole space is equal to one [6]. More
precisely, a (Kolmogorov) probability space is a triple consisting of a sample space Ω, a σ–algebra F on Ω, and a
probability measure P, i.e. a countably additive function defined on F with values in [0, 1] such that P(Ω) = 1.

3. The Finite Case
3.1. Source Probability Space and Independence
In this section we define the QRNG source probability space and the independence property.

Consider a string of n independent bits produced by a (biased) QRNG. Let p0, p1 be the probability that a bit is
0 or 1, respectively, with p0 + p1 = 1, p0, p1 ≤ 1.

The probability space of bit-strings produced by the QRNG is (Bn, 2Bn
, Pn) where Pn : 2Bn → [0, 1] is defined by

Pn(X) =
∑
x∈X

p#0(x)
0 p#1(x)

1 , (1)

for all X ⊆ Bn.
It is easy to verify that the Kolmogorov axioms are satisfied for the space (Bn, 2Bn

, Pn), so we have:

Fact 3.1. The space (Bn, 2Bn
, Pn) with Pn defined in (1) is a probability space.

The space (Bn, 2Bn
, Pn) is just the n-fold product of the single bit probability space (B, 2B, P1). For this reason

this space is often called an “independent identically-distributed bit source”. The resulting space is “independent”
because each bit is independent of previous ones. But what is “an independent probability space”?

Physically the independence of a QRNG is usually expressed as the impossibility of extracting any information
from the flow of bits x1, . . . , xk−1 to improve chances of predicting the value of xk, other than what one would have
from knowing the probability space. The fact that photon-based QRNGs obey this physical independence between
photons (and thus generated bits) rather well [2, 32] is the primary motivation for our modelling of these devices.
These sources (where the condition of independence still holds) are often termed “independent-bit sources” [37]. In
a real device we cannot, of course, expect each bit to be identically distributed, so we study this more general case
more thoroughly in Section 3.5.

Formally, two events A, B ⊆ Bn are independent (in a probability space) if the probability of their intersection
coincides with the product of their probabilities [9] (a complexity-theoretic approach was developed in [14]). This
motivates the definition of independence of a general source probability space given in Definition 3.3. But first we
need the following simple property:

Fact 3.2. For every bit-string x and non-negative integers n, k such that 0 ≤ k + |x| ≤ n we have:

Pn

(
BkxBn−k−|x|

)
= p#0(x)

0 p#1(x)
1 = P|x|({x}). (2)

Definition 3.3. The probability space (Bn, 2Bn
, Probn) is independent if for all 1 ≤ k ≤ n and all x1 . . . xk ∈ Bk the

events x1x2 . . . xk−1Bn−k+1 and Bk−1xkBn−k are independent, i.e.

Probn
(
x1x2 . . . xk−1xkBn−k) = Probn

(
x1x2 . . . xk−1Bn−k+1) · Probn

(
Bk−1xkBn−k).

Fact 3.4. The probability space (Bn, 2Bn
, Pn) with Pn defined in (1) is independent.
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Proof. Using (2) we have:

Pn
(
x1x2 . . . xk−1xkBn−k) = p#0(x1...xk)

0 p#1(x1...xk)
1

= p#0(x1...xk−1)
0 p#1(x1...xk−1)

1 p#0(xk)
0 #(xk)

1

= Pn
(
x1x2 . . . xk−1Bn−k+1) · Pn

(
Bk−1xkBn−k).

�

As we will see later, there are other relevant independent probability spaces.

3.2. Von Neumann Normalisation Function
Here we present formally the von Neumann normalisation procedure.

We define the mapping F : B2 → B ∪ {λ} as

F(x1x2) =

{
λ if x1 = x2,
x1 if x1 6= x2,

and f : B→ B2 as

f (x) = xx̄,

where x̄ = 1− x. Note that for all x ∈ B we have F( f (x)) = x and, for all x1, x2 ∈ B with x1 6= x2, f (F(x1x2)) = x1x2.

For m ≤ bn/2c we define the normalisation function VNn,m : Bn →
(⋃

k≤m Bk
)
∪ {λ} as

VNn,m(x1 . . . xn) = F(x1x2)F(x3x4) · · ·F
(

x(2b m
2 c−1)x2b m

2 c
)

.

Fact 3.5. For all 1 < m ≤ bn/2c and y ∈ Bm there exists an x ∈ Bn such that y = VNn,m(x).

Proof. Take x = f (y1)f (y2) · · · f (ym)0n−2m. �

In fact we can define the right inverse normalisation VN−1
n,m : 2Bm → 2Bn

as

VN−1
n,m(Y) =

{
u1f (y1)u2f (y2) · · · umf (ym)um+1v | y = y1 . . . ym ∈ Y ,

ui ∈ {00, 11}∗, v ∈ B ∪ {λ}, |v|+ 2m +
m+1∑
i=1

|ui| = n

}
,

for which VNn,n
(
VN−1

n,m(y)
)

= {y} holds for every y ∈ Bm.

3.3. Target Probability Space and Normalisation
We now construct the target probability space of the normalised bit-strings over Bm for m ≤ bn/2c, i.e. the
probability space of the output bit-strings produced by the application of the von Neumann function on the output
bit-strings generated by the QRNG.

The von Neumann normalisation function VNn,m transforms the source probability space (Bn, 2Bn
, Pn) into

the target probability space (Bm, 2Bm
, Pn→m). The target space of normalised bit-strings of length 1 < m ≤ bn/2c
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associated to the source probability space (Bn, 2Bn
, Pn) is the space (Bm, 2Bm

, Pn→m), where Pn→m : 2Bm → [0, 1] is
defined for all Y ⊆ Bm by the formula:

Pn→m(Y) =
Pn
(
VN−1

n,m(Y)
)

Pn
(
VN−1

n,m(Bm)
) .

Proposition 3.6. The target space (Bm, 2Bm
, Pn→m) of normalised bit-strings of length 1 < m ≤ bn/2c associated to

the source probability space (Bn, 2Bn
, Pn) is a probability space.

Proof. We need to check only additivity: For X, Y ⊆ Bm, X ∩ Y = ∅ =⇒ Pn→m(X ∪ Y) = Pn→m(X) +
Pn→m(Y). This equality is valid since VN−1

n,m(X ∪ Y) = VN−1
n,m(X) ∪ VN−1

n,m(Y) and Pn
(
VN−1

n,m(Y) ∪ VN−1
n,m(X)

)
=

Pn
(
VN−1

n,m(Y)
)

+ Pn
(
VN−1

n,m(X)
)
, as VN−1

n,m(X) ∩ VN−1
n,m(Y) = ∅ because X and Y are disjoint. �

3.4. Normalisation of the Output of a Source with Constant Bias
We now show that von Neumann procedure transforms the source probability space with constant bias into the
probability space with the uniform distribution over Bm, i.e. the target probability space (Bm, 2Bm

, Pn→m) has Pn→m =
Um, the uniform distribution. Independence and the constant bias of Pn play a crucial role.

Theorem 3.7 (von Neumann). Assume that 1 < m ≤ bn/2c. In the target probability space (Bm, 2Bm
, Pn→m)

associated to the source probability space (Bn, 2Bn
, Pn) we have Pn→m(Y) = Um(Y) = |Y| · 2−m, for every Y ⊆ Bm.

Proof. Since Pn→m is additive it suffices to show that for any y ∈ Bm, Pn→m({y}) = 2−m. Let Z = Pn
(
VN−1

n,m(Bm)
)
.

We have (the sums are over all ui ∈ {00, 11}∗, v ∈ B ∪ {λ} such that |v|+
∑m+1

i=1 |ui| = n− 2m):

Pn→m({y}) =
1
Z

∑
ui,v

p#0(u1f (y1)...umf (ym)um+1v)
0 p#1(u1f (y1)...umf (ym)um+1v)

1

=
p#0( f (y1)...f (ym))

0 p#1( f (y1)...f (ym))
1

Z

∑
ui,v

p#0(u1...um+1v)
0 p#1(u1...um+1v)

1

=
pm

0 pm
1

Z

∑
ui,v

p#0(u1...um+1v)
0 p#1(u1...um+1v)

1 ,

which is independent of y. Since Pn→m(Bm) = 1 and for all x1, x2 ∈ Bm we have Pn→m({x1}) = Pn→m({x2})
it follows that Pn→m({y}) = 2−m = Um({y}); by additivity, for every Y ⊆ 2m we have Pn→m(Y) = Um(Y) =
|Y| · 2−m. �

It is natural to check whether the independence and constant bias of the source probability space are essential
for the validity of the von Neumann normalisation procedure.

Example 3.8. The source probability space (B2, 2B2
, Prob2) where Prob2(00) = 0, Prob2(01) = Prob2(10) =

Prob2(11) = 1/3 is independent and Prob2→1 = U1.

Example 3.9. The source probability space (B2, 2B2
, Prob2) where Prob2(00) = Prob2(11) = 0, Prob2(01) =

1/3, Prob2(10) = 2/3 is independent but Prob2→1 6= U1.

Comment. One could present the above examples in the more general framework of Theorem 3.7.

Theorem 3.10. Let m ≥ 1 and n = 2m. Consider the source probability space (Bn, 2Bn
, Probn) = Πm

i=1(B2, 2B2
, Pi

2),
where Pi

2(01) = Pi
2(10), for all 1 ≤ i ≤ m. Then, in the target probability space (Bn, 2Bn

, Probn→m), where Probn =
Πm

i=1Pi
2, we have Probn→m = Um.
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Proof. It is easy to check that for every y = y1 . . . ym ∈ Bm we have Probn→m({y1 . . . ym}) =
∏m

i=1 Pi
2(yiȳi)/

Probn(VN−1
n,m(Bm)), so Probn→m({y1 . . . ym}) does not depend on y (because Pi

2(aā) = Pi
2(āa), for every a ∈ B).

Hence, Probn→m = Um.
�

The source probability space (Bm, 2Bm
, Probn) in Theorem 3.10 is not constantly biased and may be independent

or not, but von Neumann normalisation still produces the uniform distribution under these conditions.

Example 3.11. The source probability space (B4, 2B4
, Prob4) as in Theorem 3.10 where P1

2(00) = P1
2(01) =

1/3, P1
2(10) = 1/4, P1

2(11) = 1/12 and P2
2(00) = 1/12, P2

2(01) = 1/4, P2
2(10) = P2

2(11) = 1/3 is not independent
and Prob4→2 = U2.

The outcome of successive context preparations and measurements, such as is the case for the type of QRNG
usually envisioned, are postulated to be independent of previous and future outcomes [19]. This means there must
be no causal link between one measurement and the next within the system (preparation and measurement devices
included) so that the system has no memory of previous or future events. For QRNGs this translates into the condition
that the probability that each successive bit is either 0 or 1 is independent of the previous bit measured. We will only
consider such independent probability spaces, as this is a necessary property of a good RNG, so most QRNGs are
designed to conform to this requirement.

The above assumption needs to be made clear as in high bit-rate experimental configurations to generate QRNs
with, e.g., photons, its validity may not always be clear. If the wave-functions of successive photons “overlap” the
assumption no longer holds and (anti)bunching phenomena may play a role. This is an issue that needs to be more
seriously considered in QRNG design and will only become more relevant as the bit-rate of QRNGs is pushed higher
and higher. While we leave study of the nature of these temporal correlations (and any non-independence they may
cause) to future research [2], we pose the following open question which may help to quantify any possible effect
they may have.

Open Question. Fix an integer k ≥ 0 and small positive real κ. Consider the probability space (Bn, 2Bn
, P†n)

where P†n is a modification of the probability Pn satisfying the conditions that for all i ≤ n and xi ∈ B we have
Pn(Bi−1xiBn−i) = P†n(Bi−1xiBn−i),∣∣P†n(Bi−1xiBn−i)− P†n(Bi−1xiBn−i | Bi−k−1xi−k . . . xi−1Bn−i−1)

∣∣ ≤ κ,

and for all l > k

P†n(Bi−1xiBn−i | Bi−l−1xi−l . . . xi−1Bn−i−1) = P†n(Bi−1xiBn−i | Bi−k−1xi−k . . . xi−1Bn−i−1).

In other words, the probability of each bit depends on no more than the previous k bits, and the difference in
probabilities for a bit between that given by P†n conditioned on the previous k bits and Pn is no more than κ. If the
output of such a source is normalised with the von Neumann procedure, how close is the resulting probability space
of strings of length m to the uniform distribution (see Definition 3.18 for a definition of the closeness of probability
spaces)?

3.5. Normalisation of the Output of a Source with Non-constant Bias
Now we consider the probability distribution obtained if von Neumann normalisation is applied to a string generated
from an independent source with a non-constant bias—an “independent-bit source”. We consider only a bias which
varies smoothly; this excludes the effects of sudden noise which could make the bias jump significantly from one bit
to the next. Such a source corresponds to a QRNG in which the bias varies slowly (drifts) from bit to bit over time,
but never too far from its average point. We choose this to model photon-based QRNGs since the primary cause of
variation in the bias will be of this nature. For example, the detector efficiencies may vary as a result of slow changes
in temperature or power supply. While abrupt changes—which this model does not account for—are plausible, their
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relatively rare occurrence (in comparison with the bit generation rate in the order of MHz) will mean they have little
effect on the resultant distribution.

Let p0, p1 < 1 and p0 + p1 = 1 be constant. Let x = x1x2 . . . xn ∈ Bn be the generated string. Then define the
probability of an individual bit xi being either zero or one as

qxi
i =

{
p0 − εi if xi = 0,
p1 + εi if xi = 1.

(3)

The variation in the bias is bounded, so we require that for all i,

|εi| ≤ β, with β < min(p0, p1).

Let γi = εi+1 − εi. Furthermore, we assume that the “speed” of variation be bounded, i.e. there exists a positive δ
such that

|γi| ≤ δ, (4)

for all i. Evidently we have δ ≤ β (presumably in any real situation δ � β); however, we introduce two separate
constants since they correspond to two physically different (but related) concepts. Note that we will discuss in more
detail the importance of these two parameters for the approximation of the uniform distribution and their relevance
to calibration of the QRNG later once the analysis is completed. Indeed, the rate of change, γi, is more important;
the need for β stems from the need to realise that, even though the probabilities can fluctuate, they can only fluctuate
in one direction for so long (since qi ∈ [0, 1]), hence |

∑
i γi| = |εn − ε1| ≤ 2β.

For a string y = y1yk . . . yk ∈ Bk and positive integer i we introduce, for convenience, the following notation:

qi(y) = qy1
i qy2

i+1 · · · q
yk
i+k−1.

The following fact will allow us to evaluate the effect of normalisation on such a string.

Fact 3.12. The difference in probability between 01 and 10 depends only on γi, i.e. qi(01)− qi(10) = γi.

Proof.

qi(01)− qi(10) = (p0 − εi)(p1 + εi+1)− (p1 + εi)(p0 − εi+1)
= (p0 + p1)(εi+1 − εi)
= γi.

�

Let us first formally define the probability space generated by this QRNG.

Proposition 3.13. The probability space of bit-strings produced by the QRNG is (Bn, 2Bn
, Rn) where Rn : 2Bn →

[0, 1] is defined for all X ⊆ Bn as follows:

Rn(X) =
∑
x∈X

q1(x). (5)

Proof. We verify only that Rn(Bn) = 1, which is easily shown since q0
i + q1

i = 1, and Rn(Bn) = (q0
1 + q1

1) · · ·
(q0

n + q1
n).

�

Fact 3.14. For all i ≥ 1 and x, y ∈ {0, 1}∗ we have: qi(xy) = qi(x)qi+|x|(y).
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Fact 3.15. For all k, n ≥ 1, x ∈ {0, 1}∗ with 0 ≤ k + |x| ≤ n we have:

Rn

(
Bn−kxBn−k−|x|

)
= qn−k+1(x). (6)

Proof. Using Fact 3.14 we get:

Rn

(
Bn−kxBn−k−|x|

)
=
∑

y∈Bn−k

∑
z∈Bn−k−|x|

q1(yxz)

=
∑

y∈Bn−k

∑
z∈Bn−k−|x|

q1(y)q|y|+1(x)q|y|+|x|+1(z)

= qn−k+1(x)
∑

y∈Bn−k

∑
z∈Bn−k−|x|

q1(y)q|y|+|x|+1(z)

= qn−k+1(x)
∑

y∈Bn−k

q1(y)

 ∑
z∈Bn−k−|x|

q|y|+|x|+1(z)


= qn−k+1(x).

�

Fact 3.16. The probability space (Bn, 2Bn
, Rn) with Rn defined in (5) is independent.

Proof. Using (6) we have:

Rn
(
x1x2 . . . xk−1xkBn−k) = q1(x1x2 . . . xk−1xk)

= q1(x1x2 . . . xk−1)qk(xk)

= Rn
(
x1x2 . . . xk−1Bn−k+1) · Rn

(
Bk−1xkBn−k) .

�

As with the constantly biased source, we consider the probability space Rn→m. We first investigate the simplest
case n = 2m. In this situation, for any y ∈ Bm we have VN−1

n,m({y}) = {f (y1)f (y2) · · · f (ym)} and VN−1
n,m(Bm) =

{f (z1)f (z2) · · · f (zm) | z = z1 . . . zm ∈ Bm}.

Fact 3.17. The probability space of normalised bit-strings of length m = n/2 is (Bm, 2Bm
, Rn→m) where Rn→m :

2Bm → [0, 1] is defined for all Y ⊆ Bm as follows:

Rn→m(Y) =
Rn(VN−1

n,m(Y))

Rn(VN−1
n,m(Bm))

=
∑
y∈Y

m∏
i=1

q2i−1( f (yi))
q2i−1(01) + q2i−1(10)

. (7)

3.6. Approximating the Uniform Distribution
Unlike the case for a constantly biased source, we no longer have qi(01) = qi(10); from Fact 3.12 we have qi(01) =
qi(10) + γi. As a result the normalised equation is no longer the uniform distribution, but only an approximation
thereof. We now explore how closely Rn→m approximates Um.

We first need to define what we mean by approximating Um.

Definition 3.18. The total variation distance between two probability measures P and Q over the space Ω is
∆(P, Q) = maxA⊆Ω |P(A)− Q(A)|. We say that P and Q are ρ-close if ∆(P, Q) ≤ ρ.
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It is well known (see for example [37]) that

Lemma 3.19. For finite Ω we have ∆(P, Q) = 1
2

∑
x∈Ω |P({x})− Q({x})|.

The variation ∆(Rn→m, Um) depends on each γi and qi (thus on p0, p1 and each εi), but we wish to calculate the
worst case in terms of the bounds δ,β and p0, p1, i.e. using Lemma 3.19,

max
γi,qi

∆(Rn→m, Um) =
1
2

max
γi,qi

∑
y∈Bm

|Rn→m({y})− 2−m|.

Let us first note that we can write

q2i−1( f (yi))
q2i−1(01) + q2i−1(10)

=
q2i−1( f (yi))

2q2i−1( f (yi))− (−1)yiγ2i−1

=
1
2

(
1 +

(−1)yiγ2i−1

2q2i−1( f (yi))− (−1)yiγ2i−1

)
,

and hence we have

Rn→m({y}) = 2−m
m∏

i=1

(
1 +

(−1)yiγ2i−1

q2i−1(01) + q2i−1(10)

)
.

We have rewritten the denominator in its original form to emphasise that only the signs (−1)yi depend on y. Thus,
we want to find the values of q2i−1 and γ2i−1 which maximise

∑
y∈Bm

∣∣∣∣∣1−
m∏

i=1

(
1 +

(−1)yiγ2i−1

q2i−1(01) + q2i−1(10)

)∣∣∣∣∣ , (8)

subject to the constraints that |γ`| ≤ δ and |ε`| ≤ β for 1 ≤ ` ≤ n.

Lemma 3.20. The function

g(c1, . . . , cn) =
∑
y∈Bn

∣∣∣∣∣
n∏

i=1

(1 + (−1)yi ci)− 1

∣∣∣∣∣
is strictly increasing for 0 ≤ ci < 1, i = 1, . . . , n (note that for 1 ≤ i ≤ n, g(c1, . . . , ci, . . . , cn) = g(c1, . . . ,
−ci, . . . , cn)).

Proof. We take 0 ≤ ci < 1 for 1 ≤ i ≤ n. For y = y1 . . . yn ∈ Bn define p(y, j) =
∏n

i=1,i 6=j(1 + (−1)yi ci). Without
loss of generality pick a j ≤ n and let ε > 0 be an (arbitrarily small) positive real with cj + ε ≤ 1. Note that

g(c1, . . . , cn) =
∑
y∈Bn

|(1 + (−1)yj cj)p(y, j)− 1| .
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We partition Bn as follows:

Y1 = {y | (1− cj − ε)p(y, j)− 1 ≥ 0},

Y2 = {y | (1− cj − ε)p(y, j)− 1 < 0 and (1− cj)p(y, j)− 1 ≥ 0},

Y3 = {y | (1− cj)p(y, j)− 1 < 0 and (1 + cj)p(y, j)− 1 ≥ 0},

Y4 = {y | (1 + cj)p(y, j)− 1 < 0 and (1 + cj + ε)p(y, j)− 1 ≥ 0},

Y5 = {y | (1 + cj + ε)p(y, j)− 1 < 0}.

Note that for y ∈ Bn, p(y, j) ≥ 0, and for yi ∈ Yi, i = 1, . . . , 5, we have

p(y5, j) < p(y4, j) < p(y3, j) < p(y2, j) < p(y1, j),

and
⋃5

i=1 Yi = Bn. We have:

g(c1, . . . , cj + ε, . . . , cn) =
5∑

i=1

∑
y∈Yi

|(1 + (−1)yj cj + (−1)yjε)p(y, j)− 1|

=
∑
y∈Y1

[(1 + (−1)yj cj)p(y, j)− 1 + (−1)yjεp(y, j)]

+
4∑

i=2

∑
y∈Yi

(−1)yj [(1 + (−1)yj cj)p(y, j)− 1 + (−1)yjεp(y, j)]

+
∑
y∈Y5

− [(1 + (−1)yj cj)p(y, j)− 1 + (−1)yjεp(y, j)]

=
5∑

i=1

∑
y∈Yi

|(1 + (−1)yj cj)p(y, j)− 1|+ 2ε
4∑

i=2

∑
y∈Yi

p(y, j)

− 2
∑
y∈Y2

[(1− cj)p(y, j)− 1] + 2
∑
y∈Y4

[(1 + cj)p(y, j)− 1]

=g(c1, . . . , cj, . . . , cn) + 2ε
∑
y∈Y3

p(y, j)− 2
∑
y∈Y2

[(1− cj − ε)p(y, j)− 1]

+ 2
∑
y∈Y4

[(1 + cj + ε)p(y, j)− 1]

>g(c1, . . . , cj, . . . , cn),

where the final line follows from the definition of Y2 and Y4. Since this holds for all j ≤ n, g is strictly increasing
over [0, 1)n. �

Hence in order to maximise (8) we need to maximise the functions

uj(εj, γj) =
∣∣∣∣ γj

qj(01) + qj(10)

∣∣∣∣ =
∣∣∣∣ γj

(p0 − εj)(p1 + εj + γj) + (p1 + εj)(p0 − εj − γj)

∣∣∣∣ , (9)

for j = 2i− 1, 1 ≤ i ≤ m, subject to the constraints |γj| ≤ δ, |εj| ≤ β and |εj+1| = |εj + γj| ≤ β.
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Lemma 3.21. For every j ≥ 1 we have

uj(εj, γj) ≤

{
uj(β,−δ) = uj(β − δ, δ) if p1 ≥ p0,

uj(−β, δ) = uj(−β + δ,−δ) if p0 > p1,
(10)

=
δ

2 [p0p1 − β(β − δ)− |p0 − p1|(β − δ/2)]
. (11)

Proof. We omit the index j as it is not needed in this context. Let

v(ε, γ) =
γ

(p0 − ε)(p1 + ε+ γ) + (p1 + ε)(p0 − ε− γ)
.

Since q(01) + q(10) > 0, in order to maximise u we look for maxima and minima of v; clearly maxima have
γ > 0 and minima have γ < 0. We use Lagrange multipliers with inequality constraints to find the critical points.
We have the following six constraints: h1(ε, γ) = ε− β ≤ 0, h2(ε, γ) = −ε− β ≤ 0, h3(ε, γ) = ε+ γ − β ≤ 0,
h4(ε, γ) = −ε− γ − β ≤ 0, h5(ε, γ) = γ − δ ≤ 0, h6(ε, γ) = −γ − δ ≤ 0. We must solve the following equations:

∇ε,γv(ε, γ) +
6∑

i=1

λi∇ε,γhi(ε, γ) = 0, (12)

λihi(ε, γ) = 0 for i = 1, . . . , 6, (13)

hi(ε, γ) ≤ 0 for i = 1, . . . , 6, (14){
λi ≥ 0 for minima, i = 1, . . . , 6,

λi ≤ 0 for maxima, i = 1, . . . , 6.
(15)

We say a constraint is inactive if λi = 0 and active otherwise; the condition of complimentarity (13) captures the
notion that a critical point satisfying the constraints either occurs at hi(ε, γ) = 0 or is also a critical point in the
unconstrained problem.

Noting that 0 < p0 − β ≤ p0 + β < 1 and solving, we find the candidate points are:

(ε, γ) =


( 1

2 (p0 − p1)± δ
2 ,∓δ)

(β,−δ), (β − δ, δ) for p0 − p1 ≤ 2β − δ,

(−β, δ), (−β + δ,−δ) for p1 − p0 ≤ 2β − δ.

Note that u(ε, γ) = u(ε+ γ,−γ). Testing values shows the second case maximises u(ε, γ) when p1 > p0 and the
third cases maximises u(ε, γ) for p0 > p1. For p0 = p1 both cases give the same value. Substituting in ε, γ and
consolidating the cases we arrive at (11). �

Next we let

α = max
γi,εi

uj(εj, γj),

where uj(εj, γj) comes from (9).
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Then we have

max
γi,εi

∆(Rn→m, Um) =
1
2

∑
y∈Bm

∣∣∣∣∣
m∏

i=1

(
1
2

+ (−1)yi
α

2

)
− 2−m

∣∣∣∣∣
=

1
2

m∑
k=0

(
m
k

) ∣∣∣∣∣
(

1
2

+
α

2

)k (1
2
− α

2

)m−k

− 2−m

∣∣∣∣∣ .
Note that in this worst case, the normalised source acts as an independent and identically-distributed source with
p0 = 1/2± α/2 and the total variation is bounded by that of two binomial sources: one with p0 = 1/2, the other
with p0 = 1/2± α/2 (the number k of successful outcomes is identified with the number of ones in y).

There are two interesting questions: a) what is the quality of the distribution produced by a QRNG, i.e. how close
are Rn→m and Um in terms of α? and b) given a real ρ ∈ (0, 1), how accurate does the QRNG need to be in terms of
α to guarantee that Rn→m and Um are ρ close?

We can take a rough approach to solve the above problems as follows. First note that

∆(Rn→m, Um) ≤ 1
2

∑
y∈Bm

∣∣∣∣∣
m∏

i=1

(
1
2

+ (−1)yi
α

2

)
− 2−m

∣∣∣∣∣
≤ 1

2

∑
y∈Bm

1
2m ((1 + α)m − 1)

=
1
2

((1 + α)m − 1) .

So given α, Rn→m and Um are at most 1
2 ((1 + α)m − 1)-close. Conversely, Rn→m and Um are ρ close if

α ≤ (1 + 2ρ)1/m − 1. (16)

We will express further results in the latter form, focusing on question b), although both are important questions
depending on the operational circumstances and results can easily be transformed from one form to the other.

So, by making α very small, Rn→m can be made as close as we wish to the uniform distribution. This is intuitive
since α→ 0 only as δ → 0 and we approach the constantly biased source situation.

There are, unfortunately, some issues with this bound. First, as m→∞ the bound on the variation becomes
infinite too. This is unreasonable as by definition we should have ∆(Rn→m, Um) ≤ 1. It only makes sense to talk
about ρ ≤ 1, although in any useful situation we will require ρ to be small (close to 0) so it is only of real importance
that the bound is good in this situation. However, (16) requires α to be significantly smaller than we really require
for the two probabilities to be ρ close. Even for small ρ the bound is noway near tight enough (see Figure 2). Further,
it would be instructive to examine more correctly the behaviour for large m and investigate fully the nature of the
relationship between α, m and ρ.

To rectify this and find a more reasonable bound, we carry out a finer analysis making use of the previous
observation that this is the same problem as finding the variation between two binomial distributions. Let us denote
a binomial probability distribution function for n trials and probability of success p as Sn,p : {0, . . . , n} → [0, 1]
where for each A ⊆ {0, . . . , n},

Sn,p(A) =
∑
k∈A

(
n
k

)
pk(1− p)n−k.
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For 0 ≤ p, p′ ≤ 1, we then have

∆(Sn,p, Sn,p′) =
1
2

n∑
k=0

(
n
k

) ∣∣pk(1− p)n−k − (p′)k(1− p′)n−k
∣∣ ,

and

max
γi,εi

∆(Rn→m, Um) = ∆(Sm,1/2(1±α), Sm,1/2).

Fact 3.22. For 0 ≤ p, p′ ≤ 1 we have ∆(Sn,p, Sn,p′) = ∆(Sn,1−p, Sn,1−p′).

The total variation between two binomial distributions can be given in terms of regularised incomplete beta
functions [3].

Definition 3.23. The incomplete beta function is defined as

B`(a, b) =
∫ `

0
ua−1(1− u)b−1du.

For ` = 1 we write B1(a, b) = B(a, b) for the complete beta function, or just beta function. The regularised
incomplete beta function is defined as

I`(a, b) =
B`(a, b)
B(a, b)

.

Theorem 3.24. Let 0 ≤ p ≤ 1, q = 1− p and 0 ≤ x ≤ q. The total variation between two binomial distributions
with probability of success p and p + x is

∆(Sn,p, Sn,p+x) = n
∫ p+x

p
Sn−1,u(`− 1)du

= n
(

n− 1
`− 1

)∫ p+x

p
u`−1(1− u)n−`du

= Ip+x(`, n− `+ 1)− Ip(`, n− `+ 1),

where

dnpe ≤ ` := `(n, p, x) =
⌈

−n log (1− x/q)
log (1 + x/p)− log (1− x/q)

⌉
≤ dn(p + x)e .

Proof. The first line is from Adell and Jodrá [3]. The rest follows from the well known properties of the beta
functions: B`(a, b) = B`(b, a) and (

n
k

)
=

1
(n + 1)B(n− k + 1, k + 1)

.

�
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Theorem 3.25. The total variation is bounded by

∆(Rn→m, Um) ≤ ∆(Sm,1/2, Sm,1/2(1+α))

= I1/2(1+α)(`, m− `+ 1)− I1/2(`, m− `+ 1),

= F(m− `; m, 1/2− α/2)− F(m− `; m, 1/2)

where

dm/2e ≤ ` = `(m, 1/2,α/2) =
⌈

−m log(1− α)
log(1 + α)− log(1− α)

⌉
≤ dm(1 + α)/2e ,

and

F(k; n, p) =
k∑

x=0

Sn,p(x)

is the cumulative distribution function for the binomial distribution.

Proof. This follows directly from Theorem 3.24 and Fact 3.22. The last line follows from well known properties of
the binomial distribution. �

This bound is exact (under the extrema given by Lemma 3.21), and we easily verify that ∆(Rn→m, Um) ≤ 1
since Ip(a, b) ≤ 1 for all a, b and p ≤ 1, and for p′ ≥ p we have Ip′(a, b) ≥ Ip(a, b) (with equality only for p = p′).
Unfortunately this bound on the variation has no simple closed form, so we can not easily relate α, m and ρ
like we did in (16). The shape and nature of this relationship can be seen for various values of m in Figure 1.
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0.2

0.4
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1.0

Variation ρ as a function of α

α

ρ

Figure 1. Plot of ρ against α using the bound in Theorem 3.25 for four values of m: 100 (dotted), 1,000 (dashed), 10,000 (dot-dashed) and
1,000,000 (solid).
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In practice, with m fixed and given ρ it is easy to compute (with numerical methods) α such that ∆(Rn→m, Um) ≤ ρ.
For relatively small ρ however, we can find a simple and fairly good bound which is easy to work with for rough
approximations.

Theorem 3.26. Assume that m = n/2. Consider the probability spaces (Bm, 2Bm
, Rn→m) and (Bm, 2Bm

, Um). For
every real ρ such that 0 ≤ ρ < 1, if

α ≤ ρ

√
2π(1− 2

m )
m + 1

,

then ∆(Rn→m, Um) ≤ ρ.

Proof. We will take a first order (linear) approximation of ∆(Sm,1/2, Sm,1/2(1+α)) around α = 0. From Theorem 3.24
and the Fundamental Theorem of Calculus we have

Φ(α) :=
d

dα
∆(Sm,1/2, Sm,1/2(1+α)) = m

(
m− 1
`− 1

)
2−m(1 + α)`−1(1− α)m−`.

Since ` ≥ dm/2e we have

Φ(α) ≤ Φ(0),

so our first order upper bound is given by

∆(Sm,1/2, Sm,1/2(1+α)) ≤ αΦ(0) = αm
(

m− 1
`− 1

)
2−m.

Since the central binomial coefficient (i.e.
( n
bn/2c

)
) is the largest, for k ≤ m− 1 we have

(
m− 1

k

)
≤
(

m− 1⌊m−1
2

⌋) =
(

m− 1⌈m
2

⌉
− 1

)
,

which can easily be shown by taking the two cases of m odd and m even. Since ` ≥ dm/2e we have that

Φ(0) ≤ 2−mm
(

m− 1⌈m
2

⌉
− 1

)
= 2−mm

⌈m
2

⌉
m

(
m⌈m
2

⌉) = 2−m dm/2e
(

m⌈m
2

⌉).
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Using the bounds given in Corollary 2.3, [31], and writing m = a dm/2e where a ≤ 2, we have(
a
⌈m

2

⌉⌈m
2

⌉ ) <
1√

2π
⌈m

2

⌉ am+ 1
2

(a− 1)(a−1)d m
2 e+ 1

2

=
1√

2π
⌈m

2

⌉ mm+ 1
2⌊m

2

⌋b m
2 c+ 1

2
⌈m

2

⌉d m
2 e

≤ 1√
2π
⌈m

2

⌉ mm+ 1
2(

( m
2 + 1

2 )( m
2 −

1
2 )
)b m

2 c ( m
2 −

1
2 )

1
2 ( m

2 )

≤ 1√
2π
⌈m

2

⌉ 2m+ 1
2(

1− 1
m2

)b m
2 c (1− 1

m )
1
2

≤ 1√
π
⌈m

2

⌉ 2m(
1− 1

2m

)
(1− 1

m )
1
2

≤ 2m√
π
⌈m

2

⌉
(1− 2

m )
.

Hence, we have

Φ(0) ≤

√ ⌈m
2

⌉
π(1− 2

m )
≤
√

m + 1
2π(1− 2

m )
.

�

This bound is much better than the bound given in (16), and for small α is extremely good. It has the desired
properties that as α→ 0, the bound on the variation tends to 0 also. Obviously this bound is not less than one for all
α, but for small ρ the bound is very good, as can be seen in Figure 2.

Another interesting question refers to the possibility of manipulating the parameter α for fine calibration of the
QRNG. For Rn→m to become closer to Um we need to make α smaller, but this can be done by adjusting both δ and β.
As previously discussed, both are reasonable physical parameters, and which one is the most suitable (or easiest) to
decrease experimentally will to a large extent depend on the QRNG set-up itself. However, adjusting δ has a larger
effect on α than adjusting β does, and Rn→m will only approach Um arbitrarily close as δ → 0, as even with β = δ
(recall δ ≤ β) we do not have α = 0 unless δ = 0.

These results can be extended to all m ≤ n/2, although the analysis is rather ellaborated. The key difference is
that in the definition of Rn→m in (7) the set VN−1

n,m(Y) no longer has the same size as Y , so an additional summation is
needed in the right hand side of (7). However, the total variation will still be maximised under the same conditions
as in Lemmata 3.20 and 3.21, and the same relation as in Theorem 3.25 holds.

It is worth noting that the conditions which maximised the variation in (10) correspond to every εi being the
same up to a small variation δ. Physically this would indicate that p0, p1 have been incorrectly stated, but that the
device is actually rather accurate except for a small drift in probabilities of no more than δ. Since the parameters εi

are supposed to physically account for the amount the probability is allowed to drift, which will normally be much
more than the drift between individual bits (the γi), if the device is calibrated so that p0 and p1 are centred so that the
εi are distributed around them, then the variation will not be nearly as bad as in this worst case. However, the bound
on the variation remains valid as it is not necessarily meaningful (or useful) to look into the physical situation under
which the worst case bound is achieved.
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Δ (Sm,1/2,Sm,1/2 (1+α ))

((1+ α)m −1)

ghα
2π (1− 2/m)

1
2

m = 5000m = 200
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Figure 2. Plot of upper bounds on the variation between Rn→m and Um.

We briefly wish to point out that other methods for dealing with independent-bit sources have been proposed.
For example, grouping bits into blocks of size ` and taking the parity of these bits for the “normalised” bit, produces
a string of length n/` [37]. With this method each bit becomes unbiased exponentially fast in `. However, the bound
in Theorem 3.26 is asymptotically tighter than the corresponding bound that can be obtained by the parity method if
the block size ` is fixed; if ` scales polynomially with n then this method produces a better bound, but at a substantial
cost to the number of bits produced [37, Proposition 6.5]. The reason the von Neumann normalisation outperforms
the parity method is due to the fact that the bias is required to vary slowly.

4. The Infinite Case
The extension of the above results to infinite sequences of bits produced by QRNGs is fairly straightforward, but
forces us to address a few unexpected problems. First, we must extend the definition of the normalisation function
VNn,m to sequences. We define VN : Bω → Bω ∪ B∗ as

VN(x = x1 . . . xn . . . ) = F(x1x2)F(x3x4) · · ·F(x2b n
2c−1x2b n

2c) · · · .

For convenience we also define VNn : Bω →
(⋃

k≤n Bk
)
∪ {λ} as

VNn(x) = F(x1x2)F(x3x4) · · ·F
(

x2b n
2c−1x2b n

2c
)

= VNn,n(x1 . . . xn).

Secondly, we introduce the probability space of infinite sequences as in [10]. Let AQ = {a1, . . . , aQ}, Q ≥ 2 be
an alphabet with Q elements. We let P = {xAωQ | x ∈ A∗Q} ∪ {∅} and C be the class of all finite mutually disjoint
unions of sets in P; the class P can be readily shown to generate a σ-algebraM. Using Theorem 1.7 from [10], the
probabilities onM are characterised by the functions h : A∗Q → [0, 1] satisfying:

1. h(λ) = 1,
2. h(x) = h(xa1) + · · ·+ h(xaQ), for all x ∈ A∗Q.

If Q = 2 so A2 = B, and for x ∈ Bn we take h(x) = Pn({x}) with Pn as defined in Fact 3.1, then the above
conditions are satisfied. This induces our probability measure µP on M, which satisfies µP(XBω) = Pn(X) for
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X ⊆ Bn. Hence the suitable extension of the finite case probability space to infinite generated sequences is the space
(Bω ,M,µP). In the special case when p0 = p1 we get the Lebesgue probability µPL (XBω) =

∑
x∈X 2−|x|.

In general, if Q ≥ 2, pi ≥ 0 for i = 1, . . . , Q are reals in [0,1] such that
∑Q

i=1 pi = 1, we can take hQ(x) =

p
#a1 (x)
1 . . . p

#aQ (x)
Q (#ai(x) is the number of occurrences of ai in x) to obtain the probability space (AωQ,M,µPQ) in

which µPQ(xAωQ) = hQ(x), for all x ∈ A∗Q.
The first result notes that there exist sequences x ∈ Bω such that VN(x) ∈ B∗. In fact every string can be

produced via von Neumann normalisation from a suitable sequence.

Theorem 4.1. For every string y ∈ B∗ there exists an uncountable set R ⊂ Bω of µP measure zero such that for all
x ∈ R, VN(x) = y.

Proof. Let y = y1 . . . yn ∈ B∗ and D = {00, 11}, the two-bit blocks which are deleted by von Neumann normali-
sation and y′ = f (y1) . . . f (yn). Then every sequence x ∈ y′Dω satisfies VN(x) = VN2n(x)VN(x2n+1x2n+2 . . . ) = y
since VN2n(x) = VN2n,2n(y′) = y and for all z ∈ Dω we have VN(z) = λ. Obviously, the set R = y′Dω is uncountable
and has µP measure zero as the set of Borel normal sequences has measure one [10]. �

Corollary 4.2. The set Q = {x ∈ Bω | VN(x) ∈ B∗} has µP measure zero.

Proof. We simply note that the union of countably many measure zero sets also has measure zero. �

It is interesting to note that the “collapse” in the generated sequence produced by von Neumann normalisation
in Theorem 4.1 is not due to computability properties of the sequence. In particular, there are random sequences that
collapse to any string, so to strings which are not Borel normal.

In the following we need a measure-theoretic characterisation of random sequences, so we present a few facts
from constructive topology and probability.

Consider the compact topological space (AωQ, τ) in which the basic open sets are the sets wAωQ, with w ∈ A∗Q.
Accordingly, an open set G ⊂ AωQ is of the form G = VAωQ, where V ⊂ A∗Q.

From now on we assume that the reals pi, 1 ≤ i ≤ Q which define the probability µPQ are all computable.
A constructively open set G ⊂ AωQ is an open set G = VAωQ for which V ⊂ A∗Q is computably enumerable (c.e.).
A constructive sequence of constructively open sets, c.s.c.o. sets for short, is a sequence (Gm)m≥1 of constructively
open sets Gm = VmAωQ such that there exists a c.e. set X ⊂ A∗Q × N with Vm = {x ∈ A∗Q | (x, m) ∈ X}, for all natural
m ≥ 1. A constructively null set S ⊂ AωQ is a set for which there exists a c.s.c.o. sets (Gm)m≥1 with S ⊂

⋂
m≥1 Gm,

µPQ(Gm) ≤ 2−m. A sequence x ∈ AωQ is random in the probability space (AωQ,M,µPQ) if x is not contained in
any constructively null set in (AωQ,M,µPQ). For the case of the Lebesgue probability µPL the measure-theoretic
characterisation of random sequences holds true: x is random if and only if x is not contained in any constructively
null set of (AωQ,M,µPL ) [10, 25].

We continue with another instance in which von Neumann normalisation decreases randomness.

Proposition 4.3. There exist (continuously many) infinite 1/2-random sequences x ∈ Bω such that VN(x) =
000 . . . 00 . . . .

Proof. Consider a random sequence x = x1x2 . . . xn . . . and construct the sequence x′ = 0x10x2 . . . 0xn . . . . Clearly,
x′ is 1/2-random, but VN(x′) = 000 . . . 00 . . . because there exist infinitely many 1’s in x. �

We follow this with instances for which the converse is true: von Neumann normalisation conserves or increases
randomness.

Proposition 4.4. There exist (continuously many) infinite 1/2-random sequences x ∈ Bω such that VN(x) is random.

Proof. Consider a random sequence x = x1x2 . . . xn . . . and construct the sequence x′ = x1x̄1x2x̄2 . . . xnx̄n . . . .
Clearly, x′ is 1/2-random and VN(x′) = x. �
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Comment. Both Proposition 4.3 and 4.4 are true for the more general case of ε-random sequences, where 0 < ε < 1
is computable.

We briefly note that in the definition of Borel normality it does not matter if we count the number of non-
overlapping occurrences of each string of length m, Nm

i (y) as defined in Section 2, or the number of overlapping
occurrences, Nm

i (y) [22]. One of the main results of this section, presented in Theorem 4.5, is the following: Borel
normality is invariant under von Neumann normalisation.

Theorem 4.5. Let x ∈ Bω be Borel normal in (Bω ,M,µPL ). Then VN(x) is also Borel normal in (Bω ,M,µPL ).

Proof. Note that VN(x) ∈ Bω because x contains infinitely many occurrences of 01 on even/odd positions. Let
D = {00, 11}, x∗(n) = VNn,n(x(n)), n′ = |x∗(n)|. We have

lim
n′→∞

Nm
i (x∗(n))

n′
= lim

n′→∞

( n
n′

)(Nm
i (x∗(n))

n

)
,

but as n→∞, n′ →∞. We thus have

lim
n′→∞

n′

n
= lim

n′→∞

N1
0(x∗(n)) + N1

1(x∗(n))
n

= lim
n→∞

N 2
01(x(n)) +N 2

10(x(n))
bn/2c

= 2−1

by the normality of x. The number of occurrences of each i = i1 . . . im ∈ Bm in x∗(n) is the number of occurrences
of i′ = f (i1)y1f (i2) . . . ym−1f (im) in x(n), summed over all y1, . . . , ym−1 ∈ D∗. Viewing i′ as a string over
{00, 01, 10, 11} we have:

lim
n′→∞

Nm
i (x∗(n))

n
= lim

n→∞

∑
y1,...,ym−1

N|i
′|

i′ (x(n))

n

=
∑

y1∈D∗

∑
y2∈D∗

· · ·
∑

ym−1∈D∗
2−2|i′|

=
∞∑
|y1|=0

2|y1|
∞∑
|y2|=0

2|y2| · · ·
∞∑

|ym−1|=0

2|ym−1|2−2|i′|

= 2−2m
∞∑
|y1|=0

2−|y1|
∞∑
|y2|=0

2−|y2| · · ·
∞∑

|ym−1|=0

2−|ym−1|

= 2−2m2m−1

= 2−(m+1).
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Hence, both limits exist and we have

lim
n′→∞

Nm
i (x∗(n))

n′
= lim

n′→∞

( n
n′

)(Nm
i (x∗(n))

n

)

=
limn′→∞

Nm
i (x∗(n))

n

limn′→∞
n′
n

=
2−(m+1)

2−1

= 2−m.

Since this holds for all m, i we have that VN(x) is Borel normal. �

Let AQ = {a1, . . . , aQ}, Q ≥ 3. Let
∑Q

i=1 pi = 1 where pi ≥ 0 for i = 1, . . . , Q and (AωQ,M,µPQ) be the
probability space defined by the probabilities pi. Let AQ−1 = {a1, . . . , aQ−1} and (AωQ−1,M,µPT

Q−1
) be the

probability space defined by the probabilities

pT
i = pi

(
1 +

pQ∑Q−1
j=1 pj

)
=

pi

1− pQ

,

with 1 ≤ i ≤ Q− 1. Let T : A∗Q → A∗Q−1 be the monoid morphism defined by T(ai) = ai for 1 ≤ i ≤ Q− 1,
T(aQ) = λ; T(x) = T(x1)T(x2) · · · T(xn) for x ∈ An

Q. As T is prefix-increasing we naturally extend T to sequences
to obtain the function T : AωQ → AωQ−1 given by T(x) = limn→∞ T(x(n)) for x ∈ AωQ.

Lemma 4.6. The transformation T is (µPQ ,µPT
Q−1

)–preserving, i.e. for all w ∈ A∗Q−1 we have µPQ

(
T−1(wAωQ−1)

)
=

µPT
Q−1

(
wAωQ−1

)
.

Proof. Take w = w1 . . .wm ∈ AωQ−1. We have:

µPQ

(
T−1(wAωQ−1)

)
= µPQ

(
{x ∈ AωQ | w < T(x)}

)
= µPQ

{
ai1

Qw1ai2
Qw2 . . . a

im
Q wmz | z ∈ AωQ

}
=

∞∑
i1,...,im=0

hQ
(
ai1

Qw1ai2
Qw2 . . . a

im
Q wm

)
=

∞∑
i1,...,im=0

hQ−1(w) · pi1+···+im
Q

= hQ−1(w) · 1
1− pQ

= hT
Q−1(w)

= µPT
Q−1

(
wAωQ−1

)
.

�

Proposition 4.7. If x ∈ AωQ is random in (AωQ,M,µPQ) and T is the transformation defined in Lemma 4.6, then T(x)
is random in (AωQ−1,M,µPT

Q−1
).
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Proof. We generalise a result in [12] stating that, for the Lebesgue probability, measure-preserving transformations
preserve randomness. Assume that x is random in (AωQ,M,µPQ) but T(x) is not random in (AωQ−1,M,µPT

Q−1
),

i.e. there is a constructive null set R = (Gm)m≥1 containing T(x). Assume that Gm = XmAωQ−1, where Xm ⊂ AωQ−1

is c.e. and has the measure µPT
Q−1

(XmAωQ−1) smaller than 2−m. Define Sm = T−1(XmAωQ−1) ⊂ AωQ and note that Sm is
open because it is equal to

⋃
w∈Xm

VwAωQ with Vw = {v ∈ AωQ | w < T(v)} and, using Lemma 4.6, has the measure
smaller than 2−m:

µPQ(Sm) = µPQ

( ⋃
w∈Xm

VwAωQ

)
≤
∑

w∈Xm

µPQ

(
VwAωQ

)
=
∑

w∈Xm

µPQ

(
T−1 (wAωQ−1

))
= µPT

Q−1

(
XmAωQ−1

)
≤ 2−m.

We have proved that x is not random in (AωQ,M,µPQ), a contradiction. �

Let us define VN−1 : 2B∗ → 2B∗ for x = x1 . . . xm ∈ Bm as

VN−1(x) = {y | y = u1f (x1)u2 . . . umf (xm)um+1v and ui ∈ {00, 11}∗ for 1 ≤ i ≤ m, v ∈ B ∪ {λ}}

=
∞⋃

n=0

VN−1
n+2m,m(x),

and for X ⊆ B∗ as

VN−1(X) =
⋃
x∈X

VN−1(x).

For all x ∈ B∗ and y ∈ VN−1(x)Bω we then have x < VN(y).
For the cases that VN(x) ∈ Bω , the probability space (Bω ,M,µPVN ) induced by von Neumann normalisation is

endowed with the measure µPVN . The measure µPVN is defined on the sets xBω with x ∈ B∗ by

µPVN (xBω) =
µP(VN−1(x)Bω)
µP(VN−1(B|x|)Bω)

.

By noting that VN−1(B|x|) ⊂ VN−1(B∗) it is clear to see that µPVN satisfies the Kolmogorov axioms for a probability
measure. While the set VN−1(B|x|) contains sequences for which normalisation produces a finite string, from
Corollary 4.2 we know that the set of such sequences have measure zero, so the definition of µPVN is a good model
of the target probability space. We thus arrive at the key result that (measure-theoretical) randomness is invariant
under von Neumann normalisation.

Theorem 4.8. Let x ∈ Bω be random in (Bω ,M,µP). Then VN(x) ∈ Bω is also random in (Bω ,M,µPVN ).

Proof. We write the random sequence x as x = x1x2 . . . xn · · · = (x1x2) . . . (x2n−1x2n) · · · ∈ {00, 01, 10, 11}ω .
Renaming a = 00, A = 01, B = 10, b = 11 and consistently deleting first all occurrences of a we get a random
sequence xA,B,b on the alphabet {A, B, b}, then deleting all occurrences of b we get a random sequence xA,B on
the alphabet {A, B}. The result follows from the fact that VN(x) = x0,1 and Proposition 4.7 stating that xA,B is
random. �
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Corollary 4.9. If x ∈ Bω is random in (Bω ,M,µP) then VN(x) is Borel normal in (Bω ,M,µPVN ).

Proof. From Theorem 4.8 it follows that VN(x) is Borel normal provided x is random [10]. �

Theorem 4.10. The probability space (Bω ,M,µPVN ) induced by von Neumann normalisation is the uniform
distribution (Bω ,M,µPL ), where µPL is the Lebesgue measure.

Proof. By Lemma 4.6 von Neumann normalisation is measure preserving, so for x ∈ B∗ we have

µPVN (xBω) = µP(VN−1(x)Bω)

= p|x|0 p|x|1

∑
di∈D∗

p
#0(d1...d|x|)
0 p

#1(d1...d|x|)
1 .

The key point, as in the finite case, is that this only depends on |x| not x itself. By using the fact that for any n,∑
x∈Bn µPVN (xBω) = 1, we have

µPVN (xBω) = 2−|x|

for all x ∈ B∗, and hence µPVN = µPL , the Lebesgue measure. �

This can easily be extended from the case when VN(x) is infinite, to the case in which it is finite. To do so, note that
if y ∈ Bω and VN(x) = y ∈ Bn, then the probability space induced by von Neumann normalisation is (Bn, 2Bn

, P∗n).
We then have

P∗n(x) =
µP(VN−1(x)Dω)
µP(VN−1(Bn)Dω)

,

and since the denominator is constant for all x ∈ Bn, we can proceed as for above, and P∗n = Un as desired.

Theorem 4.11. The set {x ∈ Bω | VN(x) ∈ B∗ or VN(x) ∈ Bω is computable } has measure zero with respect to the
probability space (Bω ,M,µP).

Proof. By Theorem 4.8 we deduce that

{x ∈ Bω | VN(x) ∈ Bω is computable } ⊂ {x ∈ Bω | x is not random in (Bω ,M,µP)},

which has measure zero [25]. To complete the proof, note that we know from Corollary 4.2 that the set {x ∈ Bω |
VN(x) ∈ B∗} also has measure zero.

�

5. Role of probability spaces for QRNGs
The treatment of QRNGs as entirely probabilistic devices is grounded purely on the probabilistic treatment of
measurement in quantum mechanics which originated with Born’s decision to “give up determinism in the world
of atoms” [8], a viewpoint which has become a core part of our understanding of quantum mechanics. This is
formalised by the Born rule, but the probabilistic nature of individual measurement is nonetheless postulated and
tells us nothing about how the probability arises. Along with the assumption of independence this allows us to predict
the probability of successive events, as we have done.

No-go theorems such as the Kochen-Specker Theorem [21] tell us something stronger: if we assume non-
contextuality (i.e. that the result of an observation is independent of the compatible observables are co-measured
alongside it [5, 17]) then there can, in general, be no pre-existing definite values prescribable to certain sets of
measurement outcomes in dimension three or greater Hilbert space. In other words, the randomness is not due to
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ignorance of the system being measured; indeed, since there are in general no definite values associated with the
measured observable it is surprising there is an outcome at all [35]. While this does not answer the question as to
where the randomness arises from, it does tell us something stronger than the Born Rule does. In [13] it is shown
that every infinite sequence produced by a QRNG is (strongly) incomputable. In particular, this implies that it is
impossible for a QRNG to output a computable sequence. The set of computable numbers has measure zero with
respect the probability space of the QRNG, but the impossibility of producing such sequence is much stronger than,
although not in contradiction with, the probabilistic results.

In the finite case every string is, of course, obtainable, and we would expect the distribution to be that predicted
by the probability space derived from the Born Rule. However, the infinite case has something to say here too. We
can view any finite string produced by a QRNG as the initial segment of an infinite sequence the QRNG would
produce if left to run indefinitely. For any infinite sequence produced by the QRNG, it is impossible to compute
the value of any bit before it is measured [1]; in the finite case this means there is no way to provably compute the
value of the next bit before it is measured. In light of value indefiniteness this is not unexpected, but nonetheless
gives mathematical grounding to the postulated unpredictability of each individual measurement, as well as the
independence of successive measurements—indeed we can rule out any computable causal link within the system
which may give rise to the measurement outcome.

The results we have presented in this paper, however, describe thoroughly the distribution of strings/sequences
produced by QRNGs. With the distributions known we can create more intelligent tests of the quality of output of
a QRNG [11]. Current statistical tests for analysing RNGs are designed with pseudo-RNGs in mind, and are not
necessarily the best way to test the quality of QRNGs. The effects of normalisation on strings generated by QRNGs
can help us design QRNGs which are more robust to experimental imperfection and exhibit the desired behaviour.
It will further aid in developing new normalisation techniques designed to produce the expected (ideal) theoretical
distribution even in the absence of experimental imperfections.

6. Conclusions
The analysis developed in this paper involves the probability spaces of the source and output of a QRNG and the
effect von Neumann normalisation has on these spaces.

In the “ideal case”, the von Neumann normalised output of an independent constantly biased QRNG is the
probability space of the uniform distribution (un-biasing). This result is true for both for finite strings and for the
infinite sequences produced by QRNGs (the QRNG runs indefinitely in the second case).

For a real-world QRNG in which the bias, rather than holding steady, drifts slowly, we evaluated the speed of
drift required to be maintained by the source distribution to guarantee that the output distribution is arbitrarily close
to the uniform distribution. It is an open question to study the quality of von Neumann normalisation in the more
realistic case when, instead of the bits being independent, the probability for each bit depends on a finite number of
preceding bits (for example, because of the high bit-rate of the experiment). Note that Blum’s algorithm [7] assumes
a Markov-type correlation, which cannot be assumed for a QRNG certified by value indefiniteness [2].

We have also examined the effect von Neumann normalisation has on various properties of infinite sequences.
In particular, Borel normality and (algorithmic) randomness are invariant under normalisation, but for ε-random
sequences with 0 < ε < 1, normalisation can both decrease or increase the randomness of the source. It is an open
question whether von Neumann normalisation preserves randomness and Borel normality for finite strings.

Finally, we reiterate that a successful application of von Neumann normalisation—in, fact, any un-biasing
transformation—does exactly what it promises, un-biasing, one (among infinitely many) symptoms of randomness;
it will not produce “true” randomness.
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