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Abstract.
BACKGROUND: Continued improvement in deep learning methodologies has increased the rate at which deep neural networks
are being evaluated for medical applications, including diagnosis of lung cancer. However, there has been limited exploration of
the underlying radiological characteristics that the network relies on to identify lung cancer in computed tomography (CT) images.
OBJECTIVE: In this study, we used a combination of image masking and saliency activation maps to systematically explore the
contributions of both parenchymal and tumor regions in a CT image to the classification of indeterminate lung nodules.
METHODS: We selected individuals from the National Lung Screening Trial (NLST) with solid pulmonary nodules 4–20 mm
in diameter. Segmentation masks were used to generate three distinct datasets; 1) an Original Dataset containing the complete
low-dose CT scans from the NLST, 2) a Parenchyma-Only Dataset in which the tumor regions were covered by a mask, and 3) a
Tumor-Only Dataset in which only the tumor regions were included.
RESULTS: The Original Dataset significantly outperformed the Parenchyma-Only Dataset and the Tumor-Only Dataset with an
AUC of 80.80 ± 3.77% compared to 76.39 ± 3.16% and 78.11 ± 4.32%, respectively. Gradient-weighted class activation mapping
(Grad-CAM) of the Original Dataset showed increased attention was being given to the nodule and the tumor-parenchyma boundary
when nodules were classified as malignant. This pattern of attention remained unchanged in the case of the Parenchyma-Only
Dataset. Nodule size and first-order statistical features of the nodules were significantly different with the average malignant and
benign nodule maximum 3d diameter being 23 mm and 12 mm, respectively.
CONCLUSION: We conclude that network performance is linked to textural features of nodules such as kurtosis, entropy and
intensity, as well as morphological features such as sphericity and diameter. Furthermore, textural features are more positively
associated with malignancy than morphological features.
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1. Introduction 1

The ability of deep neural networks (DNNs) to ex- 2

tract high-level features from images has allowed them 3

to garner widespread attention and adoption in vari- 4

ous real-world tasks [1,2,3]. In the case of lung can- 5
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cer, DNNs have achieved comparable and sometimes6

even better performance than trained radiologists [4].7

DNNs evaluate voxel intensity relationships and con-8

struct features that are subsequently used to address a9

classification problem. However, since these features10

are not predefined, and their attribution to the endpoint11

is rapidly convoluted within the network layers, it is12

difficult to know what image characteristics contribute13

most heavily to the classification [5,6,7,8]. This intrin-14

sic black-box nature of DNNs mitigates against trust in15

their diagnoses, especially when they do not agree with16

physician opinion.17

Various methodologies have been created to address18

network interpretability, including saliency activation19

maps and feature perturbation. The saliency activation20

map is a visualization technique that highlights the re-21

gions or features in an image that a DNN pays most22

attention to when making its classification decisions [9,23

10,11]. However, this leaves the interpretation of which24

features are being identified as important to the human25

observer, making it open to confirmation bias. Alter-26

natively, perturbation of the individual features iden-27

tified by a CNN can show the relative contributions28

that each feature makes to network performance [12,29

13,14], but it is often difficult to interpret these features30

in terms of meaningful human notions. It thus remains31

challenging to determine if a DNN is capturing known32

biologic relationships such as, for example, the link33

between parenchymal lung disease and lung cancer [15,34

16,17,18,19]. The roles of such known relationships35

have been studied in support vector machines, random36

forests, and multi-layer perceptrons [20], but in these37

cases the features were manually extracted. Their roles38

in CNNs, which extract features automatically, remain39

uncertain.40

Accordingly, in this present study we perturbed im-41

ages by masking segmented regions, and combined this42

with saliency activation maps to systematically explore43

the contribution of parenchymal and tumor regions in44

CT images to the classification of indeterminate lung45

nodules. In particular, we investigated the nodule char-46

acteristics associated with false-negatives and false-47

positives in order to gain insight into the failure modes48

of CNNs.49

2. Methods50

2.1. Dataset51

We selected a subset of images containing indeter-52

minate lung nodules from the National Lung Screen-53

ing Trial (NLST) dataset (2). The University of Ver- 54

mont Institutional Review Board determined the use 55

of NLST data to be human subject exempt following 56

the National Cancer Institute Data Agreement (NLST- 57

163). Individuals screened in the NLST had a smok- 58

ing history of greater than 30 pack-years and had quit 59

smoking less than 15 years prior. Using the low dose 60

computed tomography (LDCT) branch of the NLST, we 61

selected individuals with nodules less than 20 mm in 62

diameter. This reduced the influence of diameter on the 63

likelihood of malignancy, since solitary nodules with 64

diameters between 20 and 30 mm are known to be as- 65

sociated with an approximately > 50% risk of malig- 66

nancy [21]. Additionally, images with multiple nodules 67

or subsolid nodules were excluded from the dataset. 68

These criteria resulted in a final dataset of 3,533 anno- 69

tated 3-dimenstional LDCT images from the total of 70

54,000 images in the NLST dataset (Fig. 1). 71

Of the 3,533 patients in the final dataset, 354 were 72

found to have positive diagnoses for lung cancer (Ta- 73

ble 1). To balance the dataset for training, 354 patients 74

were randomly selected from those with benign nod- 75

ules, giving a total of 708 nodule. A 64 × 64 × 64- 76

pixel region of interest (ROI) was defined around each 77

nodule. Sagittal, axial, and coronal slices were then ex- 78

tracted from each ROI, generating three 64 × 64 im- 79

ages for each nodule. The final collection of images, 80

which we refer to as the Original Dataset, contained 81

2124 2-dimensional images of nodules, 1062 malignant 82

and 1062 benign. 83

2.2. Nodule segmentation and radiomics extraction 84

Nodules were segmented semi-automatically from 85

regions of interest (ROI) using the Chest Imaging Plat- 86

form (CIP) [22,23]. Nodule boundaries were automati- 87

cally detected by the CIP followed by manual adjust- 88

ments based on secondary visual inspection by a trained 89

radiologist. First-order radiomics, such as energy, en- 90

tropy, and skewness, along with morphologic radiomics, 91

such as nodule sphericity and maximal diameter, were 92

extracted from the tumor regions in each image. Low 93

attenuation areas below −950 HU (laa950) was ex- 94

tracted from the parenchymal regions in each image. 95

Using segmentation masks, either the nodule or its sur- 96

rounding parenchymal information was removed from 97

the image, generating the Nodule-Only Dataset and the 98

Parenchyma-Only Dataset, respectively (Fig. 2). 99

2.3. Training and testing 100

Normalization was applied to all images prior to 101

being processed by our miniaturized Inception mod- 102
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Table 1
Demographic and scanning parameters of study cohorts

Malignant Benign P -value
Subjects 336 3197
Sex (Female:Male) 152:184 1263:1934
Age, yrs (mean ± SD) 63.065 (± 5.224) 61.562 (± 5.064) 0.001
Pack-years, yrs (mean ± SD) 65.021 (± 24.489) 56.466 (± 24.554) 0.001
Kilovoltage, kVP (range, mean) 121.084 (± 6.506) 121.252 (± 6.299) 0.646
Tube current, mA (range, mean) 63.196 (± 50.19) 63.839 (± 46.860) 0.813
Slice thickness, mm (range, mean) 25.083 (± 90.456) 16.278 (± 70.977) 0.0368

Fig. 1. Flow diagram showing the inclusion and exclusion criteria for final dataset using the National Lung Screening Trial dataset (NLST).

ule [24,25]. This architecture was selected to allow for103

multiscale features to be extracted and concatenated to-104

gether to minimize information loss. To train the model,105

a cross-entropy loss function was utilized alongside an106

ADAM optimizer. Stratified K-fold cross validation was107

utilized to generate 10 unique training/validation/testing108

dataset combinations. Training and testing were re-109

peated 10 times on the 10 unique combinations of im-110

ages. Specificity and sensitivity were extracted from111

each training-testing instance along with a receiver op-112

erating characteristic curve (ROC). The general perfor-113

mance of each approach was evaluated using the area114

under the curve (AUC) of the ROC.115

Lastly, we selected the network with the lowest least-116

absolute-square error by calculating the average AUC.117

This network was utilized to evaluated how much at-118

tention the CNN placed on each pixel in each image119

from its gradient-weighted class activation map (Grad-120

CAM) [9,10]. All Grad-CAMs were separated into clas-121

sification groups (true-positives, false-positives, true-122

negatives, and false-negatives) in order to determine123

those traits that most impacted network performance 124

for each group. 125

2.4. Statistical analysis 126

A two-sample t-test was used to compare the re- 127

sults obtained between datasets. Bonferroni correction 128

was used to calculate an adjusted p-value for multiple 129

comparisons. To compare classification groups, a Lev- 130

ene’s test was applied to all metrics to ensure that the 131

homoscedasticity hypothesis was true prior to apply- 132

ing an independent t-test. If the Levene’s test failed, a 133

Kruska-Wallis H-test was applied to evaluate statistical 134

significance. 135

3. Results 136

Figure 3 compares the testing diagnostic perfor- 137

mances of the Original Dataset, the Parenchyma-Only 138

Dataset, and the Nodule-Only Dataset. The mean AUC 139
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Fig. 2. Axial slice from a Low Dose Computed Tomography (LDCT) image showing the (a) the original LDCT scan, (b) the segmented tumor
map, (c) the parenchyma-only image, (d) the tumor-only image.

Fig. 3. Distribution of the area under the curve (AUC) across datasets for 100 iterations.

for each dataset was 80.80 ± 3.77%, 76.39 ± 3.16%,140

78.11 ± 4.32%, respectively. The Original Dataset per-141

formed significantly better than the Parenchyma-Only142

and Tumor-Only datasets (p = 1.13×10−11 and 0.002,143

respectively). Similarly, the Tumor-Only Dataset per-144

formed significantly better than the Parenchymal-Only145

Dataset (p = 0.003), suggesting that although important146

information exists within the parenchyma, first-order147

radiomic features in the tumor contain most of the clas-148

sifying power. No significant differences were observed149

between datasets for either sensitivity (67.72 ± 6.82%,150

65.28 ± 6.63%, and 69.66 ± 8.32%, respectively) or151

specificity (81.34 ± 5.61%, 75.18 ± 5.81%, and 77.50152

± 4.08%, respectively).153

The classification results from the best performing154

network comprised four distinct groups using the max-155

imum probability of the networks output – true pos-156

itives, false positives, false negatives, and true nega-157

tives. Table 2 shows the number of individuals in each 158

group for the Original Dataset, the Parenchyma-Only 159

Dataset, and the Tumor-Only Dataset using the same 160

testing data. Consistent true positives can be observed 161

across all datasets, with the primary difference between 162

the datasets being false classification. 163

Grad-CAM images from the Original Dataset show 164

that the attention of the CNN was focused on the nod- 165

ule when malignancy was diagnosed and moved to 166

the parenchyma when nodules were considered benign 167

(Fig. 4). Grad-CAM images from the Parenchyma-Only 168

Dataset shows a similar shift in attention from adja- 169

cent regions of the parenchyma to the border of the 170

masked tumor in cases of malignancy versus more dis- 171

tant parenchyma in the case of benign nodules. 172

Nodule diameter, sphericity, intensity, entropy, skew- 173

ness, kurtosis, gray levels, y-position, and z-position 174

with relation to the carina were significantly different 175



Galley Proof 7/06/2024; 9:49 File: cbm–1-cbm230444.tex; BOKCTP/yn p. 5

A.H. Masquelin et al. / LDCT image biomarkers that matter most for the DL classification of indeterminate pulmonary nodules 5

Table 2
Number of individuals in each classification group for a given approach using the same
testing dataset (n = 137)

Approach True positive False negative True negative False positive
Original 62 11 18 46
Parenchyma-Only 57 16 24 40
Tumor-Only 59 14 16 48

Fig. 4. Grad-CAM images from the original dataset and parenchyma-only dataset showing network attention for malignant and benign nodules
based on class label.

between true positives and true negative (see Supple-176

ment A for p-values). True-positive nodules were found177

to have positive correlation with respect to nodule di-178

ameter, intensity, and gray levels compared to false-179

negatives, false-positives, and true negatives (Table 3).180

Sphericity was negatively correlated as nodules were181

less spherical in the true-positives than in the false-182

positives, false-negatives, and true-negatives. Nodule183

skewness, and kurtosis were negatively correlated with184

true-positive nodules when compared to true-negatives.185

Additionally, true-positive nodules were found to be186

higher in the chest than true-negative nodules.187

4. Discussion188

Deep neural networks and the growing availability189

of big data have allowed for rapid improvements in the190

accuracy of computed aided diagnostic tools (CADx)191

at the cost of interpretability [26,27]. Various methods192

for model interpretability have been proposed in order193

to address their black-box nature. Approaches such as 194

concept vectors [5,8,28,29] and attention based, pertur- 195

bation based, and expert knowledge methodologies [27, 196

30] have been explored to improve trust in classification 197

results produced by DNNs. From a clinician perspec- 198

tive, confidence in a classification result is bolstered 199

by model interpretability that provides a clear reason 200

for a decision. Model interpretability can also be useful 201

for improving the performance of DNNs. For example, 202

we showed in the present study that a combination of 203

image perturbation via masking together with attention- 204

based methodologies provides insight into the features 205

associated with early signs of malignancy that may not 206

be considered in the Lung-RADS guidelines. 207

Comparing the results shown in Table 3 to published 208

data such as that of Zhu P. and Ogino M., we found that 209

nodule diameter remains positively correlated with nod- 210

ule malignancy [27,31,32]. This is best illustrated when 211

comparing the size of true-positive and true-negative 212

nodules. Interestingly, true-positive nodules were found 213

to be significantly larger than false-positive and false- 214
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Table 3
Mean and standard error across the demographic and first order radiomics features extracted from the original image for classification groups (true
positive, false negatives, false positives, and true negatives)

True positives False negatives False positives True negatives
Nodule Maximum 3d Diameter

Original 23.98 (± 11.23) 12.48 (± 5.94) 14.00 (± 12.70) 12.00 (± 7.82)
Parenchyma-Only 24.17 (± 11.28) 15.37 (± 8.87) 12.49 (± 9.45) 12.61 (± 9.46)
Tumor-Only 24.52 (± 10.84) 12.63 (± 8.12) 19.38 (± 12.53) 10.29 (± 6.84)

Laa950 percentage (Parenchyma -Only)
Original 7.82 (± 9.19) 18.278 (± 22.09) 6.78 (± 11.09) 7.80 (± 9.75)
Parenchyma-Only 8.54 (± 9.30) 12.44 (± 20.03) 7.19 (± 9.30) 7.71 (± 10.60)
Tumor-Only 8.03 (± 9.58) 15.13 (± 19.93) 8.,54 (± 10.46) 7.17 (± 10.01)

Nodule sphericity
Original 0.44 (± 0.08) 0.50 (± 0.09) 0.53 (± 0.13) 0.53 (± 0.09)
Parenchyma-Only 0.43 (± 0.07) 0.528 (± 0.07) 0.52 (± 0.12) 0.53 (± 0.08)
Tumor-Only 0.43 (± 0.07) 0.53 (± 0.09) 0.42 (± 0.08) 0.56 (± 0.08)

Nodule mean intensity
Original −246.61 (± 152.62) −400.5 (± 224.25) −400.43 (± 183.73) −542.77 (± 194.60)
Parenchyma-Only −250.07 (± 151.05) −340.08 (± 226.01) −431.48 (± 171.52) −545.49 (± 206.84)
Tumor-Only −231.72 (± 130.32) −430.23 (± 234.40) −378.67 (± 167.35) −544.09 (± 195.24)

Nodule energy
Original 1.66e8 (± 1.44e8) 1.07e8 (± 1.16e8) 1.54e8 (± 2.71e8) 1.71e8 (± 2.62e8)
Parenchyma-Only 1.73e8 (± 1.47e8) 1.01e8 (± 9.87e7) 7.86e7 (± 1.03e8) 2.20e8 (± 3.12e8)
Tumor-Only 1.70E8 (± 1.44E8) 1.04e8 (± 1.19e8) 1.62e8 (± 2.01e8) 1.69e8 (± 2.82e8)

Nodule entropy
Original 6.5e3 (± 1.12e4) 411.91 (± 464.34) 4.95e3 (± 1.79e4) 656.88 (± 1.49e3)
Parenchyma-Only 6.62e3 (± 1.16e4) 1.92e3 (± 3.81e3) 7.59e2 (± 1.99e3) 2.53e3 (± 1.20e4)
Tumor-Only 6.75e3 (± 1.14e5) 6.63e2 (± 9.67e2) 5.91e3 (± 1.89e4) 5.16e2 (± 1.05e3)

Nodule skewness
Original −0.16 (± 0.71) 0.37 (± 0.62) 0.023 (± 0.80) 0.64 (± 1.09)
Parenchyma-Only −0.14 (± 0.68) 0.131 (± 0.83) 0.20 (± 0.76) 0.63 (± 1.17)
Tumor-Only −0.20 (± 0.65) 0.42 (± 0.80) 0.44 (± 0.61) 0.48 (± 1.16)

Nodule kurtosis
Original −0.36 (± 1.09) −0.59 (± 0.55) −0.35 (± 0.92) 1.03 (± 2.88)
Parenchyma-Only −0.44 (± 1.00) −0.23 (± 1.11) −0.27 (± 1.11) 1.19 (± 3.00)
Tumor-Only −0.49 (± 0.96) 0.01 (± 1.25) −0.39 (± 0.93) 0.98 (± 2.83)

negative nodules in the Original Dataset (Supplement215

A). However, in the Tumor-Only Dataset, nodule di-216

ameter was not significantly different between true-217

positive and false-positives. This suggest that exclud-218

ing parenchymal features increases the attention of the219

network on nodule diameter, allowing for larger benign220

nodules to be misclassified as malignant nodules.221

Comparing the results shown in Table 3, to published222

literature such as Zhu P. and Ogino M., we found that223

nodule diameter remains positively correlated with nod-224

ule malignancy [31,32]. This is best illustrated when225

comparing the nodule size of true-positive and true-226

negative nodules. Interestingly, true positive nodules227

were found to be significantly larger than false posi-228

tive and false negative nodules in the original dataset229

(Supplement A). However, in the case of the tumor-only230

dataset nodule diameter was not significantly differ-231

ent when comparing true positive and false positives.232

This suggest that the exclusion of the parenchymal fea-233

tures increased network attention to nodule diameter,234

allowing for larger benign nodules.235

Characteristics of nodule morphology such as shape 236

and spiculation have been shown to provide clues 237

to its likelihood of malignancy [33]. In our analy- 238

sis, morphological features were significantly different 239

in true-positive nodules compared to false-positives, 240

false-negatives, and true-negatives in both the Original 241

Dataset and the Parenchyma-Only Dataset (Table 3 & 242

Supplement Table A). In these datasets, true-positives 243

were less spherical in nature than other classification 244

groups. This differs from findings by Zhu P. and Ogino 245

M., suggesting an additional CT biomarker of inter- 246

est [27]. This significant difference disappears when 247

comparing true-negatives to false-positives and false- 248

negatives, suggesting that nodule morphology plays an 249

important role in nodule classification and contributes 250

substantially to nodule misclassification in the Orig- 251

inal and Parenchyma-Only datasets (Supplement A). 252

Furthermore, the true-positives in Fig. 4 suggest that 253

attention of the DNN was focused primarily on the 254

tumor-parenchyma border, ignoring distant features of 255

emphysematous or fibrotic tissue. 256
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The presence of chronic inflammatory lung diseases257

such as emphysema or pulmonary fibrosis have been258

associated with an increased risk of nodule malig-259

nancy [18]. Interestingly, the DNN does not seem to260

weigh the presence of emphysema as a significant CT261

biomarker for malignancy. For the Original Dataset,262

low attenuation areas below −950 HU (laa950) is only263

significantly different between true-negatives and false-264

negatives (Table 3). Nevertheless, this observation does265

not apply to the Parenchyma-Only Dataset, suggest-266

ing that similarity between masked regions and emphy-267

sematous regions, decreases the attention of the net-268

work on features related to emphysema. Furthermore,269

the false-positives in Fig. 4 suggest that the attention270

of the network was focused on substructures in the271

parenchyma, such as vasculature and fibrosis, largely272

ignoring regions of emphysema. It is also possible,273

however, that the training data did not contain enough274

examples of emphysema for the DNN to be properly275

trained to identify the positive association of emphy-276

sema with malignancy, which would have caused our277

networks to be biased.278

Similarities in the regions of attention in the Grad-279

CAM images between the Original Dataset and Paren-280

chyma-Only Dataset shows that the DNN paid consid-281

erable attention to the tumor-parenchyma interface, as282

seen in Fig. 4, suggesting that it relied not only on di-283

ameter but also morphologic image biomarkers such as284

nodule sphericity. Therefore, the difference in perfor-285

mance between the Tumor-Only Dataset and the Orig-286

inal Dataset (Fig. 3) may be attributable to significant287

additional information present at the local interface be-288

tween the nodule and the parenchyma.289

Density and textural features such as nodule entropy,290

skewness, and kurtosis were significantly different be-291

tween true-positive and true-negative nodules in the292

Original and Tumor-Only datasets. This supports find-293

ings by the GaX model where nodule roughness was294

positively associated with malignancy [27]. Our find-295

ings therefore suggest that textural and density features296

should be considered as potential image biomarkers in297

addition to the nodule diameter in screening guidelines298

such as the Lung-RADS [34].299

We found significant differences in performance be-300

tween the Original Dataset and both the Tumor-Only301

and Parenchyma-Only datasets. The significant drop in302

performance of the Parenchyma-Only Dataset can be303

attributed to the exclusion of tumor textural and den-304

sity features. These features are important as demon-305

strated by the Tumor-Only Dataset performance ver-306

sus that of the Parenchyma-Only Dataset. However, the307

performance of the Parenchyma-Only Dataset demon- 308

strates that morphologic and parenchymal features con- 309

tain critical information related to nodule malignancy 310

that are not currently included in the Lung-RADS as- 311

sessment. Prior studies have explored the relative im- 312

portances of parenchymal and nodular features for nod- 313

ule classification achieved by various machine learning 314

approaches, including artificial neural networks [20,35, 315

36]. There has been limited study of the characteristics 316

associated with solid pulmonary nodule classification 317

in DNNs, and how modifications to the training set lead 318

to changes in these characteristics [37,38]. Current re- 319

search focuses on minimizing false-positives with lim- 320

ited consideration given to which image biomarkers 321

present within a training dataset could be influencing 322

outcomes. 323

The findings of this study, although confirming ex- 324

isting work, suffer from several limitations. First, the 325

results presented herein are based on the selective pop- 326

ulation within the NLST dataset, which consists primar- 327

ily of heavy smokers. A more comprehensive under- 328

standing of why features related to emphysema (laa950) 329

were not selected could be achieved by investigating a 330

cohort of subjects with a higher prevalence of emphy- 331

sema. In particular, this could elucidate whether this 332

behavior is specific to the dataset we used in the present 333

study or if it is due to lower signal intensity from em- 334

physematous regions that fail to capture the attention 335

of the network. At the same time, nodule characteris- 336

tics should not be ignored, as significant differences 337

between true-positives and false-negatives demonstrate 338

that the network tends to flag larger, higher intensity, 339

and less spherical nodules as malignant. Additionally, 340

the networks were provided with the central slices of 341

the nodules and not the complete 3D region of interest 342

(ROI), potentially missing critical information in nearby 343

slices. It is also important to note that this study exclu- 344

sively addresses solid nodules and does not address the 345

influence of ground-glass opacities and part-solid nod- 346

ules on the identified textural CT biomarkers. Inclusion 347

of ground-glass opacities or part-solid nodules could 348

reduce the influence of textural features related to ma- 349

lignancy classification. To combat this, curriculum and 350

transfer learning approaches could be utilized to teach 351

a network to recognize specific pulmonary structures 352

such as local vasculature as well as definable disease 353

states [39,40]. Furthermore, a selection bias could be 354

impacting the performance of the network as the study 355

focuses on solitary pulmonary nodules and does not 356

evaluate instances where multiple nodules appear in 357

close proximity to one another. Lastly, the performance 358
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of the parenchyma-only datasets is likely inflated as359

masking the nodule still preserved characteristics of the360

nodules shape and size. Therefore, the overall contribu-361

tion of nodule diameter and shape cannot be properly362

evaluated. It is therefore unlikely that the networks we363

investigated would be able to evaluate the likelihood364

of future malignancy from pre-cancerous parenchymal365

features arising prior to the development of an actual366

nodule, in contrast to recent results using SYBIL [41].367

An important distinction between our work and SYBIL368

is that the task of our model is to predict the likelihood369

of malignancy for an existing nodule and to evaluate370

the differential effect of the nodule versus the surround-371

ing parenchyma, while SYBIL provides a prediction372

regarding the likelihood of future cancers and the de-373

velopment of existing nodules in a holistic fashion.374

5. Conclusion375

Using a combination of GradCAM, image perturba-376

tion via masking, and radiomics, we have demonstrated377

where in an image the attention of a DNN is focused378

depending on which regions of an image are removed.379

Unsurprisingly, nodule maximum diameter remained380

a highly selected image biomarker for nodule classi-381

fication across all datasets. Textural and density fea-382

tures were highly selected in the Original and Tumor-383

Only datasets, while morphologic features were more384

commonly selected in the Parenchyma-Only Dataset.385

The results of this investigation thus imply that network386

performance is tied to textural features such as nod-387

ule kurtosis, entropy, and intensity, and morphologic388

features such as nodule sphericity, and diameter. Our389

findings imply that current screening guidelines may390

be improved through incorporation of additional im-391

age biomarkers related to malignancy [34]. Our find-392

ings also suggest that the majority of the information393

selected for malignant nodule classification is to be394

found at the tumor-parenchyma interface. Nevertheless,395

the features selected by CNNs for nodule classification396

are likely dependent on the dataset [27], hence mix-397

ing data from multiple sources could improve model398

generalizability[42].399
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