
Cancer Biomarkers 40 (2024) 125–139 125
DOI 10.3233/CBM-230325
IOS Press

Identification of a prognostic signature based
on five ferroptosis-related genes for diffuse
large B-cell lymphoma

Wuping Lia,∗, Ruizhe Yaob, Nasha Yua and Weiming Zhanga
aDepartments of Lymphatic and Hematological Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
bQueen Mary College of Nanchang University, Nanchang, Jiangxi, China

Received 7 September 2023

Accepted 5 February 2024

Abstract.
BACKGROUND: Therapies for diffuse large B-cell lymphoma (DLBCL) are limited due to the diverse gene expression profiles
and complicated immune microenvironments, making it an aggressive lymphoma. Beyond this, researches have shown that
ferroptosis contributes to tumorigenesis, progression, and metastasis. We thus are interested to dissect the connection between
ferroptosis and disease status of DLBCL. We aim at generating a valuable prognosis gene signature for predicting the status of
patients of DLBCL, with focus on ferroptosis-related genes (FRGs).
OBJECTIVE: To examine the connection between ferroptosis-related genes (FRGs) and clinical outcomes in DLBCL patients
based on public datasets.
METHODS: An expression profile dataset for DLBCL was downloaded from GSE32918 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=gse32918), and a ferroptosis-related gene cluster was obtained from the FerrDb database (http://www.
zhounan.org/ferrdb/). A prognostic signature was developed from this gene cluster by applying a least absolute shrinkage
and selection operator (LASSO) Cox regression analysis to GSE32918, followed by external validation. Its effectiveness as a
biomarker and the prognostic value was determined by a receiver operator characteristic curve mono factor analysis. Finally,
functional enrichment was evaluated by the package Cluster Profiler of R.
RESULTS: Five ferroptosis-related genes (FRGs) (GOP1, GPX2, SLC7A5, ATF4, and CXCL2) associated with DLBCL were
obtained by a multivariate analysis. The prognostic power of these five FRGs was verified by TCGA (https://xenabrowser.net/
datapages/?dataset=TCGA.DLBC.sampleMap%2FHiSeqV2_PANCAN&host=https%3A%2F%2Ftcga.xenahubs.net&removeHub
=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A44) and GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse
32918) datasets, with ROC analyses. KEGG and GO analyses revealed that upregulated genes in the high-risk group based on the
gene signature were enriched in receptor interactions and other cancer-related pathways, including pathways related to abnormal
metabolism and cell differentiation.
CONCLUSION: The newly developed signature involving GOP1, GPX2, SLC7A5, ATF4, and CXCL2 has the potential to serve
as a prognostic biomarker. Furthermore, our results provide additional support for the contribution of ferroptosis to DLBCL.
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1. Introduction

Diffuse large B-cell lymphoma (DLBCL) is a com-
mon and aggressive type of non-Hodgkin lymphoma
with a poor prognosis. It can arise de novo or result from
the transformation of lymphoma. The morbidity of this
disease increases with age, especially among males [1,
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Fig. 1. Flowchart of this current study.

2]. Intrinsic and extrinsic risk factors are involved in
the progression of the disease, including genetic and
environmental factors [3]. Advances in gene expression
profiling have resulted in initial progress toward the
molecular diagnosis of DLBCL subtypes, including two
prominent “cell-of-origin” subtypes which account for
80%–85% of cases, termed germinal center and acti-
vated B cell-like DLBCL [4,5]. The substantial hetero-
geneity of DLBCL poses a major challenge to the treat-
ment and prediction of prognosis of this disease. Great
progress in the development of therapies for DLBCL at
present has resulted in a significantly extended overall
survival (OS) [6]; however, therapeutic efficacies are
still limited due to the high proliferation rate, hetero-
geneity, and invasion of tumor cells [2,5]. Some studies
have identified specific markers with remarkable per-
formance for early diagnosis and the prediction of sur-
vival [7,8,9]. Despite numerous clinical trials focusing
on these molecular markers for DLBCL treatment, few
have been successful. Therefore, identification of new,
effective prognostic models for DLBCL is an urgent
and important task.

Regulated cell death has a critical role in normal
homeostasis and development [10]. A unique form of
regulated cell death, termed ferroptosis, was initially
introduced by Stockwell et al. as a unique form of iron-
dependent oxidative cell death [11,12]. A study of 114
tumor cell lines has shown that DLBCL and kidney can-
cer are associated with erastin [13], which can promote
ferroptosis to inhibit tumor development. Furthermore,
ferroptosis can inhibit cancer progression [14]. Dissect-
ing the mechanisms underlying ferroptosis and ferrop-
tosis inducers provides a new direction for cancer treat-
ment [15,16]. A great deal of ferroptosis-related genes
(FRGs) were performed as prognostic biomarkers, in-
cluding GPX4 [17], HIF1A [18], and NFE2L2 [19].
Furthermore, FRGs have been approved as biomark-
ers for the treatment of DLBCL [19,20,21]; however,
their clinical value has not been completely determined
owing to limited data.

Detailed information about the clinicopathologic and
molecular features of DLBCL is urgently needed. The
aim of our research was to examine FRGs and clini-

cal outcomes in DLBCL based on analyses of public
datasets. In our research, the differential transcription of
FRGs we evaluated according to mRNA expression data
for patients with DLBCL and relevant clinical data from
public datasets. Based on this process, we built a prog-
nostic 5-FRGs signature and verified the characteristics
of these FRGs using an external cohort (GSE83632:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE83632). Furthermore, we performed KEGG (Kyoto
Encyclopedia of Genes and Genomes) and GO (Gene
Ontology) analysis to determine the potential mecha-
nisms underlying the biological effects of the five FRGs.

2. Materials and methods

2.1. Data acquisition

Publicly available data for two cohorts, includ-
ing RNA-seq data (Transcripts Per Million/TPM-
normalized) and clinical data for patients, were obtained
from Gene Expression Omnibus (GEO) (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse32918) and
The Cancer Genome Atlas (TCGA) (https://xenabrows
er.net/datapages/?dataset=TCGA.DLBC.sampleMap%
2FHiSeqV2_PANCAN&host=https%3A%2F%2Ftcga.
xenahubs.net&removeHub=https%3A%2F%2Fxena.tre
ehouse.gi.ucsc.edu%3A44). The GSE32918 dataset was
separated into two sets at a ratio 7:3 – training set (N =
120) and validation set (N = 52). The training set
GSE32918 [22] (N = 120) was used for discovering
differentially expressed genes (DEGs) between tumor
and normal tissues based on FRGs and for building a
prognostic model [17,23,24]. The FRGs from previous
studies and genes with differential expression in DL-
BCL are listed in Fig. 1. TCGA-DLBCL (N = 48) and
GSE32918 validation set (N = 52) were applied to
validate the performance of FRGs.

2.2. Data normalization

The expression profile data were uniformly normal-
ized using TPM (Transcripts Per Million) counts, cor-
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recting for biases related to gene length and library size.
By employing TPM normalization, we were able to
compare gene expression levels across different sam-
ples in an accurate and reliable manner.

2.3. Building a prognostic gene signature

A gene cluster related to overall survival (OS) was
determined by both uni- and multivariate Cox regres-
sion analyses in the GSE32918 training set. This gene
cluster was then employed to further refine the gene
sets and build a FRG signature by applying the least ab-
solute shrinkage and selection operator (LASSO) Cox
regression analysis using the glmnet package [25] in R,
which effectively selected the most predictive features.
Furthermore, the selected predictive features were em-
ployed to establish multivariate Cox regression model
to calculate samples’ risk scores. Based on each pa-
tient’s calculated risk score, patient samples were di-
vided into two groups (low risk and high risk) by ap-
plying their median risk score as the threshold value.
Following these steps, the risk scores for patients within
the GSE32918 and TCGA datasets were determined
to verify the effectiveness of the signature [26]. Inde-
pendent clinical factors (including DLBCL patholog-
ical class, gender, age, and risk score) were evaluated
by uni- or multivariate Cox regression analyses for the
development of the 5-FRGs signature.

2.4. ROC curve analyses

Receiver operating characteristic (ROC) curves were
used to set up the best cut-off scores (which help to
evaluate the sensitivity and specificity of the cut-offs in
predicting survival outcomes) for the 5-FRGs, to carry
out a further survival analysis.

2.5. Survival analysis

The Kaplan-Meier survival curve, cumulative event
table, and cumulative number table were drawn using
the surveyor package. The cut-off risk scores based on
the median value were determined using R.

2.6. Differentially expressed gene analysis

DEGs between high- and low-risk groups in TCGA
datasets were identified. Information from TCGA-
DLBCL was included as covariates during the analysis.
Eighty DEGs were identified for further analyses.

2.7. Functional enrichment analysis

To annotate the functions of DEG sets, the Cluster

Profiler package was used for KEGG and GO pathway
enrichment analyses in R [27]. A single-sample gene
set enrichment analysis (ssGSEA) was performed using
GSVA to calculate the immune-related functions dif-
fering between the high-risk and low-risk groups [28].
Briefly, the enrichment fraction of immune-related gene
clusters in each sample was calculated. The samples
were divided into two groups (low-risk and high-risk)
according to the threshold defined previously.

2.8. Statistical analysis

A Kaplan-Meier analysis was used to compare over-
all survival (OS) between the two risk groups. The
threshold for statistical significance was p < 0.05. All
bioinformatics analyses were performed using R.

3. Results

3.1. Screening of five prognostic ferroptosis-related
genes (5-FRGs) using GSE32918

Flowchart of this study is shown in Fig. 1.
A total of 172 DLBCL samples from GEO datasets

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
gse32918) and 48 DLBCL samples from TCGA
datasets (https://xenabrowser.net/datapages/?dataset=
TCGA.DLBC.sampleMap%2FHiSeqV2_PANCAN&
host=https%3A%2F%2Ftcga.xenahubs.net&remove
Hub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3
A44) were included in the analysis. We analyzed the
RNA-seq data available in GEO to identify differen-
tially expressed FRGs between tumor tissues and ad-
jacent normal tissues. In total, 257 ferroptosis-related
genes (FRGs) were obtained from the FerrDb web-
site (http://www.zhounan.org/ferrdb/), including driver
genes, suppressor genes, and inducer genes. The probe
data provided by the GPL platforms within the GEO
datasets were used for probe and gene conversion pro-
cess. The 257 FRGs expression were derived from mi-
croarray chip probing, and some genes remain unde-
tectable due to the limited microarray probing capabil-
ities. We carefully identified and excluded genes that
were not detected in the chip data. After this process, we
obtained 217 detectable genes for subsequent analyses.

We employed a univariate Cox proportional hazards
model combined with LASSO (Least Absolute Shrink-
age and Selection Operator) regression to select gene
features. This method ensures identification only those
genes that have a significant correlation with patient
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Fig. 2. Summary of 217 ferroptosis-related genes significantly associated with overall survival by a univariate analysis. Eighteen FRGs were
significantly associated with survival.
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Fig. 3. Eighteen FRGs were associate with survival by a univariate analysis. Five ferroptosis-related genes with significant associations are noted
in bold.

Fig. 4. Kaplan-Meier plot for the five FRGs.

prognosis. With the predictive power of the Cox model
and the feature selection capacity of LASSO, we ensure
the selection of the resulting gene markers are not only
relevant but also pivotal in predicting patients’ clinical
outcomes. With this method, 18 of 217 FRGs signif-
icantly related to overall survival (OS) were screened
(Fig. 2). Among these, five were also identified as sig-
nificant factors in a multivariate analysis (Figs 3 and 4).
Finally, the FRGs GOP1, GPX2, SLC7A5, ATF4, and
CXCL2 were identified as potential biomarkers for DL-
BCL.

3.2. Prognostic value of the 5-FRGs signature

We next evaluated whether the expression profile of

the 5-FRGs signature could be used to establish a gene-
based prognostic model by LASSO-Cox regression. λ
refers to a parameter within a model to prevent overfit-
ting. LASSO (Least Absolute Shrinkage and Selection
Operator), which uses λ as a tuning parameter, helps
in selecting the most important features (for example:
genes) by penalizing the magnitude of the coefficients.
To access the “best λ values” for the optimal balance
between model complexity and predictive power, we
performed cross-validation, where the dataset is split
into parts and the model is trained and tested on these
different parts to ensure robustness. In the GSE32918
dataset, we determined the best λ values. Receiver op-
erating characteristic (ROC) curves were used to set up
the best cut-off scores (which help to evaluate the sen-
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Fig. 5. Building a prognostic signature depend on 5-FRGs. (A) Distribution of statistical coefficients for the five FRGs. (B) Box plot of the partial
likelihood deviance against log λ values. (C) Visualization of the survival status, survival time, and expression level the two risk groups based on
5-FRGsscores by using the training set. (D) Survival curve for samples in the two risk groups by using the training set. (E) ROC curve for the AUC
analysis of the prognostic efficiency of the 5-FRGs for overall survival in the training set. Blue indicates 2-year, green is 3-year, and red is 5-year
survival.

sitivity and specificity of the cut-offs in predicting sur-
vival outcomes) for the 5 FRGs, to carry out a survival
analysis (Fig. 5A and B).

Patients were divided into two groups including high-
and low-risk groups according to the median cut-off risk
scores/values. Applying a principal component analy-
sis (PCA) and t-distributed random neighborhood em-
bedding (t-SNE) analysis (Fig. 5C), patients in the two
groups were clearly separated. Next, we performed a
survival analysis based on the transcription profiles.
As expected, patients with high 5-FRGs values had a
poor survival (Fig. 5D, p < 0.001). The prognostic
values of the 5-FRGs signature for OS at 1, 3, and 5
years were further evaluated based on the area under the
time-dependent ROC curves (Fig. 5E), with estimates of
0.74, 0.75, and 0.79, separately, indicating remarkable
prognostic accuracy.

3.3. Verification of the 5-FRGs signature using TCGA
and GEO datasets

To verify the prognostic value of the 5-FRGs sig-
nature, we conducted a predictive analysis using the

cohorts from TCGA, GSE32918 (Whole set, N = 172)
and the testing set of GSE32918 (N = 120 as previ-
ously defined). In the GSE32918 cohort (N = 172), we
also divided samples into two risk groups according to
the median cut-off score 0.61 (Fig. 6A–C). The results
were similar to those for the GSE32918 training set
(N = 120 as previously mentioned); samples with high
5-FRGs signature scores in the TCGA dataset had a
significantly shorter OS and worse prognosis (Fig. 6A
and B). The AUC values for the 5-FRGs score were 0.7,
0.73, 0.67 at 1, 3, 5 year, respectively (Fig. 6C). The
cohorts of GSE32918 (Fig. 6D–F) and the testing set of
GSE32918 (N = 120) (Fig. 7) all exhibited a pattern
similar to that for the TCGA (N = 48) cohort. These
results indicated that patients in the high-risk group
have an increased risk score based on the 5-FRGs and
high transcript levels of GOP1, GPX2, SLC7A5, ATF4,
and CXCL2. We observed a high clinical sensitivity
and specificity in the analyses of training and testing
sets. These findings showed that the risk score account
for 5-FRGs was positively correlated with prognosis in
DLBCL.
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Fig. 6. Validation of prognostic score of the 5-FRGs. (A) Survival curve for samples in the two risk groups in the TCGA dataset. (B) Visualization
of the survival status, survival time, and expression level the two risk groups based on 5-FRGs scores by using the TCGA dataset. (C) ROC curve
for the AUC analysis of the prognostic efficiency of the 5-FRGs for overall survival in the TCGA dataset. Blue shows 2-year, green shows 3-year,
and red shows 5-year survival. (D) Survival curve for samples in the two risk groups in the GSE32918 test set. (E) Visualization of the survival
status, survival time, and expression level the two risk groups based on 5-FRGs scores in the GSE32918 test set. (F) ROC curve for the AUC
analysis of the prognostic efficiency of the 5-FRGs for overall survival in the GSE32918 test set.
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Fig. 7. Validation of the 5-FRG signature using the GSE32918 test set. (A) Survival curve for samples in the two risk groups in the GSE32918 test.
(B) Visualization of the survival status, survival time, and expression level the two risk groups based on 5-FRGs scores in the GSE32918 test set.
(C) ROC curve for the AUC analysis of the prognostic efficiency of the 5-FRGs for overall survival in the GSE32918 test set. Blue shows 2-year,
green shows 3-year, and red shows 5-year survival.

3.4. Relationship between the 5-FRGs and clinical
characteristics

We applied the independent prognostic factors based
on OS in an additional cohort (GSE83632: https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE83632)
and calculated the distribution of individual 5-FRGs in
each group according to gender, age, pathological class
(Fig. 8A–C). The risk scores for the groups according
to age were significantly correlated with outcomes in
the cohort of TCGA (Fig. 8C). Next, we conducted
univariate and multivariate Cox regression analyses of
the 5-FRGs features in the TCGA dataset to determine
whether they are independent predictors of OS. Univari-
ate Cox regression analyses showed that the risk score
in the TCGA cohort was significantly related to OS
(HR = 4.08, 95% CI = 2.9–5.8, p < 0.0001) (Fig. 8D).
Furthermore, the risk score was still an independent
predictor of OS in a multivariate Cox regression anal-
ysis (HR = 3.98, 95% CI = 2.76–5.73, p < 0.0001)
(Fig. 8E).

In the context of medical research, particularly when
dealing with disease like Diffuse Large B-Cell Lym-

phoma (DLBCL), we are perpetually in pursuit of indi-
cators that can help in the early detection and prediction
of the disease course. Such indicators are diagnostic and
prognostic factors. Diagnostic factors help in identify-
ing the presence of a disease while prognostic factors
provide information about the likely outcomes of the
disease, including the chances of recovery, recurrence,
or progression. Our study suggested that we have iden-
tified a set of five Ferroptosis-Related Genes (5-FRGs)
that show promise in diagnosing DLBCL and providing
a prognosis for DLBCL patients.

3.5. Functional annotation of the 5-FRGs

To determine the potential biological functions of the
5-FRGs, 80 DEGs that were upregulated in the high-
risk group compared with the low-risk group were eval-
uated by a functional enrichment analysis (Fig. 9A). In
a KEGG pathway analysis, the DEGs were enriched in
the ECM receptor interaction and glycine, serine and
threonine metabolic pathways (Fig. 9B). A GO analy-
sis demonstrated that the DEGs were associated with
terms related to cell interactions, including cell adhe-
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Fig. 8. Independent prognostic score of the 5-FRG signature. (A–C) Violin plot of the distribution of individual risk scores for each group according
to pathological type (A), sex (B), and age (C), ABC: activated B-cell, GCB: germinal center B-cell. (D and E) Relationships between clinical
factors and overall survival by (D) univariate Cox-regression analyses and (E) a multivariate analysis.

sion, secretory granule lumen, and anchored component
of plasma membrane, consistently with the results of
the KEGG. In addition, these genes were closely related
to certain iron-related pathways, such as cellular transi-
tion metal ion homeostasis, gated cellular response to
copper ion, and detoxification of copper ion (Fig. 9C).
Furthermore, terms related to cancer were obtained,
such as epidermal cell differentiation and amoebic in-
fection. These results indicated that the functions of the
5-FRGs are closely related to cancer progression.

3.6. Correlations of 5-FRGs with immune function in
DLBCL

To determine the potential connection of 5-FRGs and
immune status, we calculated the enrichment scores
for various immune cell subsets with related func-
tions by a ssGSEA (Fig. 10A and B). We did not de-
tect a significant relationship between the immune re-
sponse and the risk score based on 5-FRGs. How-
ever, the levels of infiltration of various immune cells,
such as T cells, B lineage, and myeloid dendritic cells,
were lower in the high-risk group than in the low-risk
group. In addition, DEG scores differed between two
groups of immune-related functions for T cells follic-
ular helper and Dendritic cells resting. These results

indicate that the 5-FRGs did not actively participate in
immune-related pathways to promote cancer. Immune
check point biomarkers were compared between the
two groups, revealing that levels of immune checkpoint
genes were not closely related to levels of the 5-FRGs.
In conclusion, these results suggest that the 5-FRGs
signature did not significantly connect with the immune
function in DLBCL, since the immune response in pa-
tients with DLBCL and the risk scores derived from
these 5-FRGs were not directly associated. However,
we do appreciate that there is a significant difference in
immune cell infiltration between high-risk and low-risk
groups. We noticed that the presence of various critical
immune cells, such as T cells, B cells, and myeloid
dendritic cells, was reduced in patients who were cate-
gorized within the high-risk group. This suggests that
while the 5-FRGs signature may not directly reflect the
immune response, there is a potential association where
a high-risk score correlates with diminished infiltration
of specific immune cells in the tumor microenviron-
ment. The finding that a disparity in DEG scores related
to differences in T follicular help cells and resting den-
dritic cells between the two groups, suggests that the
5-FRGs signature could be indirectly linked to certain
aspects of immune functions.
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Fig. 9. Results of functional enrichment analyses. (A) Volcano plot of the distribution of DEGs between the high-risk group and low-risk group
based on the FRG signature. (B) KEGG pathway analysis of the upregulated DEGs in the high-risk group. (C) GO pathway analysis of the
upregulated DEGs in the high-risk group.

4. Discussion

DLBCL is a common aggressive lymphoma char-
acterized by rapid development and heterogeneity and
shows high mortality and incidence rates [29,30]. Many
researchers have demonstrated that ferroptosis, a unique
form of cell death, could affect the immune microenvi-
ronment in tumorigenesis and is a potential treatment
target [30]. In our study, we studied the expression pro-
files of 18 FRGs in DLBCL and their relationship with
OS by a comprehensive bioinformatics analysis. Then,
we identified a characteristic 5-FRGs signature associ-
ated with the prognosis and progression of patients in
DLBCL. Next, the new prognostic signature was vali-

dated using additional datasets. Furthermore, we per-
formed functional enrichment analyses of genes related
to 5-FRGs, revealing the roles of biological processes
related to cellular interactions.

The five prognostic FRGs identified in this study
were GOP1, GPX2, SLC7A5, ATF4, and CXCL2. Ex-
tensive research has demonstrated that FRGs are in-
volved in tumorigenesis, including in DLBCL. GOP1
has been established as a multiple sclerosis-
susceptibility gene [31,32]. Single nucleotide poly-
morphisms in GOP1 are also associated with several
autoimmune diseases, including type 1 diabetes [33,
34], Crohn’s disease [35], Addison’s disease [36], and
rheumatoid arthritis [37]. GPX2, which encodes a glu-
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Fig. 10. ssGSEA results for the two groups. (A) Box plot of relationships between the signature and stromal, immune, and estimate scores. (B
and C) Boxplots of enrichment values for 10 immune cells and 22 immune-related functions. (D) Enrichment scores for seven immune-related
biomarkers are shown in boxs.
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tathione peroxidase, acts a part in the malignant pro-
gression of many tumors, including breast cancer,
KRAS-driven lung cancer, and bladder cancer [38,39,
40,41]. SLC7A5 activates mTORC1 on lysosomes and
thereby induces leucine uptake in organelles [42]. This
locus is therefore highly expressed in various tumor
cells, which has been reported involved in the pro-
liferation, growth, and survival of cells [43,44] and
promotes tumor growth [45]. ATF4 can regulate au-
tophagy by promoting the transcriptional activation
of some autophagy-related genes in DLBCL [46,47].
CXCL2 is a hematoregulatory chemokine produced by
activated immune cells, including monocytes an neu-
trophils; it is expressed in inflammation sites and sup-
presses hematopoietic progenitor cell proliferation in
vitro [48]. Previous studies have proved that CXCL2
acted as a biomarker in bladder cancer [49] and af-
fected cell proliferation and apoptosis in hepatic cellu-
lar cancer [50]. Beyond identification of this 5-FRGs
signature, we demonstrated that the higher risk scores
based on the FRG signature were correlated to a poor
prognosis, with the ROC curve for 5-FRGs effectively
predicting OS in DCBLC. Furthermore, we found that
the risk score basis of 5-FRGs increased as the age
of patients with DCBLC increased in the validation
datasets, with no associations with sex or pathological
class. Moreover, the independent prognostic value of
the five FRGs and clinical parameters was established.
Significant prognostic value was detected for a signa-
ture based on the age and risk score. Our study has
given promising insights for the predictive value of the
5-FRGs. However, to validate the reliability of our re-
sults, more extensive multicenter clinical validation is
required.

According to previous studies, ferroptosis is related
to the immune system [51,52]. To further assess the
association between immune cells infiltration and 5-
FRGs, we performed a ssGSEA of the affected gene
clusters. ssGSEA scores for B lineage, T cells, and
myeloid dendritic cells were significantly lower in the
high-risk group than in the low-risk group. Numerous
studies have illustrated the pivotal role that T cells play
in the intricate immunotherapy, rendering them a crucial
indicator of a patient’s response to chemotherapy. This
enhancement of T cells is routinely associated with a
significant increase in life expectance [53,54,55]. In
view of the poor prognosis associated with the high-
risk groups, we speculated that patients could have T
cell failure and weakened anti-tumor immunity. We
also noted that cells or functions related to immune
activation, such as follicular helper cells and dendritic

cells in the quiescent state, were reduced in the high-risk
samples. These findings highlight the possibility that the
5-FRGs signature could be indirectly linked to certain
aspects of immune function. In summary, while the 5-
FRGs signature may not be a direct marker of immune
function in DLBCL, the observed patterns of immune
cell infiltration and gene expression differences related
to immune-related functions suggest that there might be
an underlying association. All in all, our data indicate
that the 5-FRGs signature has an indirect impact on the
immune functions of DLBCL, potentially influencing
the disease’s behavior and patient prognosis through
mechanisms that merit further investigation.

5. Conclusions

We developed a predictive signature based on five
FRGs for DLBCL. This 5-FRGs signature is an in-
dependent prognostic factor and shows good predic-
tive performance. We further showed that co-expressed
genes with the FRGs were highly enriched in tumor-
related pathways and were indirectly related to immune
functions in DLBCL, indicating that immunotherapy
may have an impact on DLBCL. The efficacy of corre-
sponding drugs in DLBCL and the potential molecular
mechanism underlying ferroptosis and tumor immunity
require further research.
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