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Abstract.
BACKGROUND: Clear cell Renal Cell Carcinoma (ccRCC) is one of the most prevalent types of kidney cancer. Unravelling the
genes responsible for driving cellular changes and the transformation of cells in ccRCC pathogenesis is a complex process.
OBJECTIVE: In this study, twelve microarray ccRCC datasets were chosen from the gene expression omnibus (GEO) database
and subjected to integrated analysis.
METHODS: Through GEO2R analysis, 179 common differentially expressed genes (DEGs) were identified among the datasets.
The common DEGs were subjected to functional enrichment analysis using ToppFun followed by construction of protein-protein
interaction network (PPIN) using Cytoscape. Clusters within the DEGs PPIN were identified using the Molecular Complex
Detection (MCODE) Cytoscape plugin. To identify the hub genes, the centrality parameters degree, betweenness, and closeness
scores were calculated for each DEGs in the PPIN. Additionally, Gene Expression Profiling Interactive Analysis (GEPIA) was
utilized to validate the relative expression levels of hub genes in the normal and ccRCC tissues.
RESULTS: The common DEGs were highly enriched in Hypoxia-inducible factor (HIF) signalling and metabolic reprogramming
pathways. VEGFA, CAV1, LOX, CCND1, PLG, EGF, SLC2A1, and ENO2 were identified as hub genes.
CONCLUSION: Among 8 hub genes, only the expression levels of VEGFA, LOX, CCND1, and EGF showed a unique expression
pattern exclusively in ccRCC on compared to other type of cancers.
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1. Introduction

Renal cell carcinoma (RCC) includes various sub-
types of kidney tumours characterized by numerous
genetic abnormalities. Clear cell renal cell carcinoma
(ccRCC), also known as kidney renal clear cell carci-
noma (KIRC) is a crucial RCC subtype that accounts
for about 8 out of 10 kidney cancer diagnoses and 2–
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3% of all cancer [1]. According to GLOBOCAN, the
global cancer statistics, more than four lakh new cases
are reported, causing one lakh deaths per year in kidney
cancer for the year 2020 [1,2]. The ccRCC is character-
ized by clear cytoplasm in the malignant epithelial cells,
dense alveoli, and acinar growth patterns interspersed
with complex branched blood vessels [3]. The ccRCC
tumour develops irrespective of age, but most cases are
reported between 50 to 70 years with less than six per-
cent of children and young adults affected [4,5]. The
exact cause of ccRCC progression is unknown, but the
following factors increase the risk: smoking, repeated
use of painkillers, patients with other kidney diseases
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undergoing dialysis, and major genetic predisposition
conditions including gene mutations [6].

The biallelic loss of Von Hippel–Lindau (VHL) gene
function has been reported in over 51% of ccRCC pa-
tients [7,8]. The pVHL serves as a tumour suppressor,
excreting negative regulation on hypoxia-inducible fac-
tor α (HIFα) [8,9]. In most ccRCC cases, the chro-
mosome 3p locus containing the genes VHL, BAP1,
SETD2, PBRM1, RASSF1A, TU3A, and DLEC1 are
deleted, and are considered potential ccRCC tumour
suppressor genes [10,11]. Additionally, ccRCC tu-
mours exhibit mutations in genes such as MYC and
TP53, along with activation of the PI3K–mTORC1
pathway and cell cycle regulatory network dysregu-
lation [12]. Intratumoural heterogeneity was also ob-
served in ccRCC tumours, exhibiting parallel evolution
of multiple tumour clones that have adapted to flourish
in harsh environments like hypoxia or chemo and/or
radio-therapy induced tissue insults [12].

In recent years, several drugs have undergone test-
ing on ccRCC tumour patients, which either directly or
indirectly target major signalling pathways [13]. How-
ever, tumour cells are developing resistance against
drugs due to factors like tumour heterogeneity, lysoso-
mal sequestration, mutation, altered expression in gene
or alternate signalling pathways instead of the drug tar-
geted pathways [14,15]. The patients with the primary
tumour stage undergoing nephrectomy are also exhibit
signs of relapse [16]. So, identifying new biomarkers
in ccRCC is necessary for early diagnosis in relapse
and targeted therapeutic treatment. The development
of high throughput techniques such as microarray and
rapid processing of microarray datasets are being used
to identify the differentially expressed genes (DEGs) in
the cancer progression [17,18,19].

In this study, we aimed to discover the hub genes and
key signalling pathways of ccRCC using an integrated
bioinformatic approach. Subjecting the large number of
ccRCC microarray datasets to integrated analysis brings
out commonly altered DEGs in key signalling pathways
and their role in cellular functions. Also, identifying the
hub genes in these pathways will be a useful biomarker
for ccRCC in clinical diagnosis and therapeutic appli-
cations.

2. Methodology

2.1. Identification and screening of microarray
datasets

The ccRCC microarray datasets were processed from
Gene Expression Omnibus (GEO) (https://www.ncbi.

nlm.nih.gov/geo/) by following selection and exclu-
sion criteria as described in Barrett et al. (2012) [20].
Datasets were searched and collected from the GEO
database using the two keywords “ccRCC”, and “clear
cell renal cell carcinoma” . The following criteria were
applied to exclude or include datasets from GEO search.
Gene expression ccRCC array datasets from human
kidney samples (excluding samples expression profiles
from cell lines, patients’ blood samples, specific cells
sorted using FACs). Analysed datasets comprised both
ccRCC tumour and non-tumour/normal samples, each
group consisting of more than ten samples. The datasets
containing solely tumour samples without normal tissue
were excluded, as they are inadequate for identifying
DEGs due to the absence of control samples. Subse-
quently, the datasets containing repeated samples from
other datasets were eliminated. In some instances, a
few datasets were initially submitted and later updated
with additional patient samples alongside the previ-
ous sets. In such cases, only the updated versions were
retained, and the other datasets were excluded. Addi-
tionally, datasets where differentially expressed genes
(DEGs) couldn’t be identified via GEO2R processing
were also removed. Following these criteria, the final
datasets for study were selected from the GEO database.

2.2. Identification and screening of DEGs

The DEGs between ccRCC tumour and normal sam-
ples from the 12 collected datasets were screened by
using an R language-based online tool called GEO2R
(http://www.ncbi.nlm.nih.gov/geo/geo2r/) [21]. The
DEGs between the ccRCC and normal tissue sam-
ples were identified in GEO2R using the Limma pack-
age. The False discovery rate (FDR) (Benjamini &
Hochberg) was selected to limit the false-positive re-
sults, and the adjusted P -value (adj. P) was set to
0.05. After setting up the aforementioned parame-
ters, the samples were analysed, and the overall DEGs
were identified with the cut-off criteria to |log 2-fold
change (FC)| > 1. After identifying the DEGs from all
the 12 datasets, Venny 2.1 was utilized to determine
the common DEGs (https://bioinfogp.cnb.csic.es/tools/
venny/), and they were represented in a flower plot
constructed using Bioinfo Intelligent Cloud (BIC)
(http://www.ehbio.com/Cloud_Platform/front/#/).

2.3. Functional enrichment analysis by ToppFun tool
in ToppGene suite

The common DEGs identified were subjected to en-
richment analysis using ToppFun online tool in Topp-
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Gene suit (https://toppgene.cchmc.org/). This analysis
covered the Gene Ontology (GO) terms include cellular
component (CC), molecular functions (MF), and bio-
logical processes (BP), and along with pathways related
to the common DEGs [22]. To screen the GO terms and
the signalling pathways, a cut-off criterion of q-value
FDR B&H < 0.05 was set, , and the obtained results
were visualized using BIC online tool.

2.4. Construction of protein-protein interaction
network (PPIN)

The construction of a PPIN for the common DEGs
was performed using the STRING database version
11.5 (https://string-db.org/). This database offers both
predicted and experimentally verified protein-protein
network’s physical and functional association [23]. The
STRING-generated TSV file provides comprehensive
details, each gene’s full name and functional profile.
Subsequently, the PPI network was visualized using
Cytoscape software 3.8.2 (http://www.cytoscape.org/).
Cytoscape serves as a versatile and dynamic visualisa-
tion tool, enabling the exploration of intricate biological
linkages through various annotation and experimental
data [24].

2.5. Identification and analysis of clusters

The PPIN network of common DEGs of ccRCC
was imported into Cytoscape, and the important clus-
ters/modules from the PPI network were identified us-
ing Molecular Complex Detection (MCODE) version
2.0.0., The default MCODE parameters were utilized to
analyse and identify the clusters, with a MCODE score
> 5 serving as the established cut-off criterion.

2.6. Identification of hub genes by the centrality

In Cytoscape, the centrality parameters closeness,
betweenness, and degree of common DEGs from the
PPI network were assessed using the Network Analyzer
plugin [24]. The distribution of the centrality parame-
ters and DEGs with top centrality scores were plotted
using BIC. The node degree and the parameters reli-
ability can be assessed by analysing the distribution
characteristics of centrality parameters. The top 10%
of genes of common DEGs from the selected centrality
parameters were identified using Venny 2.1.

2.7. Validation of hub gene expression

Gene Expression Profiling Interactive Analysis
(GEPIA) (http://gepia.cancer-pku.cn/index.html) is a

user-friendly web server designed foranalysing the tu-
mours and normal RNA sequencing expression data
samples sourced from The Cancer Genome Atlas
(TCGA) and the Genotype-Tissue Expression (GTEx)
projects. GEPIA offers customizable functions to anal-
yse tumour/normal differential expression [25]. The hub
gene expression levels can be validated with expression
data obtained from GEPIA [26]. Consequently, expres-
sion data for hub gene in ccRCC (contains data from
TGCA) and control (contains data from both TGCA
and GTEx) samples were acquired in the form of box
plots using GEPIA. Furthermore, the median expres-
sion levels of hub genes in different cancers were gath-
ered from GEPIA to discern the distinctive hub gene
expression levels in ccRCC.

3. Results

3.1. Identification and screening of microarray
datasets and DEGs

In GEO, the screening for ccRCC datasets using key-
words “ccRCC and clear cell renal cell carcinoma”
yielded a total of 13,876 search results (Supp. Table 1).
Initially, individual sample submissions were excluded.
For instance, dataset GSE40435 included 101 samples
each for control and test, resulting in 202 single sample
submissions in the search results. Consequently, dataset
GSE40435 was selected, and all similar duplicate single
sample submissions from GSE4045 were excluded. Af-
ter applying these exclusion criteria to all the datasets,
we identified a total of 86 ccRCC datasets from the
GEO database.

Following this, the datasets that included both hu-
man kidney ccRCC samples and their adjacent nor-
mal samples were prioritized for the study. Conversely,
datasets featuring expression profiles from cell lines
(E.g., GSE78179), patient blood (E.g., GSE117230), or
urine samples (E.g., GSE7292) and specific cell sam-
ples such as FACS sorted immune cells from ccRCC tis-
sues (E.g., GSE108310) were omitted. The datasets ex-
clusively featuring expression profiles of tumour sam-
ples were excluded from the analysis (E.g., GSE29609)
as DEGs cannot be identified without corresponding
normal tissue profiles. Furthermore, datasets contain-
ing repetitive samples across multiple entries were ex-
cluded. Several datasets were initially submitted with
a GSE number, but were subsequently updated to in-
clude additional patient samples alongside the existing
sets with new GSE number. For example, GSE66272
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Fig. 1. The common genes between the 12 datasets were identified
by Venny 2.1 and represented in flower plot.

is updated dataset which includes the samples from
GSE66270, GSE66271. So, GSE 66272 was taken for
the analysis to ensure data integrity. Also, datasets
showing very less DEGs (GSE3 - only had 9 DEGs) and
datasets showing error ((E.g., GSE781)) during GEO2R
processing were excluded.

By following these criteria’s finally 12 datasets were
chosen for this study (Supp. Table 2). The selected
datasets were subjected to analysis using the GEO2R
online tool. The DEGs from all the datasets were ob-
tained, and the differential expression was represented
using a volcano plot (Supp. Fig. 1). Initially, the nor-
mality of the samples and their distributions in all the
datasets were checked in the GEO2R analysis (Supp.
Fig. 2). We filtered DEGs with logFC > 1 across all
datasets, resulting in the identification of 179 common
DEGs (Fig. 1).

3.2. Functional enrichment analysis

To obtain a deeper understanding of the biological
functions and signalling pathways of the common 179
DEGs identified, ToppFun tool from the ToppGene
suit was employed to conduct a GO annotation and
pathway analysis. The top 10 enrichment in GO terms
(Supp. Table 3) CC, BP, MF, and pathway (Supp. Ta-
ble 4) from ToppFun analysis were listed in Fig. 2.
In GO analysis of CC, the top significantly enriched
terms were collagen-containing extracellular matrix
(22 genes), platelet alpha granule (11 genes), and baso-

lateral plasma membrane (16 genes). The top enriched
terms of DEGs in the MF were carboxylic acid bind-
ing (16 genes), signalling receptor binding (38 genes),
and monosaccharide binding (8 genes). The top en-
riched terms in the BP were the organic acid metabolic
process (44 genes), carboxylic acid metabolic process
(41 genes), and oxoacid metabolic process (41 genes).

The network of top 10 pathways from the enrich-
ment analysis was given in Supp. Table 4. The path-
way analysis showed common DEGs were enriched
in the HIF-1-α transcription factor network, Glycol-
ysis/Gluconeogenesis, and Glucose metabolism. The
ccRCC malignancy is well known for its deregulation
of hypoxia signalling which in turn alters metabolism
in key cellular metabolic pathways such as glucose and
fatty acid metabolism [27,28].

3.3. Construction of PPI network, identification, and
analysis of clusters

The PPI network of common DEGs from ccRCC
datasets was constructed using STRING. The network
encompasses 178 nodeswith 543 edges visually depicte-
din Cytoscape and represented in Supp Fig. 3. Utilizing
the MCODE plugin within Cytoscape, clusters were
discerned from the STRING generated PPI network
based on the cut-off criteria of degrees > 5, resulting in
identification of four clusters (Fig. 3). The top ranked
cluster in the MCODE analysis comprised of 21 nodes
and 99 edges, with a node score cut-off of 9.90. Subse-
quently, the second, third, and fourth clusters contained
7 nodes each, with 20, 20, and 18 edges respectively.

3.4. Identification of hub genes by centrality

To identify the hub genes involved in the ccRCC
manifestation, we examined the centralities closeness,
betweenness, and degree of common DEGs using the
network analyzer plugin within Cytoscape. The distri-
bution of the three centralities were illustrated in the
supplementary Fig. 4. Additionally, we displayed the
correlations between degree and betweenness (Supp
Fig. 5a), degree and closeness (Supp Fig. 5b), and be-
tweenness and closeness (Supp Fig. 5c) were shown
in the Supplementary Fig. 5. Subsequently, employing
Venny 2.1, we identified 8 genes commonly present in
the top 10% across all selected centralities, designating
them as hub genes (Fig. 4a). Hub genes are key players
in biological networks, central to regulating functions
and pathways by interacting with many other genes.
Their importance stems from their pivotal positions, as
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Fig. 2. Top 10 enriched CC, MF, BP and pathways of common DEGs identified using ToppFun enrichment analysis tool.

changes in these genes can significantly impact the en-
tire system they control. Out of 8 hub genes, six genes
VEGFA, CAV1, LOX, CCND1, PLG, and EGF, were
a part of the first cluster, and two genes, ENO2 and
SLC2A1, were present in both the second and fourth
cluster. The expression levels of hub genes across all 12
ccRCC datasets were depicted in a heatmap (Fig. 4b).

3.5. Validation of hub genes expression

The hub genes identified in the ccRCC were validated
by examining their gene expression in GEPIA. In the 12
GEO datasets VEGFA, CAV1, LOX, CCND1, SLC2A1,
ENO2, showed increased expression while PLG and
EGF were down regulated (Fig. 4b). These findings
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Fig. 3. Cluster identification of the PPI network using MCODE. The four most significant clusters were selected with a score of < 5.

Fig. 4. (a) Identification of hub genes with top centrality scores (Degree, betweenness, closeness). (b) Heatmap showing expression pattern of eight
hub genes in all the 12 ccRCC datasets.

were confirmed by GEPIA, showing upregulation of
VEGFA, CAV1, LOX, CCND1, SLC2A1, and ENO2 ,
and downregulation of PLG, EGF in ccRCC (Fig. 5).
Comparison of hub gene expression levels between
ccRCC and other cancers using GEPIA highlighted

VEGFA, LOX, CCND1, and EGF as distinctly expressed
in ccRCC. Comparison of hub gene median expression
levels between ccRCC and other cancers using GEPIA
highlighted VEGFA, LOX, CCND1, EGF as distinctly
expressed in ccRCC (Fig. 6).
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Fig. 5. Validation of hub gene expression. Hub gene expression levels were validated with TGCA datasets obtained using GEPIA. VEGFA (a),
CAV1 (b), LOX (c), CCND1 (d), PLG (e), EGF (f), ENO2 (g), SLC2A1 (h). (KIRC interchangeably used for ccRCC).

4. Discussion

The ccRCC is the most pervasive kidney cancer and
exhibits poorer survival than the other subtypes such
as chromophobe and papillary RCC. In the present
study, integrated bioinformatic analysis was performed
to identify the hub genes and key signaling pathways
in ccRCC. In this study, we extensively searched the
GEO database and identified 12 ccRCC datasets. The
DEGs between the ccRCC tumour and normal sam-
ples were identified using the GEO2R tool. From all
12 datasets, 179 common DEGs were identified and
subjected to GO and pathway enrichment analysis. GO
analysis showed that the top biological function of these
DEGs was enriched in the metabolic process such as the
organic acid metabolic process, especially carboxylic
acid metabolism.

Alteration in metabolic programs, including modi-
fications in the fatty acid metabolic process, result in

the accumulation of acetyl Co-A and synthetic fatty
acids as lipid droplets in the cytoplasm of renal cell.
These renal cells appear as a clear cell, which is the
key histological phenotype in the ccRCC [29]. The top
pathways identified from GO pathway analysis revealed
that DEGs from the ccRCC samples were enriched
in the HIF-1α transcription factor network, Glycoly-
sis/Gluconeogenesis and Glucose metabolism.

The overall enrichment analysis revealed that DEGs
in ccRCCs were significantly enriched in the HIF-
1α transcription factor network and metabolic repro-
gramming. High levels of HIF-1α expression has been
reported in 70 percent of the ccRCC specimens and
showed overall poor survival‘[30]. In a VHL model, the
constitutive expression of HIF1-α induces ccRCC in
the mouse kidney [31]. Furthermore, the HIF-1α ex-
pression showed an inverse relationship with VHL ex-
pression. When the VHL becomes nonfunctional due
to the mutations, the HIF-1α stabilizes and activates
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Fig. 6. Hub gene expression on different cancer types. Median expression levels of hub genes in different cancer types obtained from GEPIA. ACC,
Adrenocortical carcinoma; BLCA, Bladder urothelial carcinoma; BRCA, Breast invasive carcinoma; CESC, Cervical squamous cell carcinoma
and endocervical adenocarcinoma; CHOL, Cholangiocarcinoma; COAD, Colon adenocarcinoma; DLBC, Lymphoid Neoplasm Diffuse Large
B-cell Lymphoma; ESCA, Esophageal carcinoma; GBM, Glioblastoma multiforme; HNSC, Head and Neck squamous cell carcinoma; KICH,
Kidney chromophobe; KIRC, Kidney renal clear cell carcinoma; KIRP, Kidney renal papillary cell carcinoma; LAML, Acute myeloid leukemia;
LGG, Brain lower grade glioma; LIHC, Liver hepatocellular carcinoma; LUAD, Lung adenocarcinoma; LUSC, Lung squamous cell carcinoma;
OV, Ovarian serous cystadenocarcinoma; PAAD, Pancreatic adenocarcinoma; PCPG, Pheochromocytoma and Paraganglioma; PRAD, Prostate
adenocarcinoma; READ, Rectum adenocarcinoma; SARC, Sarcoma; SKCM, Skin cutaneous melanoma; STAD. Stomach adenocarcinoma; TGCT,
Testicular germ cell tumours; THCA, Thyroid carcinoma; THYM, Thymoma; UCEC, Uterine corpus endometrial carcinoma; UCS, Uterine
carcinosarcoma.

the hypoxia-induced genes [32,33,34]. The HIF stabi-
lization can induce the formation highly vascularized
tumours and activation of multiple glycolytic enzymes,
facilitating the metabolic shift towards to anaerobic
glycolysis, known as the Warburg effect [35].

Changes in glucose and lipid metabolism are closely
related to ccRCC. Anaerobic glycolysis leads to an in-
creased production of acetyl Co-A which serves as an
essential source for fatty acid synthesis [29,36]. Previ-
ous research has underscored the impact of fatty acid
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metabolism on ccRCC development, which was driven
by HIFα stabilization due to the functional loss of VHL,
the master regulatory protein of HIFα [27]. Mutations
in VHL, PBRM1, TCEB1 genes leads to dysregulation
of HIF and PI3K signaling pathways that play a cru-
cial role on ccRCC pathogenesis [26]. Thus, identifying
combined influence of master regulatory genes within
the HIF signaling cascade and subsequent downstream
pathways could substantially enhance early cancer de-
tection and treatment.

The identification of hub genes among common
DEGs involved calculating the centrality parameter for
each gene within the common DEGs PPIN. Utiliz-
ing STRING, the PPIN of common DEGs was gener-
ated, and subsequent MCODE analysis in Cytoscape
highlighted four clusters, specifically selecting clusters
with degrees > 5. Subsequently, the three centrality
parameters, degree, betweenness, and closeness were
calculated for all DEGs in the PPIN network. Among
these parameters, eight genes stood out with notably
high centrality scores:: VEGFA, CAV1, LOX, CCND1,
PLG, EGF, ENO2, and SLC2A1. Six out of these eight
genes VEGFA, CAV1, LOX, CCND1, PLG, and EGF,
were part of in the first ranked cluster identified in the
MCODE analysis. The remaining two genes, ENO2 and
SLC2A1 are the essential glycolytic genes situated in
the second cluster and fourth cluster, respectively. No-
tably, these genes can be directly activated by HIF-1α
transcriptional machinery [37]. The pathway analysis
unveiled that the genes in the top cluster were majorly
enriched in the HIF-1 signaling pathway. This under-
scores the pivotal role of the identified hub genes in
ccRCC progression.

The expression levels of these 8 hub genes were
validated with TGCA ccRCC data obtained through
GEPIA. The expression pattern of hub genes in all the
12 datasets included in our study were consistent from
the results obtained from GEPIA. Also, we obtained
median expression levels of these 8 genes in different
cancers and found VEGFA, LOX, CCND1, (highly up-
regulated in ccRCC than other cancer types), and EGF
(highly downregulated) expression levels were distinct
in ccRCC. Out of these four genes, VEGFA, LOX, and
CCND1 can be directly regulated through the HIF tran-
scriptional machinery except EGF [38,39,40].

VEGFA (vascular endothelial growth factor A), a key
gene involved in angiogenesis induced by the HIF sig-
naling pathway in hypoxic conditions, is involved in
the development of many vascularized tumours [34,
41]. In patients diagnosed with ccRCC, the genes most
commonly found to be modified alongside VEGFA

were those neighboring VHL, observed in 72.22% of
cases [42]. The mutation in the VHL gene failed to reg-
ulate the degradation of HIF1 and 2α which leads to
the continuous activation of VEGFA [39]. VEGFA is
a crucial angiogenic factor that significantly triggers
the vigorous proliferation and movement of vascular
endothelial cells, playing a vital role in both normal
and abnormal processes of angiogenesis, essential for
physiological functions and disease-related blood vessel
formation [43]. VEGFA also engaged in the activation
of PI3K-Akt signaling cascades, which is an important
pathway in the development of ccRCC. This regulation
of VEGFA-mediated PI3K-Akt signaling modulated
the invasion and migration of ccRCC and also, high
VEGFA levels are involved in anti-apoptosis [44].

LOX (lysyl oxidases) is also one of the genes trig-
gered by HIF-1α, which produces an initial inactive
version known as Pro-Lox. After being secreted and
subsequently broken down outside cells, this inactive
form separates into an active enzyme (Lox) and a pro-
peptide (Lox-PP) [45]. LOX catalysis the conversion
of lysine residues in collagen and elastin into aldehy-
des helps in the collagen crosslinking, which increases
extracellular matrix proteins stiffness, thereby promot-
ing the progression of tumours and their dissemination
to different parts of the body. (32). LOX expression is
higher in the advanced stages of ccRCC [46]. Epithelial-
mesenchymal transition (EMT), which is facilitated by
LOX, encourages the invasion and metastasis of can-
cer [47,48,49]. HIF1α directly regulates the LOX ex-
pression and is found to be high in hypoxia-induced
metastatic cancers [38,48,50]. LOX regulates the ex-
pression of EGFR by inhibiting transforming growth
factor beta 1 (TGFβ1) signalling via the secreted pro-
tease (High-Temperature Requirement A Serine Pep-
tidase 1 (HTRA1). This raises the levels of Matrilin2
(MATN2), a protein containing an EGF-like domain
that increases the cell surface retention of EGFR and
enhances the activation by EGF, driving the tumour
progression [51].

CCND1 (Cyclin D1) is a proto-oncogene that posi-
tively regulates the cell cycle progression by dimeriz-
ing the cyclin-dependent kinases (CDK) (CDK4 and
CDK6) and conducts G1 to S phase transition. Higher
expression of CCND1 has been reported in many can-
cers such as breast, ovarian, endometrial, and bladder
cancer [52], along with ccRCC. Both high and low
CCND1 levels were associated with the ccRCC than
other RCCs (chromophobe and papillary RCC), where
the CCND1 expression levels were unchanged [53]. So,
CCND1 can be used as a biomarker for differentiating
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ccRCC from other RCC types [54]. The CCND1 lev-
els decreased with an increase in the ccRCC tumour
grade, which (low CCND1) leads to a poor prognosis
in ccRCC patients. Patients with both low and high
CCND1 levels showed recurrence of ccRCC [53].

EGF (Epidermal growth factor) expression leads to
the dimerization of EGF receptors which induces the
intracellular tyrosine kinase activity, which plays in cell
proliferation, angiogenesis and blocks apoptosis. In our
study in all 12 datasets, the expression levels of EGF
were found highly reduced in ccRCC samples compared
to normal adjacent cells in the kidney. In ccRCC tu-
mour samples, the EGF expression levels were very low,
whereas the EGFR levels were reported to be high in
ccRCC samples [55]. The EGFR-induced prooncogenic
signaling cascades such as AKT-PI3K-mTOR signaling
pathways had a crucial role in ccRCC [55]. The EGFR
signaling cascades can be activated by several mecha-
nisms other than EGF in ccRCC [56], but the mecha-
nism behind the downregulation of EGF has not been
investigated in ccRCC. Also, the expression of CAV1
can be directly activated by HIF1 and HIF2, helping
in caveolae formation which leads to the dimerization
and phosphorylation of EGFR and activates the EGFR
signaling cascade without the ligand interaction [57].
Because of this property, the tumours having hypoxia
signatures activate the necessary downstream signal-
ing cascades by initiating the receptor activation with-
out their respective ligand [57]. Also, EGF treatment
in A431 human epidermoid carcinoma cells showed
complete downregulation of CAV1 [58]. So, increasing
the EGF level might help to prevent the autoactivation
of EGFR and regulate EGFR-induced pro-oncogenic
signaling cascades such as AKT-PI3K-mTOR. Also,
this autophosphorylation of receptor tyrosine kinases
(RTKs) is needed for VEGFA-mediated activation of
the class 1a PI3k signaling cascade [59]. Typically, the
EGF expression levels are very high in the kidney com-
pared to the other organs in our body. So increasing
the EGF levels and inhibition of the EGFR signaling
cascade might help to prevent the ccRCC cancer pro-
gression and prognosis.

Currently, various treatments like RTK inhibitors
(such as sorafenib, sunitinib, pazopanib, axitinib,
cabozantinib, and tivozanib), VEGF inhibitor (Beva-
cizumab), HIF2α inhibitor (belzutifan), and immune
checkpoint inhibitors (Nivolumab, Pembrolizumab,
Avelumab (PD-1), Ipilimumab (CTLA-4)), as well as
mTOR inhibitors (Everolimus, Temsirolimus) are em-
ployed in managing ccRCC patients [13]. Combinations
of these drugs, particularly VEGF, RTKs, and immune

checkpoint inhibitors, have demonstrated better out-
comes than their individual use [60]. However, ccRCC
has exhibited significant resistance against chemother-
apy and radiotherapy alongside these drugs [13].

To best of our knowledge, there have been no in vitro
or in vivo studies conducted on treating ccRCC with
EGF. Elevating EGF levels, especially in combination
with existing drugs like RTK inhibitors, might enhance
treatment efficacy for ccRCC. This study is primarily
based on predictive bioinformatic integrated analysis.
So comprehensive laboratory experiments are essential
to explore the potential efficacy of EGF and other hub
genes in ccRCC treatment.

5. Conclusion

In this study, we conducted an integrated analysis
using ccRCC datasets sourced from the GEO database
and identified eight hub genes. Notably, VEGFA, LOX,
CCND1, and EGF were highly expressed in the ccRCC
than other cancer types. These genes play pivotal roles
in various processes crucial for tumour formation and
progression, including angiogenesis, metastasis, cell cy-
cle regulation, anti-apoptosis and drug resistance. These
genes will be a suitable biomarker for ccRCC clini-
cal applications. Apart from the HIF activated genes,
(VEGFA, LOX, CCND1,) the drastic downregulation of
EGF also has to be noted as an important alteration in
ccRCC patients. Investigating the mechanisms behind
the downregulation of EGF and identifying the role of
EGF other than EGFR mediated functions will give new
insights into clinical applications of ccRCC. However,
it’s crucial to note that these findings, although predic-
tive, require validation through laboratory experiments
to substantiate the results obtained from bioinformat-
ics analyses. Experimental verification will strengthen
the reliability and applicability of these bioinformatics-
driven conclusions.
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