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Abstract. Esophageal adenocarcinoma (EAC) occurs following a series of histological changes through epithelial-mesenchymal
transition (EMT). A variable expression of normal and aberrant genes in the tissue can contribute to the development of EAC
through the activation or inhibition of critical molecular signaling pathways. Gene expression is regulated by various regulatory
factors, including transcription factors and microRNAs (miRs). The exact profile of miRs associated with the pathogenesis of
EAC is largely unknown, though some candidate miRNAs have been reported in the literature. To identify the unique miR profile
associated with EAC, we compared normal esophageal tissue to EAC tissue using bulk RNA sequencing. RNA sequence data
was verified using qPCR of 18 selected genes. Fourteen were confirmed as being upregulated, which include CDH11, PCOLCE,
SULF1, GJA4, LUM, CDH6, GNA12, F2RL2, CTSZ, TYROBP, and KDELR3 as well as the downregulation of UGT1A1. We
then conducted Ingenuity Pathway Analysis (IPA) to analyze for novel miR-gene relationships through Causal Network Analysis
and Upstream Regulator Analysis. We identified 46 miRs that were aberrantly expressed in EAC compared to control tissues. In
EAC tissues, seven miRs were associated with activated networks, while 39 miRs were associated with inhibited networks. The
miR-gene relationships identified provide novel insights into potentially oncogenic molecular pathways and genes associated with
carcinogenesis in esophageal tissue. Our results revealed a distinct miR profile associated with dysregulated genes. The miRs and
genes identified in this study may be used in the future as biomarkers and serve as potential therapeutic targets in EAC.
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1. Background

Esophageal cancer is the eighth most common can-
cer and represents the sixth most common cause of
cancer mortality globally [1,2]. In the United States,
The American Cancer Society estimates about 21,560
new diagnoses and 16,120 deaths related to esophageal
cancer in 2023, each with a male predominance [3].
Approximately 10% of esophageal cancers in Western
countries are identified to be esophageal adenocarci-
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noma (EAC). Further, the incidence of EAC has in-
creased each decade from 1973 to 2015 in the United
States, possibly due to the increasing prevalence of
EAC risk factors, including obesity and GERD [4]. As
incidence increases, the 5-year survival rate remains
poor at around 20%, reflecting a need for the develop-
ment of markers for early diagnosis and better treatment
and prevention strategies [5,6,7]. For these reasons, it
is essential to identify novel biomarkers and potential
therapeutic targets.

Dysregulation of gene transcription has been identi-
fied as a critical mechanism underlying cancer patho-
physiology [8]. One way that gene transcription is reg-
ulated is through microRNA (miR) [9,10]. miRs are
highly conserved, single-stranded RNA molecules av-
eraging 22 nucleotides in length that regulate gene ex-
pression by binding target messenger RNA (mRNA).
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In general, miR-mRNA binding suppresses the mRNA
molecule’s translation and/or degradation, leading to
increased or decreased expression of certain genes [11,
12]. miRs may therefore possess either tumor-promoting
(onco-miR) or suppressing activity based on the deacti-
vated target mRNA [11]. Dysregulated miRs have been
associated with many cancer phenotypes and impli-
cated in a variety of dysregulated cellular pathways and
mechanisms, including in EAC [13,14,15,16]. While
not all dysregulated genes and molecular pathways lead
consistently to carcinogenesis, a variety of mechanisms
have been described in EAC development [17]. Fur-
thermore, relatively few miRs have been reported to
be associated with EAC, which necessitates further in-
vestigation into possible miRs associated with EAC
development [18,19,20,21,22].

2. Objective

This study aims to identify novel miRs associated
with EAC and their potential gene targets.

3. Methods

3.1. Patient selection

The protocol for this prospective study was approved
by the Institutional Review Board (IRB# 1194896) of
Creighton University. All patients undergoing primary
endoscopic biopsy or surgical resection of suspected
EAC were considered for inclusion in this study. A
written informed consent was obtained from all patients
scheduled for surgery at Creighton University Medical
Center. For this study, ∼ 2 mm tissue samples were
collected from the EAC lesion. A similar-sized biopsy
was taken from adjacent normal tissue at the time of
the initial biopsy to serve as a control. Inclusion cri-
teria included all patients willing to participate with a
diagnosis of EAC. Patients unwilling to participate and
patients less than 19 years of age were excluded from
the study. Patient selection and inclusion in this study
conform with The Code of Ethics of the World Medical
Association (Declaration of Helsinki).

3.2. Tissue collection and processing

The EAC and normal tissue collected during sur-
gical endoscopy or resection were transported to the
lab the same day at 4◦C and processed for total RNA

isolation. Total RNA was isolated using TRI reagent
(TRIzol

TM
Reagent, Sigma, Catalog #T9424, St. Louis,

Missouri, USA) following the manufacturer’s guide-
lines. Total RNA yield was measured using NanoDrop
One (Thermo Fisher Scientific Inc.) and 1 µg of total
RNA was sent for bulk RNA sequencing. The RNA
samples with RNA integrity number (RIN) > 6 were
subjected to sequencing. Sequencing was performed on
a total of 4 control and 4 EAC samples. The extracted
RNA was also used to prepare cDNA.

3.3. Bulk RNA sequencing and analysis

We conducted bulk RNA sequencing on 4 EAC and
4 normal esophageal mucosa samples. Genetic analysis
and statistical inference were performed at The Univer-
sity of Nebraska Medical Center (UNMC) using the fol-
lowing protocol: The original fastq format reads were
trimmed by the fqtrim tool (https://ccb.jhu.edu/software/
fqtrim) to remove adapters, terminal unknown bases
(Ns), and low quality 3’ regions (Phred score< 30). The
trimmed fastq files were processed by FastQC [23]. The
trimmed fastq files were then processed by the UNMC
standard pipelines utilizing STAR [24] as the aligner
and RSEM [25] as the tool for annotation and quantifi-
cation at both gene and isoform levels. The trimmed
fastq files were mapped to the hg38 human reference
genome (GRCh38). The normalized expression abun-
dance in TPM (Transcripts Per Kilobase Million) and
FPKM (Fragments Per Kilobase of Transcript Per Mil-
lion mapped reads) values for all the available genes and
isoforms were analyzed. The TPM values were used
for further analysis. To calculate statistically significant
differences in gene expression in EAC tissue compared
to normal tissue, a Student’s t-test was used for all
the available genes using TPM values. The Benjamini-
Hochberg adjusted p-values [26] were also analyzed to
adjust for multiple-testing caused false discovery rate
(FDR).

3.4. Identification of differentially expressed genes
(DEGs)

Genes were filtered using |logFC2| > 2 and p 6
0.05 as cutoffs to determine significant upregula-
tion/downregulation. Fold change and p-value were
measured against normal epithelium, which we con-
sidered to have normal expression of each gene. Genes
with a positive logFC2 were considered upregulated.
Genes with a negative logFC2 were considered down-
regulated. Genes that met these criteria were desig-
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nated as differentially expressed genes (DEGs). A vol-
cano plot of gene screening was constructed using
Prism GraphPad Software (San Diego, California, USA,
www.graphpad.com).

3.5. Ingenuity pathway analysis

To investigate the potentially novel miR-gene interac-
tions associated with the DEGs identified through bulk
RNA sequencing, we conducted Ingenuity Pathway
Analysis (IPA). IPA is a bioinformatic analysis plat-
form created by QIAGEN Inc. that predicts functional
relationships among sets of genes. Within IPA, we fur-
ther utilized Causal Network and Upstream Regulator
Analyses. (QIAGEN Inc. https://digitalinsights.qiagen.
com/products-overview/discovery-insights-portfolio/
analysis-and-visualization/qiagen-ipa/). These analyti-
cal tools allow for exploration beyond direct relation-
ships and provide insight into potential physiologic
mechanisms that are associated with target datasets.
Causal Network Analysis uses experimental data to
predict regulatory species, including miRs and tran-
scription factors that are not directly connected to
DEGs. Upstream Regulator Analysis predicts regula-
tory molecules that influence the observed genotype
associated with input data through either upstream or
downstream changes to gene transcription. Both anal-
ysis methods may provide novel insight into patho-
physiologic mechanisms that control the development
of EAC that might not be readily apparent in a set of
differentially expressed genes. microRNAs and their
associated gene targets were obtained through IPA. Dis-
ease and biologic function analysis of IPA is included
in Supplemental File 1.

3.6. Protein-protein interaction, functional
enrichment, and identification of hub genes

Functional relationship analysis for the DEGs was
conducted using the Search Tool for Retrieval of Inter-
acting Genes (STRING), accessed through (http://string-
db.org). STRING is a web-based database that can
predict relationships between input genes to create
protein-protein interaction (PPI) networks. Our net-
work was constructed using a confidence of inter-
action score > 0.4. The PPI was exported to Cy-
toscape (https://cytoscape.org/) for network visualiza-
tion (Fig. 2).

To further narrow the focus of our investigation, we
identified genes involved in the top 10 enriched Gene
Ontology (GO) Biological Processes (Table 2). GO

Term false discovery rate< 0.05 was used as a cutoff for
identifying significantly enriched terms. Genes within
the top 10 GO Terms were isolated and paired with cor-
responding miR-gene relationships identified through
IPA for network visualization. We isolated miR-DEG
interactivity into four sub-networks based on analysis
type to identify miR-gene connections more clearly:
Causal Network Activated, Causal Network Inhibited,
Upstream Regulator Activated, and Upstream Regulator
Inhibited.

Hub genes demonstrate high connectivity in PPI net-
works and can help identify genes that play critical
roles in underlying network pathways [27]. Therefore,
identifying hub genes may provide insight into mean-
ingful biological mechanisms involved in PPI networks
and assist in clarifying the importance of an underlying
gene in disease development. We used the Cytoscape
plugin cytoHubba [28] to identify hub genes within
our PPI. Within cytoHubba, we conducted hub analy-
sis to determine the 20 top hub genes using five com-
monly used embedded algorithms, which include Max-
imal Clique Centrality (MCC), Maximum Neighbor-
hood Component (MNC), Density of Maximum Neigh-
borhood Component (DMNC), Degree method (De-
gree), and Edge Percolated Component (EPC) [29].
We further conducted Molecular Complex Detection
(MCODE) within Cytoscape, a separate Cytoscape plu-
gin that assists in identifying highly connected hub
genes in large PPIs [30]. MCODE was analyzed us-
ing a Network Scoring degree cutoff of 2, and cluster
finding was set to ‘haircut’ utilizing a node score cut-
off of 0.2, K-Core of 2, and a maximum depth of 100.
MCODE output modules were considered significant
with a k-score > 4.0.

3.7. qPCR of DEGs for RNA sequencing validation

To verify the data identified with RNA sequenc-
ing, qPCR (real-time polymerase chain reaction) was
used to quantify the expression of 18 DEGs identi-
fied through IPA analysis. 13 previously unreported
DEGs (PCOLCE, CDH11, GJA4, PTGFR, CDH6,
LUM, GNA12, SULF1, CDC14B, KDELR3, TYROBP,
UGT1A1, and F2RL2) were selected based on literature
review into each gene’s known functional relationships
related to mechanisms involved in EAC risk and de-
velopment, including inflammatory signaling, cellular
organization, and mechanisms involved in insulin sig-
naling. The remaining five genes (FOXF1, IGFBP7,
CTRHC1, HEYL, and NFATC2) have been previously
characterized in relation to EAC and were analyzed
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Fig. 1. Volcano plot visual representation of filtering out candidate DEGs from RNA sequence data using |logFC2| > 2 (vertical dotted lines) and
p 6 0.05 (horizontal dotted line) as cutoff values. (Red – Upregulated DEGS; Blue – Downregulated DEGs; Black – Did not fulfill inclusion
criteria.)

for additional validation. Of the selected genes, seven
were identified as highly connected hubs and there-
fore serve as potentially important targets for future
research: PCOLCE, CDH11, GJA4, PTGFR, CDH6,
LUM, SULF1, and TYROBP).

Total RNA was extracted using the TRIZOL method
(T9424, Millipore Sigma, Burlington, Massachusetts,
USA) following standard protocol in our laboratory.
The yield of total RNA was quantified using Nanodrop
2000 Spectrophotometer (Thermo Fisher Scientific,
Waltham, Massachusetts, USA). Following this, 2 µg
cDNA was prepared using AzuraQuantTM cDNA Syn-
thesis Kit (AZ-1996, Raynham, Massachusetts, USA)
following the manufacturer’s instructions. qRT-PCR
was done in triplicate for the selected genes using
AzuraViewTM GreenFast qPCR Blue Mix HR (AZ-
2420, Raynham, Massachusetts, USA) with PCR cy-
cling of 5 min at 95◦C for initial denaturation then 40
cycles consisting of 30 seconds at 95◦C (denaturation),
30 seconds at 55–60◦C, and 30 seconds at 72◦C (ex-
tension) followed by melting curve analysis. A total
of three replicates were produced, and an average ex-
pression was used for further analysis. Fold changes in
mRNA expression relative to controls were analyzed
using the 2−∧∧CT method after normalization with β-
actin. The primers for selected genes (Table 1) were ob-

tained from Integrated DNA Technologies (Coralville,
Iowa, USA). Normalized qPCR expression was graphed
using Prism GraphPad, and cycle threshold (CT) values
are available in Supplemental File 1.

4. Results

4.1. RNA sequencing and differentially expressed
genes

RNA sequencing data revealed a total of 58,826 de-
tected genes. Of these, 784 genes met our criteria for
significantly upregulated or downregulated (|logFC2| >
2 and p 6 0.05). The total of upregulated gene tran-
scripts was equal to 644, and the total of downregulated
genes was equivalent to 140. A visual representation of
candidate gene selection is shown in the volcano plot
(Fig. 1). The complete list of genes from our RNA se-
quencing data can be accessed through Supplemental
File 1. Of the detected genes, 196 were found to be long
non-coding RNA, immunoglobulins, and novel tran-
scripts and were removed for further analysis (n = 131
upregulated; n = 65 downregulated). The remaining
588 differentially expressed genes were used for further
network analysis and contained 513 upregulated and 75
downregulated genes.
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Fig. 2. PPI among DEGs identified using RNA-sequencing analysis (Red-Upregulated DEG; Green-Downregulated DEG; Grey line-Predicted
connection between adjacent genes).

4.2. Protein-protein interaction

A protein-protein interaction map of the 588 DEGs
was created using STRING that included 526 mappable
nodes and displayed 2085 edges (expected number of
edges = 789, enrichment p-value = < 1.0 × 10−16).
A detailed representation of the PPI network was con-
structed using Cytoscape and is displayed in Fig. 2.

4.3. Gene enrichment

GO Biological Process enrichment of the obtained
PPI network revealed 156 significantly overrepresented
genes from pathways involved in cell adhesion, collagen

fibril organization/biosynthesis, inflammatory response,
ECM organization, cell migration, positive regulation
of ERK1/2 cascade, osteoblast differentiation, and cell-
to-cell signaling (Table 2). The top 10 GO Terms were
ranked by significance using -log10(p-value) and are
displayed in Fig. 3. The 156 genes found within each
of the top 10 most significantly enriched GO Terms are
mapped in Fig. 4A and B.

4.4. Hub gene analysis

Hub gene analysis revealed 84 unique hub genes us-
ing cytoHubba and MCODE modules. Of these, cy-
toHubba produced 48 genes across all five analysis
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Table 2
Top 10 enriched GO Terms Biological Process used to filter genes into relevant biological
processes pertaining to EAC

Top 10 Gene Ontology Terms Used for miR-Gene Inference
Accession ID Gene Ontology Term p-value # of DEGs
GO:0007155 Cell adhesion 3.30E-26 67
GO:0030199 Collagen fibril organization 1.10E-16 22
GO:0006954 Inflammatory response 2.10E-10 37
GO:0030198 Extracellular matrix organization 2.70E-10 24
GO:0032964 Collagen biosynthetic process 4.50E-08 7
GO:0016477 Cell migration 1.20E-07 25
GO:0070374 Positive regulation of ERK1 and ERK2 cascade 9.80E-07 21
GO:0030335 Positive regulation of cell migration 2.80E-06 22
GO:0001649 Osteoblast differentiation 3.50E-06 15
GO:0007267 Cell-cell signaling 5.40E-06 20

Fig. 3. Top 10 enriched GO Terms Biological Process used to filter genes into relevant biological processes pertaining to EAC.

methods (MCC, MNC, Degree, EPC, and DMNC), dis-
played in Fig. 5A. MCODE revealed 68 genes across
four significant modules, depicted in Fig. 5B. Com-
bined, 32 genes demonstrated overlap and appeared in
both analysis methods (Fig. 5C). From cytoHubba, no
genes were found across all five algorithms of analysis.
Despite this, nine genes were found to overlap between
MCC, MNC, Degree, and EPC methods (MMP2, BGN,
COL1A2, COL1A3, VCAN, THBS1, COL1A1, POSTN,
and TIMP1). An additional nine genes were found
within three separate algorithmic outputs (COL5A1,
COL4A1, COL5A2, THBS2, COL6A3, LUM, ITGB3,
CCL2, and IL6).

MCODE analysis of the PPI revealed four signifi-
cant modules. The most significant module, Module 1,
contained 27 nodes and 271 edges (k-score = 20.846).
Module 2 contained 21 nodes with 79 edges 9 (k-score
= 7.900), Module 3 contained 15 nodes with 49 edges
(k-score = 7.000, and Module 4 contained five nodes

with ten edges (k-score 5.000). As expected in MCODE
analysis, no genes overlapped between modules. The
four significant MCODE modules were mapped onto
the complete PPI network in Fig. 5D.

4.5. miRs

Ingenuity Pathway Analysis of our samples demon-
strated the presence of both activated and inhibited
networks. Causal network analysis revealed 33 total
miRNA; 6 associated with activated networks (mir-
28, miR-145-5p, mir-19, mir-221, miR-133a-3p, and
mir-24) and 27 associated with inhibited networks
(miR-149-5p, miR-96-5p, miR-204-5p, miR-335-3p,
miR-30c-5p, miR-338-3p, mir-10, mir-30, mir-630,
miR-30c-5p, mir-338, miR-450a-5p, miR-29b-3p, miR-
2392, Mir200, mir-128, let-7a-5p, mir-1, miR-124-3p,
let-7, miR-219a-5p, miR-218-5p, mir-182, miR-491-5p,
MIR100-LET7A2-MIR125B1, MIR17HG, MIR99A-
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Fig. 4. PPI networks with Top 10 enriched GO Terms by Biological Process. A) Complete PPI network with Top 10 GO Terms highlighted based
on gene inclusion; B) Genes found within Top 10 GO Terms and mapped individually to involved process.



R. Corlett et al. / miRNA profiling of esophageal adenocarcinoma using transcriptome analysis 253

Fig. 5. Hub gene analysis of significantly dysregulated genes using cytoHubba and MCODE plugins for Cytoscape. A) Outcome of cytoHubba
analysis (using MCC, Degree, MNC, EPC, and DMNC algorithms) compared for overlap using five-way Venn diagram; B) Significant (k-score >
4.0) MCODE modules; C) Comparative analysis of genes identified using cytoHubba and MCODE analyses D) PPI of DEGs with identified
hub genes highlighted. Purple outlined nodes: DEGs identified as hubs using cytoHubba, yellow nodes: identified in MCODE module 1, orange
nodes identified in MCODE module 2, sky blue nodes: identified in MCODE module 3, pink nodes: identified in MCODE module 4, dotted line:
predicted gene-gene interaction from STRING enrichment.
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Table 3a
Identified miRs in activated networks indicated through Causal Network analysis (esophageal adenocarcinoma vs. healthy adjacent tissue).
miR-DEG targets are divided into upregulated (log2 FC > 2, p < 0.05) and downregulated (log2 FC < 2, Ap < 0.05)

Activated Causal Network miR-DEG Relationships
ASSOCIATED WITH AC-
TIVATED NETWORK

DEGS (LOG2 > 2, p < 0.05) DEGS
(LOG2 < −2, p < 0.05)

miR-28 ADAMTS9, ADGRE5, ALPL, ANGPTL2, ARRB2, BMP6, C3AR1, CCN4,
CCR1, CCR3, CD14, CLDN2, COL12A1, COL1A2, CXCL16, CYBA, DAB2,
DPEP1, DPP4, EMILIN1, FAP, FAT1, FEZ1, FOXF2, GREM1, ICAM2,
INHBA, ITGAX, ITGB3, LUM, MFHAS1, MMP2, NECTIN3, NFAM1,
NFATC2, NID2, NLGN4X, NRG1, NTRK1, PCDH17, PCDHB14, PCOLCE,
PDGFRB, POSTN, RARRES2, SELP, SEMA3B, SERPINH1, SH3KBP1,
SHOX2, TGFBI, THBS2, TNFRSF12A, VCAM1

SPINK5

miR-145-5p ADAM12, ADAMTS12, ADAMTS2, ADAMTS9, ADGRE2, ADGRE5, AMH,
ANGPTL2, APOE, APP, ARRB2, BMP6, C3AR1, CCL11, CCL18, CCL2,
CCL3, CCL4, CCN4, CCR1, CCR3, CCRL2, CD14, CHST2, CLDN2,
COL12A1, COL1A1, COL1A2, COL3A1, COL4A1, COL4A2, COL5A1,
COL6A3, CYBA, DAB2, DPEP1, EMILIN1, FAP, FAT1, FOXF2, FUT8, GJA4,
GLI1, GREM1, HAS2, HGF, IGFBP3, IGFBP7, IL6, INHBA, ITGA11,
ITGAX, ITGB3, LAMB3, LAMC2, LOXL1, MFHAS1, MMP11, MMP2,
NECTIN3, NEDD9, NFAM1, NFATC2, NID2, NINJ1, NOX4, NRG1,
PCDH17, PCDHB12, PCDHB14, PCDHB7, PDGFA, PDGFRB, PDPN,
POSTN, PTGFR, PXDN, RARRES2, RCN3, SDC3, SELP, SEMA3B,
SERPINH1, SHOX2, SLC11A1, SMPDL3B, TGFBI, THBS1, THBS2, THY1,
TLR4, TNC, TNFRSF12A, VCAM1, VCAN

SPINK5

miR-19 ADAMTS2, AMH, AMIGO2, ANGPTL2, APOE, C3AR1, CCL11, CCL18,
CCL2, CCL4, CCR1, CCR3, CCRL2, CD180, CD248, CLDN2, COL12A1,
COL15A1, COL1A1, COL1A2, COL3A1, COL5A2, CTHRC1, CYBA, DAB2,
DPP4, EMILIN2, FAP, FKBP10, FUT8, GLIS1, GREM1, HAPLN1, HAS2,
HGF, IGFBP3, IHH, IL6, LAMB3, LOXL1, LRRC15, MFHAS1, MMP2,
NFATC2, NLGN4X, NOX4, NRG1, PCDH18, PCDHB14, PDGFRB, PLOD3,
PTGFR, RARRES2, SDC3, SEMA3B, TGFB2, THBS1, TMEM119,
TNFRSF1B, VCAM1

MAPT

miR-221 ADAM8, ADAMTS9, ADGRE1, ADGRE2, ADGRE5, AMH, AMIGO2,
ANGPTL2, APP, ARRB2, CCL18, CCL2, CD14, CD248, CDHR5, CLDN2,
COL12A1, COL3A1, CTHRC1, CYBA, DPEP1, DPP4, EMILIN1, EMILIN2,
FAP, FAT1, FOXF2, GLI1, HAPLN1, ICAM2, IHH, IL6, LAMB3, LAMC2,
LOXL1, LRRC15, MFHAS1, MMP11, MMP2, NECTIN3, NFAM1, NLGN4X,
NOSTRIN, NOX4, NRG1, PCDH17, PCDHB14, PDPN, PLOD3, PXDN,
RCN3, SDC3, SELP, SEMA3B, SH3KBP1, SHOX2, SLC11A1, TGFBI,
THBS1, THBS2, TNC, VCAM1, VCAN

miR-133a-3p ALPL, CCL11, CCL2, CCL3, CCL4, CCN4, COL1A1, COL3A1, COL4A1,
HAS2, IGFBP3, IL6, ITGB3, MMP2, PCOLCE, PDGFRB, POSTN, SHOX2,
TGFB2, THBS1, THBS2, VCAN

MAPT

miR-24 ALPL, CCL11, CCL2, CCL3, CCL4, CCN4, COL1A1, COL3A1, HAS2,
IGFBP3, IL6, ITGB3, MMP2, NOX4, POSTN, VCAN

MAPT

LET7C-MIR125B2, and MIRLET7). Upstream Regu-
lator Analysis revealed 24 total miRNA; one was asso-
ciated with activated networks (miR-223) and 23 were
associated with inhibited networks (miR-335-3p, miR-
338-3p, miR-30c-5p, miR-450a-5p, miR-29b-3p, miR-
2392, let-7a-5p, miR-124-3p, miR-1, let-7, miR-29,
miR-182, miR-199a-5p, miR-1-3p, miR-125b-5p, miR-
27a-3p, mir-193, miR-155-5p, miR-291a-3p, miR-205-
5p, miR-296-5p, miR-8, and miR-146). All miRs were
associated with DEGs within the complete dataset. The
miR-DEG relationships identified through Causal Net-
work Analysis are displayed in Table 3a and 3b and
Fig. 6A and 6B. Relationships obtained through Up-

stream Regulator Analysis are depicted in Table 4a and
4b and Fig. 6C and 6D. The complete list of gene tar-
gets identified using IPA can be found in Supplemental
File 1.

We thoroughly reviewed the literature and found 18
miRs previously described in relation to EAC compared
to normal epithelium. These include let-7, miR-1-3p,
miR-145-5p, miR-149-5p, miR-199a-5p, miR-27a-3p,
MIR200, miR-221, miR-223, miR-335-3p, miR-338-
3p, miR-133a-3p, miR-30c-5p, miR-630, MIR17HG,
MIR99A-LET7C-MIR125B2, and MIRLET [22,31,32,
33,34,35,36,37,38,39,40,41,42]. In addition, mir-218-
5p has been described to be elevated in the serum of
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Table 3b
Identified miRs in inactivated networks indicated through Causal Network analysis (esophageal adenocarcinoma vs. healthy adjacent tissue).
miR-DEG targets are divided into upregulated (log2 FC > 2, p < 0.05) and downregulated (log2 FC < 2, p < 0.05)

Inactivated Causal Network miR-DEG Relationships
ASSOCIATED WITH IN-
ACTIVATED NETWORK

DEGS (LOG2 > 2, p < 0.05) DEGS
(LOG2 < −2, p < 0.05)

miR-149-5p ADAM12, ADAMTS9, ADGRE5, ALPL, AMH, AMIGO2, ANGPTL2,
ARRB2, BMP6, CCL2, CCN4, CCR1, CD14, CDH11, CDH6, CHST2,
CLDN2, COL15A1, CTHRC1, CYBA, DAB2, DPP4, EMILIN1, FAP, FEZ1,
FOXF1, FOXF2, FUT8, GLI1, GLIS1, GREM1, HAPLN1, ICAM2, IHH, IL6,
INHBA, ITGB3, LAMC2, LUM, MFHAS1, NEDD9, NINJ1, NLGN4X, NRG1,
PCDH17, PCDH18, PCDHB14, PDGFRB, PTGFR, SEMA3B, SLC11A1,
SMPDL3B, TGFB2, TGFBI, THBS2, TNC, VAV2, VCAM1

SPINK5

miR-96-5p ADAM12, ADAMTS9, ALPL, AMIGO2, APOE, APP, ARRB2, CCL2, CCN4,
CCR1, CCRL2, CDH11, CLDN2, COL12A1, COL1A1, COL3A1, COL4A1,
COL5A1, CYBA, DPEP1, EMILIN1, F2R, FAT1, FOXF1, FOXF2, GLI1,
GREM1, HAS2, HGF, ICAM2, IGFBP7, IHH, INHBA, ITGB3, LAMB3,
LAMC2, MFHAS1, MMP2, NECTIN3, NEDD9, NFAM1, NFATC2, NID2,
NINJ1, PCDH18, PCDHB14, PCOLCE, PDGFA, PDPN, POSTN, SELP,
SERPINH1, TGFB2, TGFBI, THBS1, THY1, TLR4, TNC, TNFRSF12A,
VCAN

miR-204-5p ADAM12, ADAMTS12, ADAMTS2, ADAMTS9, ANGPTL2, BMP6, C3AR1,
CCL18, CCL2, CCL3, CCR3, CD180, CD248, CDH11, CDH6, CHST2,
CLDN2, COL12A1, COL15A1, COL1A2, CTHRC1, CYBA, DPEP1, DPP4,
F2R, FAP, FOXF2, GLIS1, HAS2, ICAM2, IL6, LAMB3, LOXL1, MFHAS1,
MMP11, MMP2, NFATC2, NINJ1, NLGN4X, NOX4, NRG1, NUAK1,
PCDH17, PCDHB14, PDGFA, POSTN, PTGFR, PXDN, RARRES2, SEMA3B,
SERPINH1, SH3KBP1, SHOX2, SLC11A1, SMPDL3B, TGFB2, TGFBI,
THBS2, TMEM119, VAV2, VCAM

miR-335-3p ADAMTS2, COL1A1, COL1A2, COL4A1, COL4A2, COL5A1, COL5A2,
NID2, PDGFA, VCAN

miR-30c-5p ADAM12, ADAMTS2, ADGRE5, APOE, APP, ARRB2, CCL2, CCL4,
COL1A1, COL1A2, COL3A1, COL4A1, COL4A2, COL5A1, COL5A2,
DPEP1, DPP4, EMILIN1, F2R, FAT1, FOXF1, HAS2, HGF, IGFBP3, IL6,
INHBA, LAMC2, NECTIN3, NFAM1, NID2, NINJ1, PDGFA, PDGFRB,
SELP, SERPINH1, TGFB2, TGFBI, THBS1, THBS2, THY1, TNC,
TNFRSF1B, VCAN

miR-338-3p ADAMTS2, COL1A1, COL1A2, COL4A1, COL4A2, COL5A1, COL5A2,
NID2, PDGFA, VCAN

miR-10 ADAM12, ADGRE5, ALPL, APOE, APP, ARRB2, CCL2, CCL3, CCL4,
CCN4, CCR1, CCRL2, CLDN2, COL1A2, COL4A1, COL4A2, COL5A2,
DPEP1, EMILIN1, F2R, FAT1, FOXF1, GLI1, HGF, IHH, INHBA, ITGB3,
LAMB3, LAMC2, NECTIN3, NFAM1, NFATC2, NID2, NINJ1, NOX4,
PDGFA, PDGFRB, POSTN, SELP, SERPINH1, TGFB2, TGFBI, THBS1,
THY1, TNFRSF1B

miR-30 ADAM12, ADAMTS9, ADGRE5, APOE, APP, ARRB2, CCL11, CCL3,
COL1A1, COL3A1, COL4A1, COL4A2, COL5A2, DPEP1, DPP4, EMILIN1,
F2R, FAT1, FOXF1, HAS2, HGF, IGFBP3, IL6, INHBA, ITGB3, LAMC2,
MFHAS1, MMP2, NECTIN3, NFAM1, NFATC2, NID2, NINJ1, PDGFA,
PDGFRB, POSTN, SELP, SERPINH1, TGFB2, TGFBI, THBS1, THBS2,
THY1, TNC, TNFRSF1B, VCAM1, VCAN

miR-630 ADAM12, ADGRE5, APOE, APP, ARRB2, CCL2, CCL4, COL1A1, COL3A1,
COL4A1, COL4A2, COL5A2, DPEP1, DPP4, EMILIN1, F2R, FAT1, FOXF1,
HAS2, HGF, IGFBP3, INHBA, LAMC2, NECTIN3, NFAM1, NID2, NINJ1,
PDGFA, PDGFRB, SELP, SERPINH1, TGFB2, TGFBI, THBS1, THBS2,
THY1, TNC, TNFRSF1B, VCAN

miR-338 ADAM12, ADGRE5, ALPL, APP, BMP6, CCL3, CCN4, CLDN2, COL6A3,
CYBA, DAB2, F2R, FOXF2, GLI1, GLIS1, HGF, IL6, INHBA, LAMB3,
LAMC2, LUM, NFATC2, NINJ1, PDGFA, THBS2, TNFRSF1B

miR-450a-5p COL1A2, COL3A1, COL5A2, HGF, PDGFRB, TGFB2
miR-29b-3p ADAMTS2, COL15A1, COL1A1, COL1A2, COL3A1, COL4A1, COL4A2,

COL5A1, COL5A2, NID2, PDGFA, VCAN
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Table 3b, continued

Inactivated Causal Network miR-DEG Relationships
ASSOCIATED WITH IN-
ACTIVATED NETWORK

DEGS (LOG2 > 2, p < 0.05) DEGS
(LOG2 < −2, p < 0.05)

miR-2392 –
miR-200 ADAM12, ALPL, COL1A1, COL1A2, COL3A1, FAT1, FOXF2, IL6, LAMC2,

MMP2, SERPINH1, TGFB2, TGFBI, THBS1, VCAM1
miR-128 IL6
let-7a-5p ADAMTS2, COL1A1, COL1A2, COL3A1, COL4A1, COL4A2, COL5A1,

COL5A2, IL6, ITGB3, NID2, PDGFA, PXDN, THBS1, TLR4, VCAN
miR-1 ADAM12, CCL2, IL6, PDGFA
miR-124-3p CCL2, PLOD3
let-7 COL1A1, COL1A2, COL3A1, COL4A1, COL5A2, IL6, ITGB3, THBS1, TLR4
miR-219a-5p CD14, TNFRSF1B
miR-218-5p COL1A1, LAMB3
miR-182 FOXF2
miR-491-5p MMP2
MIR99A-LET7C-
MIR125B2

CCL2, COL1A1, COL1A2, COL3A1, COL4A1, COL5A2, GLI1, IL6, ITGB3,
NOX4, THBS1, TLR4, ADAM12, ADAM8, ADAMTS9, ADGRE5, AMH,
APOE, APP, ARRB2, BMP6, CCR1, CCRL2, CLDN2, COL4A2, COL6A3,
DPEP1, EMILIN1, F2R, FAT1, FOXF1, HGF, IHH, INHBA, LAMB3, LAMC2,
LUM, MFHAS1, NECTIN3, NFAM1, NFATC2, NID2, NINJ1, PCDH18,
PDGFA, PDGFRB, SELP, SERPINH1, SMPDL3B, TGFB2, TGFBI,
THEMIS2, THY1, TNFRSF12A, TNFRSF1B

MIR100-LET7A2-
MIR125B1

ADAM12, ADAM8, ADAMTS9, ADGRE5, AMH, APOE, APP, ARRB2,
BMP6, CCL2, CCR1, CCRL2, CLDN2, COL1A1, COL1A2, COL3A1,
COL4A1, COL4A2, COL5A2, COL6A3, DPEP1, EMILIN1, F2R, FAT1,
FOXF1, GLI1, HGF, IHH, IL6, INHBA, ITGB3, LAMB3, LAMC2, LUM,
MFHAS1, NECTIN3, NFAM1, NFATC2, NID2, NINJ1, NOX4, PCDH18,
PDGFA, PDGFRB, SELP, SERPINH1, SMPDL3B, TGFB2, TGFBI, THBS1,
THEMIS2, THY1, TLR4, TNFRSF12A, TNFRSF1B

MIR17HG ALPL, APP, COL5A1
MIRLET7 COL1A1, COL1A2, COL5A2, IL6

Table 4a
Identified miR in activated network indicated through Upstream Regulator analysis (esophageal adenocarcinoma vs. healthy adjacent tissue).
miR-DEG targets are divided into upregulated (log2 FC > 2, p < 0.05) and downregulated (log2 FC < 2, p < 0.05).

Activated Upstream Regulator miR-DEG Relationships
ASSOCIATED WITH AC-
TIVATED NETWORK

DEGS (LOG2 > 2, p < 0.05) DEGS
(LOG2 < −2, p < 0.05)

miR-223 CCR3, CD180, IL6, POSTN, TGFBI, TLR4

EAC patients but has yet to be described in tissue biopsy
analysis [43]. The moderate overlap between our find-
ings and those already reported serves to validate the
dysregulation of previously reported miRs in EAC.

To our knowledge, the remaining 26 miRs identi-
fied in this study have yet to be reported concerning
EAC compared with normal epithelium and have un-
known pathologic implications. These include let-7a-
5p, miR-10, miR-124-3p, miR-125b-5p, miR-128, mir-
146, miR-155-5p, miR-19, mir-193, miR-204-5p, miR-
205-5p, miR-219a-5p , miR-2392, miR-24, miR-28,
miR-29, miR-291a-3p, miR-296-5p, miR-29b-3p, miR-
30, miR-338, miR-450a-5p, miR-491-5p, miR-8, miR-
96-5p, and MIR100-LET7A2-MIR125B1.

4.6. qPCR of DEGS for RNA sequencing validation

We conducted qPCR analysis on 18 genes from our
list of 588 DEGs to verify the results of RNA sequenc-
ing. The 18 genes were selected based on a literature
review. We selected 11 genes that have not been exten-
sively studied in EAC (PCOLCE, SULF1, GJA4, LUM,
CDH6, GNA12, PTGFR, F2RL2, CTSZ, CDC14B,
KDELR3, UGT1A1) and seven genes previously iden-
tified to be associated with EAC: (CDH11, IGFBP7,
FOXF1, CTHRC1, TYROBP, NFATC2, HEYL). qPCR
analysis (Fig. 7) confirmed significant dysregulation
in 15 of the 18 selected DEGs in EAC compared
to control (CDH11, PCOLCE, SULF1, GJA4, LUM,
CDH6, GNA12, F2RL2, CTSZ, TYROBP, KDELR3, and
UGT1A1). We compared our results to The Human
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Table 4b
Identified microRNAs in inactivated networks indicated through Upstream Regulator analysis (esophageal adenocarcinoma vs. healthy adjacent
tissue). miR-DEG targets are divided into upregulated (log2 FC > 2, p < 0.05) and downregulated (log2 FC < 2, p < 0.05).

Inactivated Upstream Regulator miR-DEG Relationships
ASSOCIATED WITH IN-
ACTIVATED NETWORK

DEGS (LOG2 > 2, p < 0.05) DEGS
(LOG2 < −2, p < 0.05)

miR-335-3p ADAMTS2, COL1A1, COL1A2, COL4A1, COL4A2, COL5A1,
COL5A2, NID2, PDGFA, VCAN

miR-338-3p ADAMTS2, COL1A1, COL1A2, COL4A1, COL4A2, COL5A1,
COL5A2, NID2, PDGFA, VCAN

miR-30c-5p ADAMTS2, COL1A1, COL1A2, COL4A1, COL4A2, COL5A1,
COL5A2, IL6, NID2, PDGFA, VCAN

miR-450a-5p COL1A2, COL3A1, COL5A2, HGF, PDGFRB, TGFB2
miR-29b-3p ADAMTS2, COL15A1, COL1A1, COL1A2, COL3A1, COL4A1,

COL4A2, COL5A1, COL5A2, NID2, PDGFA, VCAN
miR-2392 –
let-7a-5p ADAMTS2, COL1A1, COL1A2, COL3A1, COL4A1, COL4A2,

COL5A1, COL5A2, IL6, ITGB3, NID2, PDGFA, PXDN, THBS1, TLR4,
VCAN

miR-124-3p CCL2, PLOD3
miR-1 ADAM12, CCL2, IL6, PDGFA
let-7 COL1A1, COL1A2, COL3A1, COL4A1, COL5A2, IL6, ITGB3, THBS1,

TLR4
miR-29 ADAM12, ADAMTS9, COL1A1, COL1A2, COL3A1, COL4A2,

COL5A2, ITGA11, MMP2, PDGFA, PDGFRB, THBS1
miR-182 FOXF2
miR-199a-5p COL1A1, COL4A1, ITGB3, LAMC2, NEDD9
miR-1-3p THBS1
miR-125b-5p IGFBP3, PCDHB10
miR-27a-3p –
miR-193 CCL2, FAT1 MAPT
miR-155-5p AMIGO2, CCL18, CCL3, CCL4, IL6
miR-291a-3p APP, CCL3, IL6
miR-205-5p –
miR-296-5p COL1A1, TNC
miR-8 ADAM12, FAT1, FOXF2, IL6, TGFB2
miR-335-3p CCL2, CCL3, IL6, MMP2, TLR4

Protein Atlas (https://www.proteinatlas.org/) to deter-
mine whether each respective gene has been reported in
esophageal tissue. Of the 15 significantly dysregulated
genes confirmed through qPCR, we identified F2RL2
as “not detected in esophageal tissue” in The Human
Protein Atlas but has been shown to relate to overall
prognosis in esophageal carcinoma in general [44].

5. Discussion

The results of this study delineated 46 unique miRs
associated with both activated and inhibited pathways.
Seven total miRs were detected to be associated with
activated pathways: mir-28, miR-145-5p, mir-19, mir-
221, miR-133a-3p, mir-24, and miR-223. Inhibited
pathways were influenced by a total of 39 miRs, in-
cluding miR-149-5p, miR-96-5p, miR-204-5p, miR-10,
miR-30, miR-630, miR-338, miR200, miR-128, miR-
219a-5p, miR-218-5p, miR-491-5p, MIR100-LET7A2-

MIR125B1, MIR17HG, MIR99A-LET7C-MIR125B2,
MIRLET7, miR-29, miR-199a-5p, miR-1-3p, miR-
125b-5p, miR-27a-3p, miR-193, miR-155-5p, miR-
291a-3p, miR-205-5p, miR-296-5p, miR-8, miR-146,
miR-335-3p, miR-30c-5p, miR-338-3p, miR-450a-5p,
miR-29b-3p, miR-2392, let-7a-5p, miR-1, miR-124-3p,
let-7, and miR-182. We found no miRs with activity
in both activated and inhibited pathways. Comparative
analysis revealed that 11 miRs were found to regulate
inactivated pathways in both causal network and up-
stream regulator analyses (miR-335-3p, miR-30c-5p,
miR-338-3p, miR-450a-5p, miR-29b-3p, miR-2392,
let-7a-5p, miR-1, miR-124-3p, let-7, and miR-182).
Further, the dysregulation of DEG expression confirmed
through qPCR provides insight into the potential onco-
genic role of miRs in EAC. We verified mRNA expres-
sion in esophageal tissue for genes CDH11, PCOLCE,
SULF1, GJA4, LUM, CDH6, GNA12, CTSZ, TYROBP,
KDELR3, and UGT1A1. We found that the protein ex-
pression of F2RL2 has not been reported in The Human
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Fig. 6. miRs identified through IPA analysis (esophageal adenocarcinoma vs. healthy adjacent tissue). A) Causal Network Activated; B) Causal
Network Inactivated; C) Upstream Regulator Activated; D) Upstream Regulator Inactivated. Red circles: upregulated genes, green circles:
downregulated genes, blue squares: microRNAs, dotted line: predicted miR-gene interaction. Nodes without predicted activity were removed.
Image generated using Cytoscape (https://cytoscape.org/).

Protein Atlas but has been associated with prognosis in
esophageal carcinoma [44]. This bolsters the notion that
aberrant expression of F2RL2 is associated with EAC
pathogenesis and thus warrants future investigation.

In this study, we identified significant upregulation in

the expression of genes and gene pathways that play a
critical role in mediating and maintaining the extracel-
lular matrix and cellular adhesion. Disorganization of
the extracellular matrix (ECM) plays an essential role in
tumorigenesis. In healthy tissues, the ECM comprises



R. Corlett et al. / miRNA profiling of esophageal adenocarcinoma using transcriptome analysis 259

Fig. 7. Graph representing normalized expression of qPCR product for selected genes (n = 18) in esophageal adenocarcinoma tissue vs. control
to validate results of RNA sequencing. (Black = esophageal adenocarcinoma; grey = healthy control tissue. Significant difference (p < 0.05)
denoted with asterisk: *).

scaffolded collagen, non-collagen, and proteoglycan
molecules that serve various functions in cell signal-
ing and structural support [45]. Tumorigenic stimuli
disrupt the normal function and makeup of the ECM
through extensive modification that favorably supports
rapidly expanding dysplastic cell lines [46]. Addition-
ally, alteration in the makeup of ECM proteins appears
to increase cell migration to favor metastasis [46,47].
In the present study, multiple genes and gene path-
ways related to the ECM were identified as significantly
expressed. One crucial component of the ECM is the
proteoglycan Lumican (LUM) which functions to pro-
vide structural organization of extracellular collagen
fibrils [48]. Dysregulation of LUM has been identified
to influence the progression of multiple cancers, in-
cluding gastric, breast, and colon [49,50,51]. In gas-
tric cancer, increased LUM expression has been associ-
ated with poorer histologic evaluation, metastasis, and
worsened overall survival [52]. Our current data sup-
port an increased expression of LUM in EAC tissue
compared to control. We identified significant Lumican
overexpression in RNA-sequencing and qPCR meth-
ods of analysis. We also found Lumican to be a highly
connected hub gene in hub gene analysis, displaying
overlap between both methodologies. Further, GO Term
enrichment identified LUM in the highly enriched pro-
cess of Collagen Fibril Organization. Together, these
findings suggest its importance in the protein-protein
networks underlying EAC pathophysiology. miR-28,
associated with inactivated networks, appears to play

a role in the upregulation of LUM expression. miR-28
expression has been shown to promote carcinogenesis
in gastric tissue and in non-small cell lung cancer, both
through PTEN-mediated pathways that promote cell
proliferation and/or invasion [53,54]. In EAC, miR-28-
mediated increased expression of LUM may confer a
tendency for transitional tissues to become malignant
through similar mechanisms which ultimately promote
cell proliferation and invasion by modification of the
ECM. The pathway by which this occurs is of interest
but requires further study to be fully characterized.

Procollagen C-endopeptidase enhancer (PCOLCE)
is another gene found within the separate but highly
related collagen biosynthetic process GO Term that we
found to be significantly upregulated in EAC samples
compared to the control. Members of the PCOLCE
family of proteins engage in enhancing the function of
procollagen C proteinases in the construction of colla-
gen fibrils [55]. Dysregulation of this mechanism can
lead to carcinogenesis and has been documented to be
related to increased PCOLCE levels in multiple can-
cers. According to an analysis of The Cancer Genome
Atlas, increased expression of PCOLCE can confer
poor prognosis in esophageal cancers, although the fre-
quency in which PCOLCE becomes dysregulated is
relatively low [56]. Additionally, The Cancer Genome
Atlas groups all types of esophageal cancers together,
making its exact relationship to EAC difficult to iden-
tify. In gastric cancer, increased expression of PCOLCE
was shown to relate directly to increased immunoinfili-
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trate and is associated with unfavorable prognosis [57].
In addition to its significant upregulation, we identified
PCOLCE to be a highly connected hub gene in our
samples, providing evidence that it plays a vital role in
the EAC carcinogenic process. We found that PCOLCE
was influenced by miR-133a-3p in activated networks
by causal network analysis. In esophageal squamous
cell carcinoma, miR-133a-3p has been identified to sup-
press the expression of collagen type 1 alpha 1, lead-
ing to decreased proliferation and migration [58]. In
a variety of other cancers, members of the miR-133a
family of microRNAs have been described to play a
variety of roles and participate in a range of cellular
signaling pathways, though the bulk of evidence sug-
gests miR-133a-related species protect against carcino-
genesis [59]. To the best of our knowledge, no rela-
tionship between PCOLCE and miR-133a-3p has been
established in the literature. However, it appears that
miR-133a-3p dysregulation leads, either directly or in-
directly, to an increase in PCOLCE expression and ulti-
mately influences the construction of collagen fibrils.
Our results suggest an important role for this relation-
ship in EAC development and deserves further study to
delineate the exact mechanism by which this occurs.

We also identified the most significantly enriched
pathway in our samples as cell adhesion. Within this
pathway, we uncovered that cadherin 11 (CDH11) is
significantly upregulated. CDH11 has a well-defined
role in carcinogenesis and is frequently cited as tumor-
suppressive, achieving this function through promoting
apoptosis by increasing promotor methylation. Upreg-
ulation of CDH11 has been shown to reduce tumori-
genicity of cell lines, including in those of esophageal
squamous cell carcinoma [60,61]. In this study, we
identified that CDH11 was part of a group of highly
connected hub genes identified through both cytoHubba
and MCODE analysis, suggesting its importance as a
gene related to the underlying pathophysiology in EAC.
We further discovered through causal network analysis
that the increase in CDH11 observed in this study is
related to inactivated networks downstream of miR-96-
5p. Application of a conventional understanding of the
role of CDH11 would suggest that increased expression
should correlate with decreased incidence of carcino-
genesis, and this may be related to the staging of our
samples, which we did not include in our analysis. In-
creased CDH11 may confer more favorable histologic
staging of EAC samples, though this relationship is not
yet studied and serves as an interesting question to be
answered in future analysis.

Furthermore, heparan sulfate proteoglycans (HSPGs)
within the ECM serve as co-receptors for various ECM

ligands, including cytokines, chemokines, and growth
factors. HSPGs undergo extensive enzymatic modifica-
tion, leading to a diversity of binding sites to facilitate
cell-surface signaling. 6-O-endosulfatases are one class
of HSPG-modifying enzymes that includes sulfatase-1
(SULF1) [62]. SULF1 dysregulation has been attributed
to both tumorigenic and tumor-suppressive roles in the
literature, suggesting a complicated network of inter-
actions between many of its associated modulators. As
a tumorigenic focus, elevated SULF1 expression has
been associated with poor prognosis in hepatocellu-
lar carcinoma by promoting the progression of EMT
(epithelial-mesenchymal transition) and tumor inva-
sion. In this capacity, SULF1 is thought to upregulate
transforming growth factor beta (TGFβ)-induced tran-
scription through the SMAD/TGFβ pathway by pro-
moting TGFβ release from the receptor TGFβR3 [63].
Increased TGFβ signaling is well-known to promote
EMT, making this signaling pathway interesting in the
study of EAC [64]. Interestingly, we identified SULF1
as significantly upregulated in EAC in both qPCR and
RNA-sequencing studies. Beyond this, SULF1 was
identified as an important, highly connected hub gene
through cytoHubba DMNC analysis. IPA analysis re-
vealed that, in our experiment, SULF1 expression was
influenced by miR-193, which was associated with in-
activated pathways upstream of its targets. The miR-193
family of microRNAs is understood to provide tumor
suppressive effects in a variety of cancers [65]. In EAC,
it is likely that miR-193 dysregulation increases the ex-
pression of SULF1 during carcinogenesis and expedites
the metaplastic process by promoting EMT, ultimately
leading to EAC development from transitional tissues.
Although the exact mechanism of this is unclear, this
relationship is of great interest and should be explored.

In this study, we further identified significant up-
regulation in the expression of genes and gene path-
ways that play a critical role in mediating inflammation.
Chronic inflammatory stimulus within the esophageal
mucosa is a well-established risk factor for develop-
ing EAC by promoting cell proliferation, growth, and
migration [66,67,68]. The inflammatory microenviron-
ment is also marked by the recruitment of numer-
ous immune-associated cells, including T-cells, Natural
Killer cells, and macrophages [69]. In multiple can-
cers, including EAC, the phenotypic makeup of im-
mune cells within the inflammatory microenvironment
has been shown to correlate with tumorigenicity [70,
71]. Of these cells, macrophages recruited to the area
of inflammation promote the formation of extracellu-
lar matrix, perform phagocytosis, and provide posi-
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tive feedback for further cell recruitment through cy-
tokine/chemokine release. Macrophage infiltration into
the affected tissue subsequently follows with polar-
ization into subtypes that specialize in different fea-
tures [72,73]. For example, circulating macrophages
recruited to the site of early tumor formation polar-
ize into primarily M1 tumor-associated macrophages
(TAMs). M1 TAMs promote an anti-tumorigenic mi-
croenvironment in part through enhancing inflamma-
tion and antigen presentation [72,74,75]. Over time,
macrophages polarize into predominantly M2 TAMs
due to exposure to inflammatory cytokines [73]. M2
macrophage predominance has been associated with
pro-tumor activity and resistance to anti-tumor ther-
apy [73,76,77,78,79,80]. In esophageal squamous car-
cinoma, M2 macrophage infiltration has been shown
to promote tumor cell expansion, invasion, and migra-
tion by suppressing the anti-tumorigenic activities of
neighboring cells [81]. In EAC, M2 macrophage po-
larization appears to occur in response to tumor up-
regulation of Th2 pathways, leading to increased IL-
4 and IL-13 [82]. Like other cancers, EAC treatment
success is partially dictated by relatively low levels of
infiltrating macrophages compared to other immune
constituents [83]. Taken together, M2 macrophages
may become an attractive target in the emerging treat-
ment of EAC. One putative marker of tumor-associated
macrophages is TREM2 [84,85,86]. TREM2 signaling
is complex and involves a variety of modulating pro-
teins, such as TYRO protein tyrosine kinase-binding
protein (TYROBP), one of the central hub genes iden-
tified during this study. TYROBP expression has been
identified to correlate with M2 macrophage infiltration
and prognosis in ESCC [87]. In addition, the TREM2-
TYROBP axis has been implicated through small in-
terfering RNA experiments to promote EAC develop-
ment [88]. In the present study, we identified a signif-
icant increase in TYROBP through RNA sequencing
and qPCR. In conjunction, we identified the miR clus-
ter MIR100-LET7A2-MIR125B1 to influence inacti-
vated networks upstream of the increased expression
of TYROBP. This miR-cluster has been identified to
regulate the magnitude of transforming growth factor β
signaling in human carcinomas [89], a potent regulator
of macrophage polarization [90]. Taken together, the
pathways inactivated by MIR100-LET7A2-MIR125B1
induce an immuno-modulating increase in TYROBP ex-
pression that may contribute to M2-polarization and ul-
timately contribute to pro-tumorigenic changes within
the inflammatory microenvironment of EAC tissues
and its precursors. Although the exact mechanism of

this is unclear, how TYROBP and MIR100-LET7A2-
MIR125B1 promote tumorigenesis in EAC is worthy
of future study.

6. Conclusion

Correlation of IPA, qPCR, and RNA-sequencing
analysis reveals a novel profile of miRs that occur in the
setting of EAC. miRs regulating upregulated genes were
found to be associated with inhibited pathways through
IPA. miRs associated with downregulated genes were
discovered to be activated in IPA analysis. While miR
influence on gene expression is likely complex, this
association bolsters our hypothesis that miRs regulate
gene expression and contribute to EAC pathogenesis.
Based on these findings, it is evident that the miRs dis-
covered in this study may be used as biomarkers for
EAC. However, comparative analysis and correlation
with BE tissues will be essential in establishing diag-
nostic miR profiles.

Further, significantly increased mRNA expression
of CDH11, PCOLCE, SULF1, GJA4, LUM, CDH6,
GNA12, F2RL2, CTSZ, TYROBP, and KDELR3 and de-
creased expression of UGT1A1 in EAC tissues suggest
that aberrant expression of specific genes play a role
in EAC pathogenesis that may guide future research
efforts.

In this study, we also identified 32 candidate hub
genes associated with EAC and identified the top 10
significantly enriched GO Terms based on our panel of
dysregulated genes, which included processes involved
in cell adhesion, extracellular matrix, inflammation, cell
signaling and cell migration, amongst others.

Limitations

There are a few notable limitations to this study that
warrant further investigation. For one, we limited our
sample size to four patients. Beyond this, we did not
include samples of Barrett’s esophagus for compara-
tive analysis. In addition, we did not include histology
grading, staging information, or immunohistochemical
analysis of sample tissues to evaluate for protein ex-
pression. Despite these limitations, this study delineated
novel miRs, reported for the first time, in association
with aberrant genes detected in EAC.
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