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Abstract.
BACKGROUND: Our study aimed to investigate the Hub genes and their prognostic value in colorectal cancer (CRC) via
bioinformatics analysis.
METHODS: The data set of colorectal cancer was downloaded from the GEO database (GSE21510, GSE110224 and GSE74602)
for differential expression analysis using the GEO2R tool. Hub genes were screened by protein-protein interaction (PPI) compre-
hensive analysis. GEPIA was used to verify the expression of Hub genes and evaluate its prognostic value. The protein expression
of Hub gene in CRC was analyzed using the Human Protein Atlas database. The cBioPortal was used to analyze the type and
frequency of Hub gene mutations, and the effects of mutation on the patients’ prognosis. The TIMER database was used to study
the correlation between Hub genes and immune infiltration in CRC. Gene set enrichment analysis (GSEA) was used to explore the
biological function and signal pathway of the Hub genes and corresponding co-expressed genes.
RESULTS: We identified 346 differentially expressed genes (DEGs), including 117 upregulated and 229 downregulated. Four
Hub genes (AURKA, CCNB1, EXO1 and CCNA2) were selected by survival analysis and differential expression validation. The
protein and mRNA expression levels of AURKA, CCNB1, EXO1 and CCNA2 were higher in CRC tissues than in adjacent tissues.
There were varying degrees of immune cell infiltration and gene mutation of Hub genes, especially B cells and CD8+ T cells.
The results of GSEA showed that Hub genes and their co-expressed genes mainly participated in chromosome segregation, DNA
replication, translational elongation and cell cycle.
CONCLUSION: Overexpression of AURKA, CCNB1, CCNA2 and EXO1 had a better prognosis for CRC and this effect was
correlation with gene mutation and infiltration of immune cells.
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GO Gene Ontology
KEGG Kyoto Encyclopedia of Genes and

Genomes
BP biological process
CC cellular component
MF molecular function

1. Introduction

Colorectal cancer (CRC) is a common gastrointesti-
nal malignancy with high morbidity and mortality [1].
The incidence of CRC showed an increasing trend with
changes in lifestyle and dietary habits [2,3]. The early
diagnosis and treatment of CRC is crucial for improving
the prognosis of CRC patients [4,5]. The overall sur-
vival of patients with advanced CRC was very low [6].
However, the biomarkers for predicting the prognosis
for CRC were lacked. Searching for effective prognos-
tic biomarkers would aid in predicting prognosis and
improving the treatment of CRC patients.

Gene mutations participate in the pathological mech-
anism of CRC [7]. At the cellular level, the accumu-
lation of genomic changes induces transformation of
normal colonic epithelial cells into cancer cells. It also
creates a beneficial environment for the activation of
oncogenes, which is a key step in the process of early
CRC patients [8,9]. It was reported that gene muta-
tion in the pathological mechanism and prognosis of
CRC [10]. For instance, P2X7 receptor (P2X7R) was
overexpressed in CRC tissues, and a promoter of CRC
onset [11,12]. The mutations of p53 and RAS genes
were adopted as the predictive and prognostic markers
of CRC [13,14]. In addition, the infiltration of different
immune cell types is a major participant in the tumor
microenvironment. Tumor infiltrating lymphocytes are
important factors affecting the prognosis of patients
with CRC [15]. Macrophage infiltration of solid tumors
is associated with poor survival results [16]. CD8+ T
cell infiltration is associated with better prognosis [17].

In recent years, high-throughput sequencing tech-
nology and gene chip research have attracted extensive
attention in the field of medicine. The characteristics of
some databases containing a large number of samples
provide a certain guarantee for the reliability and fea-
sibility of medical research [18]. Through the research
and analysis of this data, the Hub genes that play an
important role in tumor genesis and development can be
screened out [19]. In this study, we aimed to explore the
Hub genes and their prognostic value in CRC via com-
prehensive bioinformatics analysis. We identified dif-

ferentially expressed genes (DEGs) in expression pro-
files GSE21510 [20], GSE110224 [21] and GSE74602
from the Gene Expression Omnibus (GEO) database.
Then, we screened the Hub genes by the protein-protein
interaction (PPI) comprehensive analysis of DEGs. The
mutation and tumor invasion of Hub genes, as well as
its influence on the prognosis of CRC were analyzed.
Finally, we investigated the physiological functions and
signal pathways of Hub genes and co-expressed gene in
CRC. Different online databases, tools and integrated
data were applied in our study to provide new scientific
basis and treatment methods for further study of the
pathogenesis and prognosis of CRC patients.

2. Materials and methods

2.1. Data source

As one of the biggest collections of gene chips in the
world, the GEO database is a comprehensive gene ex-
pression library at the National Center of Biotechnology
Information (NCBI) (https://www.ncbi.nlm.nih.gov/
geo/). Expression profiles of GSE21510 and GSE110224
based on the GPL570 platform and GSE74602 based
on the GPL6104 platform were obtained from the GEO
database. GSE21510 contained 123 CRC samples and
25 normal tissues; GSE110224 included 17 CRC sam-
ples and 17 normal tissues, and GSE74602 contained
30 CRC samples and 30 normal tissue. Figure 1 shows
the overall flowchart of the study.

2.2. Differential expressed gene analysis

The differentially expressed genes (DEGs) were fil-
tered using a threshold of adjusted P values < 0.05 and
an absolute log2FC (fold change) > 1 by GEO2R online
tools (http://www.ncbi.nlm.nih.gov/geo/geo2r) [22].
Venn analysis was used to select overlapping DEGs
among the three datasets mentioned above.

2.3. GO and KEGG pathway analysis

To further understand the biological functions and
related signaling pathways of the DEGs, we performed
Gene Ontology (GO) enrichment analysis and Kyoto
Encylopaedia of Genes and Genomes (KEGG) path-
way enrichment analysis using the Metascape (http://
metascape.org/) [23,24]. An adjusted P value of < 0.01
was considered to identify the enriched terms, and the
results were visualized.
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Fig. 1. The flow diagram of study.

2.4. Protein-protein interaction (PPI) comprehensive
analysis

PPI comprehensive analysis was performed using the
online tool Search Tool for the Retrieval of Interacting
Genes (STRING, https://string-db.org/) [25,26]. The se-
lected Hub genes were imported into the STRING, and
the confidence score of > 0.4 was considered signifi-
cant. Then, the PPI network information was obtained.
Next, the data downloading from STRING was fur-
ther analyzed and visualized using Cytoscape (version
3.8.2). The core function of Cytoscape is to provide
basic functional layout and query network, and build
a PPI network based on the combination of basic data
into a visual network. The app MCODE plugged into
Cytoscape was used to identify the paramount modules
in the PPI network (MCODE score > 5, degree cutoff
= 2, maximum depth = 100, K-core = 2, node cutoff

= 0.2). Finally, the visual network graph was presented
in a circle layout according to the score.

2.5. Hub gene selection and analysis of survival and
differential expression

The PPI analysis of DEGs was performed using the
online tool STRING, and results with a minimum inter-
action score of 0.4 were visualized in Cytoscape soft-
ware (version 3.8.2). The obtained results were used to
select the Hub genes through the MCC algorithm in the
Cytoscape cytoHubba application, and the top 30 genes
were selected as potential Hub genes.

Gene Expression Profiling Interactive Analysis
(GEPIA, http://gepia.cancer-pku.cn/) is a web server
that analyzes cancerous and normal gene expression
profiles and interactions in The Cancer Genome Atlas
(TCGA, https://genomecancer.ucsc.edu/) and the Geno-
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type Tissue Expression (GTEx, https://gtexportal.org/
home/) projects [27]. The overall survival of colorec-
tal cancer patients and the expression level validation
of Hub genes were evaluated using GEPIA. P < 0.05
was defined as the significant threshold to indicate can-
didate Hub genes. Genes not statistically significant
were removed (P > 0.05). We also analyzed the impact
of the expression levels of Hub genes on the disease
free survival (DFS) of CRC patients using GEPIA. In
addition, the expression levels in CRC from the GEO
database were analyzed by Graphpad Prism 8 and scat-
ter plots were drawn. The Tumor Immune Estimation
Resource (TIMER) database was also used to explore
the gene expression in tumors and adjacent normal tis-
sues [28]. The differences of gene expression among
different subtypes of CRC (POLE, MSI, CIN and GS)
were investigated using R software.

2.6. Protein expression and receiver operating
characteristic (ROC) curves

The protein expression levels of Hub genes in human
normal and cancer tissues were determined using the
Human Protein Atlas (HPA) database (https://www.prot
einatlas.org/), which respectively displays the expres-
sion of proteins in cells, normal tissues, and cancerous
tissues. Receiver operating characteristic (ROC) curves
were obtained from the online tool Xiantao Academy
(https://www.xiantao.love/).

2.7. Gene mutation status and survival analysis

cBioPortal (http://cbioportal.org) is an open-access
resource for exploring, visualizing and analyzing multi-
dimensional cancer genome data [29]. The cBioPortal
was used to analyze the type and frequency of Hub gene
mutations, and the effects of mutation on the patients’
prognosis.

2.8. Immune infiltration analysis

The TIMER database contains 32 cancers and 10,897
tissue sample information from the TCGA database. It
can realize systematic analysis of the correlation be-
tween immune infiltrates and other wide spectrum of
factors, including related gene expression in tissues and
prognosis, gene mutations and copy number of cancer
patients [28]. In this study, we evaluated the infiltra-
tion of immune cells (CD8+ T cells, CD4+ T cells,
B cells, dendritic cells, macrophages, and neutrophils)
in CRC patients through TIMER database. The rela-

tionship between gene expression and tumor purity was
also explored and visualized.

2.9. Co-expression analysis

The Linked Omics database (http://www.linkes.org/)
is a web-based platform for analyzing 32 TCGA cancer-
related cubes [30]. The Link Finder module of Linked
Omics was used to study the differentially expressed
genes related to selected Hub genes in the TCGA-
COAD, and the Pearson correlation coefficient was
used for statistical analysis. All results are presented
graphically in a volcano map, heat map or scatter plot.
The Link-Interpreter module of Linked Omics per-
forms pathway and network analysis of differentially
expressed genes. Use the comprehensive functional
classification database in the Web-based Web Gestalt
to sign and sort the data in the Link Finder results, and
use Gene set enrichment analysis (GSEA) to analyze
the GO (CC, BP, MF) and KEGG channels. The GSEA
program was run with 500 simulations, and the signif-
icance level was top 25. P value and false discovery
rate (FDR) were both less than 0.05, the gene set was
considered significantly enriched.

2.10. Statistical analyses

Data are represented as the mean ± standard devi-
ation (SD), and the t-test was used for comparisons
between the two groups. GraphPad Prism 8.3.1 (Graph-
Pad Software, Inc., San Diego, CA, United States) was
utilized for statistical analysis and generating graphs.
P < 0.05 was considered statistically significant.

3. Results

3.1. Identification and functional enrichment analysis
of DEGs

We obtained 170 CRC tissues and 72 normal tis-
sues from the GSE21510, GSE74602 and GSE110224
datasets. According to the cutoff criteria, a total of 7148
DEGs were screened from these three datasets. Among
them, 4722, 1650, and 776 DEGs were obtained from
the GSE21510, GSE74602, and GSE110224 datasets,
respectively. Then 346 DEGs common to the three GEO
datasets were detected via the Venn diagram, including
117 upregulated genes and 229 downregulated genes
were identified (Fig. 2A and Table 1).

GO and KEGG pathway analysis were used to ex-
plore the biological functions and signal pathways of
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Table 1
DEGs extracted from GEO datasets

DEGs Gene symbol
Upregulated
genes (117)

FOXQ1, CEMIP, CLDN1, ANLN, MMP1, COL11A1, CDK1, CXCL8, MMP7, MMP3, EPHX4, CTHRC1, TGFBI,
ATAD2, MMP12, NUF2, VSNL1, AZGP1, PSAT1, TMPRSS3, NEBL, MAD2L1, RAD54B, CSE1L, RFC3, E2F7,
NFE2L3, DPEP1, DLGAP5, PPAT, BUB1, LRP8, CEP55, KIF23, PHLDA1, CDH3, COL12A1, CCNB1, TRIP13, KIF14,
CXCL1, THBS2, CXCL2, CHEK1, KRT6B, BACE2, SCD, TPX2, PLAU, NCAPG, MCM10, FABP6, DTL, CCNA2,
AURKA, MTHFD2, NME1, CTPS1, FAM83D, COL1A1, CLDN2, SRPX2, TCN1, HILPDA, RIPK2, TRIB3, SQLE,
SPP1, CXCL10, SULF1, COL8A1, MND1, UHRF1, SOX9, MSX1, STC2, PRC1, KIF20A, ENC1, LIPG, LEMD1,
FANCI, CBX2, MET, MORC4, DDIAS, SLCO4A1, FAP, SLC7A5, PDPN, S100P, JPH1, GDF15, KIF2C, WDR4,
RNASEH2A, NOLC1, TEAD4, SERPINB5, AUNIP, CDC25B, CDCA5, TESC, KLK6, TIMP1, CFB, SHMT2, REG1A,
DUSP4, ERO1A, FOXM1, KRT80, REG1B, CDC45, PLEKHS1, KDELR3, EXO1

Downregulated
genes (229)

CLCA4, AQP8, MS4A12, CA4, SLC4A4, CLDN8, CA1, ZG16, CEACAM7, CA2, GUCA2B, DHRS9, MT1M, ABCG2,
GUCA2A, SLC30A10, CD177, ANPEP, ADH1B, PKIB, BEST4, CDKN2B, PDE9A, TRPM6, GCNT2, GBA3, MMP28,
SI, HSD17B2, C2orf88, SCNN1B, VSIG2, ADTRP, CHP2, EPB41L3, CLDN23, AKR1B10, KLF4, SLC51A, OGN,
ADH1C, SLC51B, CDHR5, CXCL12, SCIN, SCARA5, ENTPD5, TEX11, LAMA1, GPAT3, DHRS11, CKB,
CEACAM1, SLC16A9, SLC26A2, HIGD1A, LRRC19, HSD3B2, CWH43, TP53INP2, CHGA, SFRP1, NR3C2,
SLC26A3, XDH, TSPAN7, TMEM100, SLC17A4, HSD11B2, TUBAL3, GCG, TMEM37, SEMA6A, AOC1, VIP,
SELENBP1, HHLA2, RUNDC3B, ABCA8, EDN3, GDPD3, NXPE4, CES2, ABI3BP, SMPDL3A, NR5A2, CA7,
C1orf115, LGALS2, METTL7A, PTPRH, MT1F, LDHD, SPIB, SLC25A34, CPNE8, CLIC5, TMEM171, AHCYL2,
HMGCS2, TMCC3, NAAA, MEP1B, PCK1, MEP1A, APPL2, BEST2, LPAR1, PLPP1, SMIM14, MAOA, ARL14,
LRRC66, MFAP5, UGT2A3, PHLPP2, PPP2R3A, ABCB1, NPY1R, CCL23, CR2, GPX3, PDK4, CFD, PIGZ, PIGR,
LIFR, GHR, MAMDC2, C2orf40, CDHR2, SGK2, MXI1, MYO1A, NXPE1, ENPP3, BCAS1, C10orf99, CGN, FXYD3,
FUCA1, PBLD, ACACB, PLCE1, PDE6A, SORBS2, JAM2, PLP1, RHOU, C7, SRI, SULT1B1, FMO5, TFCP2L1,
MIER3, STMN2, ZNF575, BCHE, MYH11, SULT1A2, NEDD4L, A1CF, DEFB1, PCOLCE2, DENND2A, SLC25A20,
GREM2, ETFDH, ANGPTL1, PYY, PTPRR, NKX2-3, ITM2A, EPHX2, SCG2, FHL1, TMEM56, ARHGAP44, PDE5A,
NAT2, SST, RERGL, SEPP1, TRIM36, VWA5A, ANK2, SCGB2A1, EPB41L4B, ANK3, TCEA3, MMRN1, SLC22A23,
HTR4, CAMK2N1, JCHAIN, KRT24, LRMP, SCN9A, CDH19, ZSCAN18, FABP4, ACOX1, HIST1H2BD, SLC22A5,
SCGN, SCUBE2, CHGB, FBLN1, TINAG, PPP1R14D, SDPR, POU2AF1, CNR1, LYVE1, CAPN13, TMEM35A, MB,
CD36, TCF21, SLC39A5, MYOT, DNASE1L3, BCL2, ADH1A, SORCS1, SOWAHA, MFAP4 PPP1R14A ATP1A2

DEG, differentially expressed gene; GEO, Gene Expression Omnibus.

DEGs related to CRC. GO analysis indicated that the
DEGs were mainly involved in the biological process-
ing of the mitotic cell cycle process, regulation of hor-
mone levels and response to nutrient levels (Fig. 2B),
and associated with the cellular components including
the apical part of cells, extracellular matrix and apical
plasma member (Fig. 2B). The DGEs genes were linked
to structural molecule activity, and signaling receptor
activator activity (Fig. 2B). KEGG pathway analysis
showed DEGs related to CRC were involved in bile se-
cretion, pyruvate metabolism, viral protein interaction
with cytokine and cytokine receptor, IL-17 signaling
pathway, etc. (Fig. 2B).

3.2. PPI network construction and Hub genes analysis

The PPI network diagram of DEGs was constructed
by STRING, and analyzed and visualized by Cytoscape.
The PPI network included 295 nodes and 1170 edges
(Fig. 3A and B). Finally, we identified the most impor-
tant nodes by the MCC algorithm. The new network
included 30 nodes and 424 edges, and the top 30 central
nodes were identified as potential Hub genes (Fig. 3C).

Then, we further analyzed the relationship between
the expression of 30 potential Hub genes and the overall

survival of patients with CRC using GEPIA, including
270 CRC patients. According to the screening criteria
(P < 0.05), four genes, Aurora kinase A (AURKA),
Cyclin B1 (CCNB1), EXO1 and Cyclin A2 (CCNA2),
were selected as candidate Hub genes. From the results
of GEPIA analysis, patients with high expression of
these four genes have higher overall survival than those
with low expression (Fig. 3D–G). Furthermore, we next
investigated the influence of these four genes on DFS
in patients with CRC. The results showed that the pa-
tients with low expression of AURKA, CCNA2 and
CCNB1 had lower DFS than those with high expression
(Fig. 3H–K).

We verified the four Hub gene expression levels
in colon adenocarcinoma (COAD) patients and nor-
mal via GEPIA, which included 275 tumors and 349
normal tissue. The result showed the expression lev-
els of AURKA, CCNB1, EXO1 and CCNA2 signif-
icantly increased in tumors than those in normal tis-
sue (P < 0.05, Fig. 4A). Following, the different ex-
pressions of AURKA, CCNB1, EXO1 and CCNA2 in
CRC and normal tissues in GSE21510, GSE110224
and GSE74602 databases were analyzed. The results
showed that the expression level of AURKA, CCNB1,
EXO1 and CCNA2 was higher in CRC tissues than
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Fig. 3. The Hub genes were identified. A, STRING was used to constructed PPI networks of DEGs. B, Cytoscape was used to analyzed and
visualized of PPI networks. Upregulated genes are shown in red and downregulated genes are shown in blue. C, The top 30 genes were selected
using the MCC algorithm by Cytoscape’s plug-in cytoHubba. D–G, GEPIA was used to analyzed the correlation between overall survival and the
expression of AURKA (D), CCNA2 (E), CCNB1 (F) and EXO1 (G) in colorectal cancer. H–K, The association between disease-free survival and
the expression of AURKA (H), CCNA2 (I), CCNB1 (J) and EXO1 (K) in colorectal cancer by GEPIA.

that in normal tissues (P < 0.001, Fig. 4B). Overall,
the AURKA, CCNB1, EXO1 and CCNA2 genes were
highly expressed in CRC tissues.

Subsequently, we investigated the expression of these
four genes in various tumor tissues using the DiffExp
module in TIMER 2.0. The statistical significance of
differential expression was evaluated by the Wilcoxon
test. We found that compared to normal tissues, AU-

RKA, CCNB1, EXO1 and CCNA2 mRNA expression
were significantly increased in COAD tumor tissues
(Fig. 4C).

The HPA database was used to investigate the protein
expression of AURKA, CCNB1, EXO1 and CCNA2
in CRC tissues. The protein expression of AURKA,
CCNB1 and CCNA2 were increased in CRC tissues
than that in normal tissues. The EXO1 protein expres-
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Fig. 5. The protein expression of Hub genes were up-regulated in colorectal cancer. A, HPA database was used to analyzed the protein expression
of AURKA, CCNB1 and CCNA2 in normal and tumor tissue by immunohistochemistry. B, ROC curves of AURKA, CCNB1, EXO1 and CCNA2
were obtained from online tool Xiantao Academy. C, The differences of gene expression among four subtypes of colorectal cancer (POLE, MSI,
CIN and GS) were investigated using R software.
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sion was not found in tissue from the HPA database
(Fig. 5A). ROC curves displayed that the AUC of AU-
RKA, CCNB1, CCNA2 and EXO1 was 0.958, 0.929,
0.881, and 0.942, respectively (Fig. 5B). It indicated
that AURKA, CCNB1, CCNA2 and EXO1 have good
diagnostic value for CRC. The differences of gene ex-
pression among different subtypes of CRC were inves-
tigated. The results displayed that there are differences
in the expression levels of Hubs among different sub-
types of CRC (POLE, MSI, CIN, and GS). AURKA
was a higher expression in CIN subtypes. The CCNA2
expression was highest in the POLE subtypes of four
types. The CCNB1 and EOX1 expressions were higher
in MSI and POLE subtypes than in CIN and GS sub-
types (Fig. 5C).

3.3. Genomic mutation of the Hub genes in CRC

We analyzed the gene mutations of AURKA, CCNB1,
CCNA2 and EXO1 in CRC using the cBioPortal
database. The results showed that AURKA had differ-
ent mutation frequencies in different data sets, 13.64%
of 22 cases (MSK, Cancer Discovery 202), 8.55% of
269 cases (TCGA, Nature 2012), 7.58% of 594 cases
(TCGA, PanCancer Atlas), 4.26% of 47 cases (MSK,
JCO Precis Oncol 2022), 3.82% of 471 cases (MSK,
Gastroenterology 2020), 3.79% of 1134 cases (MSK,
Cancer Cell 2018), 3.29% of 152 cases (MSK, Nat
Commun 2022), 2.26% of 619 cases (DFCI, Cell Re-
ports 2016) (Fig. 6A). Of the 3308 CRC patients in
selected 8 data sets, 153 had a change in AURKA, and
amplification is the most common type of AURKA mu-
tation in CRC (Fig. 6B). There were 36 mutation sites
in the AURKA gene (including 3 duplicate mutations in
patients with multiple samples) (Fig. 6C). Furthermore,
the results of survival analysis displayed that AURKA
mutation had no effect on overall survival (P = 0.213,
Fig. 6D), but impacted the progression free survival
time of CRC patients (P = 0.0269, Fig. 6E).

The CCNB1 mutation frequencies in different data
sets were as follows: 1.68% of 594 cases (TCGA, Pan-
Cancer Atlas), 1.12% of 269 cases (TCGA, Nature
2012) and 0.81% of 619 cases (DFCI, Cell Reports
2016) (Fig. 6F). Of the 2650 CRC patients in the se-
lected 5 data sets, 18 had a change in CCNB1 (mu-
tation rate was 0.7%), and deep deletion is the com-
mon type of CCNB1 mutation in CRC (Fig. 6G). There
were 13 mutation sites in the CCNB1 gene (including 1
duplicate mutation in patients with multiple samples)
(Fig. 6H). The results of survival analysis showed that
the mutations of CCNB1 gene did not affect the overall

survival (P = 0.502) and disease free time of CRC
patients (P = 0.474) (Fig. 6I–J).

The CCNA2 mutation frequencies in different data
sets were as follows: 1.52% of 594 cases (TCGA, Pan-
Cancer Atlas), 1.12% of 269 cases (TCGA, Nature
2012) and 0.81% of 619 cases (DFCI, Cell Reports
2016) (Fig. 6K). Of the 2650 CRC in the selected 5
databases, 17 had a change in CCNA2 (mutation rate
was 0.6%) (Fig. 6L). There were 14 mutation sites in
the CCNA2 gene (including 2 duplicate mutations in
patients with multiple samples) (Fig. 6M). The muta-
tions in the CCNA2 gene did not affect the overall sur-
vival (P = 0.655) and progression free survival time of
CRC patients (P = 0.924, Fig. 6N–O).

The EXO1 mutation frequencies in different data
sets were as follows: 2.36% of 594 cases (TCGA, Pan-
Cancer Atlas), 2.26% of 619 cases (DFCI, Cell Reports
2016), and 1.49% of 269 cases (TCGA, Nature 2012)
(Fig. 6P). Of the 2650 CRC patients in the selected 5
databases, 32 had a change in EXO1, and deep deletion
and amplification are the common type of EXO1 muta-
tion in CRC (Fig. 6P and Q). There were 29 mutation
sites in the EXO1 gene (including 1 duplicate mutation
in patients with multiple samples) (Fig. 6R). Moreover,
the EXO1 mutation had no effect on overall survival
time (P = 0.150) and disease free time (P = 0.807)
(Fig. 6S–T).

3.4. Correlation analysis between the Hub genes
expression and infiltrating immune cells

Tumor infiltrating lymphocytes affect the survival of
patients with CRC. So we using the TIMER database
analyzed the correlation of AURKA, CCNB1, CCNA2
and EXO1 with six kinds of infiltrating immune cells
and tumor purity in CRC. The results displayed that the
AURKA expression was correlation with tumor purity
(r = 0.159, P = 1.33e-03), but no association with
the immune cells (P > 0.05, Fig. 7A). In addition,
compared with normal tissue, different copy states of
AURKA have some effect on B cells, CD8+ T cells,
neutrophils and dendritic cells immersion (Fig. 7B).
The expression level of CCNB1 was correlation with B
cells (r = 0.131, P = 8.16e-03), CD8+ T cells (r =
0.178, P = 3.17e-04), CD4+ T cells (r = −0.116,
P = 2.01e-02), neutrophils (r = 0.194, P = 9.60e-
5), and dendritic cells (r = 0.104, P = 3.75e-02) in
CRC (Fig. 7C). Compared with normal tissue, different
copy states of CCNB1 effected the level of B cells and
CD8+ T cells immersion (Fig. 7D). The expression
level of CCNA2 was correlation with B cells (r =
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Fig. 6. The Hub gene mutation affected the prognosis of patients with colorectal cancer. A–E, The mutation frequency (A), mutant type (B),
mutation site (C) and the effect of mutation on overall survival (D) and progression free survival time (E) of AURKA gene in colorectal cancer
were obtained from cBioPortal. F–J, The mutation frequency (F), mutant type (G), mutation site (H) and the effect of mutation on overall survival
(I) and disease free (J) of CCNB1 gene in colorectal cancer were obtained from cBioPortal. K–O, The mutation frequency (K), mutant type (L),
mutation site (M) and the effect of mutation on overall survival (N) and progression free survival time (O) of CCNA2 gene in colorectal cancer
were obtained from cBioPortal. P–T, The mutation frequency (P), mutant type (Q), mutation site (R) and the effect of mutation on overall survival
(S) and disease free (T) of EXO1 gene in colorectal cancer were obtained from cBioPortal.

0.194, P = 8.78e-05), CD8+ T cells (r = 0.259, P =
1.19e-07), neutrophils (r = 0.237, P = 1.56e-06), and
dendritic cells (r = 0.169, P = 6.76e-04) in COAD
(Fig. 7E). The copy states of CCNA2 effected the level
of B cells and CD8+ T cells infiltration (Fig. 7F). The
expression level of EXO1 was correlation with B cells
(r = 0.172, P = 5.10e-04), CD8+ T cells (r = 0.246,
P = 5.36e-07), neutrophils (r = 0.343, P = 1.57e-12),

and dendritic cells (r = 0.226, P = 4.83e-06) in CRC
(Fig. 6G). The copy states of EXO1 have some effect
on the level of B cells, CD8+ T cells and dendritic cells
infiltration (Fig. 7H).

3.5. Constructing PPI networks

The functional interaction between proteins is neces-
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Fig. 8. The PPI network of Hub genes in colorectal cancer. A–D, The PPI network diagrams of AURKA (A), CCNB1 (B), CCNA2 (C) and EXO1
(D) were structured by STRING tool.
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Fig. 9. The co-expression analysis of Hub genes. A–D, Linked Omics database was applied to analyzed the co-expressed genes of AURKA (A),
CCNB1 (B), CCNA2 (C) and EXO1 (D). E, The correlations between Hub genes and their co-expressed genes were analyzed using Linked Omics
database.
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Fig. 10. The biological functions and signal pathways of Hub genes and co-expressed genes. A–D, The biological process (A), cellular component
(B), molecular function (C), and signal pathways (D) of AURKA and co-expressed genes were analyzed by GSEA analysis. E–H, The biological
process (E), cellular component (F), molecular function (G), and signal pathways (H) of CCNB1 and co-expressed genes were analyzed by GSEA
analysis. I–L, The biological process (I), cellular component (J), molecular function (K), and signal pathways (L) of CCNA2 and co-expressed
genes were analyzed by GSEA analysis. M–P, The biological process (M), cellular component (N), molecular function (O), and signal pathways
(P) of EXO1 and co-expressed genes were analyzed by GSEA analysis.

sary for the molecular mechanism and metabolism of
malignancy. Therefore, we constructed the PPI network
of AURKA, CCNB1, CCNA2 and EXO1 protein us-
ing STRING. Cytoscape software was used to analyze
the PPI network formed by each gene and Hub genes
(Fig. 8). Their results were helpful to reveal the patho-
genesis of CRC and to search for therapeutic targets
and prognostic biomarkers.

3.6. Analysis of co-expression genes associated with
the Hub genes

The mRNA sequences of 379 patients with TCGA-
COAD were analyzed by the functional module method.
The volcanic map showed that the number of genes with
positive correlation with AURKA, CCNB1, CCNA2

and EXO1 was higher than that of negative correlation
(Fig. 9A–D). The 50 important genes that were posi-
tively correlated and 50 genes that were negatively cor-
related with AURKA, CCNB1 and EXO1 were shown
in Fig. 8A–D. AURKA was strong positive with TPX2
(Pearson correlation = 0.85, P = 1.101e-105), UBE2C
(Pearson correlation = 0.82, P = 3.014e-94) (Fig. 9E).
CCNB1 was strong positive with DEPDC1B (Pearson
correlation = 0.79, P = 1.006e-71), CCNA2 (Pearson
correlation = 0.78, P = 3.162e-67) (Fig. 9E). CCNA2
showed strong positive with MAD2L1 (Pearson corre-
lation = 0.91, P = 1.779e-147), PLK4 (Pearson cor-
relation = 0.84, P = 2.510e-100) (Fig. 9E). EXO1
showed strong positive with DTL (Pearson correlation
= 0.86, P = 7.280e-111), MCM10 (Pearson correla-
tion = 0.81, P = 4.487e-90) (Fig. 9E).
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3.7. GSEA of the Hub genes and the co-expression
genes

Furthermore, we analyzed the biological function
of Hub genes and the co-expression genes by GSEA.
AURKA co-expressed genes were mainly involved in
the biological processing of chromosome segregation,
DNA replication, cell cycle checkpoint and translational
elongation, and associated with the cellular compo-
nents including mitochondrial protein complex, mito-
chondrial inner membrane and ribosome (Fig. 10A and
B). KEGG pathway analysis showed AURKA and co-
expressed genes participated in Cell cycle, RNA trans-
port and Ribosome biogenesis in eukaryotes (Fig. 10D).
CCNB1, CCNA2 and their co-expressed genes were
mainly involved in the biological processing of chro-
mosome segregation, DNA replication and cell cycle
checkpoint (Fig. 10E and I), and associated with cellu-
lar components including mitochondrial protein com-
plex, mitochondrial inner membrane, mitochondrial
matrix and ribosome (Fig. 10F and J). The molecu-
lar functions related to CCNB1 and CCNA2 included
structural constituent of ribosome, catalytic activity-
acting on DNA and RNA, extracellular matrix structural
constituent, cyclin-dependent protein kinase activity
(Fig. 10G and K). KEGG pathway analysis showed that
CCNB1, CCNA2 and the co-expressed genes involved
in cell cycle, ribosome, spliceosome, DNA replication
and RNA transport (Fig. 10H and L). EXO1 and co-
expressed genes were mainly located in chromosomal,
mitochondrial and ribosome, and are mainly involved
in physiological processes such as DNA replication,
chromosome segregation, cell cycle checkpoint, DNA
recombination, cytokinesis, chromatin assembly or dis-
assembly, RNA localization and DNA-templated tran-
scription, termination (Fig. 10M and N). The molecu-
lar functions of EXO1 and co-expressed genes include
catalytic activity, acting on DNA and RNA, ATPase
activity, nucleotidyltransferase activity and structural
constituent of ribosome (Fig. 10O). KEGG path anal-
ysis shows that EXO1 and co-expressed genes partici-
pate in cell cycle pathways, DNA replication pathways,
spliceosome pathways, RNA transport pathways, ribo-
some and lysosome pathways in CRC (Fig. 10P).

4. Discussion

CRC is gastrointestinal malignancy with a higher
incident and mortality rate around the world. Accord-
ing to the International Agency for Research on Can-

cer (IARC) document, there are approximately 1.15
million new CRC cases and > 570,000 CRC-related
deaths were reported worldwide in 2020 [31]. The com-
mon treatments for CRC include surgery, radiother-
apy, chemotherapy, and molecular targeted therapy.
Some gene mutations were utilized as the markers of
CRC [32]. Although the present diagnostic and thera-
peutic procedures have greatly improved, the prognosis
of CRC remains poor [6]. Thus, the development of
effective biomarkers for patients with CRC is an urgent
clinical requirement.

In this study, we analyzed three datasets (GSE21510,
GSE110224 and GSE74602) from the GEO database,
and a total of 346 DEGs were identified, including
117 upregulated and 229 downregulated genes. KEGG
pathway analysis showed that DEGs were primarily
enriched in bile secretion. In addition to genetic and
environmental factors, obesity and unhealthy lifestyle
such as eating red meat, processed meat and high-fat
diets can also increase the risk of CRC. In recent years,
high-fat diets have been linked to increased levels of
intestinal bile acids (BAs), which have been shown to
promote intestinal cancer [33,34]. The concentrations
of deoxycholic acid (DCA), lithocholic acid (LCA) and
ursodeoxycholic acid (UDCA) in the feces of CRC pa-
tients were higher than those in the healthy. DCA in-
duces CRC by causing genomic instability, oxidative
damage to DNA, damage to mitochondria and the endo-
plasmic reticulum, an increase in the micronucleus rate,
and chromosome aneuploid mutation [35], and these
damages further promoted the development of cancer
cells [36]. DCA can induce cell proliferation or apopto-
sis through increasing the production of ROS and cas-
pase family proteins, thereby improving the growth and
progression of colon cancer cells [37].

Furthermore, four Hub genes were screened by in-
tegrated bioinformatic analyses. Through comprehen-
sive expression analysis and survival analysis, AURKA,
CCNB1, EXO1 and CCNA2 are key genes that may be
associated with CRC. The expression of four Hub genes
in CRC were significantly upregulated in CRC using
TIMER 2.0, which was further validated in three GEO
datasets (GSE21510, GSE110224 and GSE74602).

AURKA belongs to the family of serine/threonine
kinases, whose activation is necessary for cell division
processes. AURKA has been identified as a target gene
for cancer treatment, and a small molecule that targets
AURKA has been found [38]. Ozawa et al. showed
that targeting AURKA could be a promising strategy
for improving clinical outcomes in the treatment of
gastrointestinal cancer [39]. Zhang et al. showed that
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MLN8237, an inhibitor of AURKA, efficiently reduced
the proliferation and motility of pancreatic ductal ade-
nocarcinoma cells [40]. Our results suggested that AU-
RKA was high expressed in CRC patients. In addi-
tion, the mutation rate of AURKA in CRC patients was
5%, and the common mutation type was amplification
in CRC. The AURKA gene existed at 36 mutations
sites. and the mutation had no effect on overall survival
time, but impacted the progression free survival time.
Immune checkpoint therapy has demonstrated great
clinical benefit in several cancer treatments in recent
years [41]. The infiltration of macrophages into solid tu-
mors was associated with poor survival outcomes, while
the infiltration of CD8+ T cells was correlated with
better prognosis [16,17]. We found that the expression
level of AURKA was correlation with tumor purity, but
had no association with the immune cells. Meanwhile,
different copy states of AURKA have some effect on
B cells, CD8+ T cells, neutrophils and dendritic cells
immersion.

Cell cycle dysregulation is one of the characteristics
of CRC. Abnormal cell cycles could promote cell dam-
age [42]. CCNB1 and CCNA2 are core regulatory pro-
teins involved in mitosis and cell cycle [43]. Previous
studies showed that CCNB1 was significantly correlated
with the degree of tumor infiltration, aggressiveness,
and adverse clinical outcome of patients with breast
cancer and ovarian cancer [44]. CCNA2 is expressed
in mammalian cells and is important for the onset of
DNA replication (S phase) and mitosis by activating
CDK2 and CDK1. Over-expression of cyclin A could
be detected in cancers [45]. Our results determined that
CCNB1 and CCNA2 were high expressed in CRC com-
pared with normal tissue, and that CRC patients with
high expression of CCNB1 and CCNA2 had a better
prognosis. The mutations rates of CCNB1 and CCNA2
did not affect the overall survival and progression free
survival time in patients with CRC. And the expression
level of CCNB1 was correlation with B cells and CD8+
T cells, the expression level of CCNA2 was correlation
with B cells, CD8+ T cells, neutrophils and dendritic
cells.

EXO1 is an exonuclease associated with DNA mis-
match repair (MMR), DNA double-strand break repair,
nucleotide excision repair, and immunoglobulin matu-
ration [46,47]. High expression of EXO1 has been re-
ported to be associated with poor prognosis for prostate
and breast cancers [48,49]. Our results supported that
EXO1 was overexpressed in CRC. The patients with
high expression of EXO1 had a better prognosis. The
mutation rate of EXO1 in COAD patients was 1.4%,

but the mutation had no effect on overall survival time
and disease free time. The expression level of EXO1
was correlation with CD8+ T cells in CRC.

Cell cycle is comprised of four ordered phases, de-
noted G1 (Gap 1), S (DNA synthesis), G2 (Gap 2), and
M (Mitosis) and contains multiple checkpoints through-
out to ensure the faithful replication and segregation
of chromosomes into daughter cells. Deregulation of
the cell cycle is one of the mechanisms involved in
the malignant phenotype of cancer, and regulating this
pathway can be used as a therapeutic targeting strategy
against cancer [50]. In our study, we performed GSEA
to determine co-expressed genes of Hub genes. These
co-expressed genes share a lot of similarities in the gene
set enrichment analysis. Both of them had a close rela-
tionship with chromosome segregation, DNA replica-
tion, translational elongation and cell cycle checkpoint
during the biological process. KEGG pathway analysis
suggests that they are mainly involved in the Cell cycle
pathways, DNA replication pathways, RNA transport
pathways and Ribosome pathways. It suggested that
Hub genes may participate in the pathological mecha-
nism of CRC by affecting the physiological processes
in the cell cycle.

Overall, Hub genes were associated with the prog-
nosis of CRC patients, and gene mutations and im-
mune infiltration were also involved in its effects. Pre-
vious studies have reported the significance of these
Hub genes in CRC, and their value in prognosis [51,
52,53]. Our study also demonstrated the importance of
Hub genes, and further investigated the effects of gene
mutation and immune infiltration in CRC. Besides, our
research has some limitations. We did not verify the
biological functions of Hub genes by in vivo and in vitro
experiments. Meanwhile, the role of Hub genes in CRC
also needs to be validated in large clinical cohorts.

5. Conclusion

Taken together, our study supported that AURKA,
CCNB1, CCNA2 and EXO1 could be potential
biomarkers for the prevention, diagnosis, and treatment
of CRC. The high expression of AURKA, CCNB1,
CCNA2 and EXO1 were associated with better prog-
nosis, and this consequence was correlation with gene
mutation and infiltration of immune cells.
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