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Abstract.
BACKGROUND: Assessing the clinical utility of biomarkers is a critical step before clinical implementation. The reclassification
of patients across clinically relevant subgroups is considered one of the best methods to estimate clinical utility. However, there are
important limitations with this methodology. We recently proposed the intervention probability curve (IPC) which models the
likelihood that a provider will choose an intervention as a continuous function of the probability, or risk, of disease.
OBJECTIVE: To assess the potential impact of a new biomarker for lung cancer using the IPC.
METHODS: The IPC derived from the National Lung Screening Trial was used to assess the potential clinical utility of a
biomarker for suspected lung cancer. The summary statistics of the change in likelihood of intervention over the population can be
interpreted as the expected clinical impact of the added biomarker.
RESULTS: The IPC analysis of the novel biomarker estimated that 8% of the benign nodules could avoid an invasive procedure
while the cancer nodules would largely remain unchanged (0.1%). We showed the benefits of this approach compared to traditional
reclassification methods based on thresholds.
CONCLUSIONS: The IPC methodology can be a valuable tool for assessing biomarkers prior to clinical implementation.
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1. Introduction1

Indeterminate pulmonary nodules (IPNs) are a com-2

mon clinical problem with over 1.6 million detected in3

∗Corresponding author: Michael N. Kammer, PRB 638B, 2220
Pierce Ave, Nashville, TN 37232, USA. E-mail: michael.kammer@
vumc.org.

the United States annually [1]. Management of IPNs de- 4

pends on the pretest probability of cancer [2–4]. Several 5

clinical prediction models have been developed and val- 6

idated to help estimate this pretest probability [5–7]. Im- 7

proving prediction models through the addition of novel 8

biomarkers is the focus of much research. Most meth- 9

ods used to assess the combination of new biomarkers 10

and prediction models focus on accuracy, improvements 11
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in the receiver operator characteristic (ROC) area under12

the curve (AUC), positive and negative predictive val-13

ues, and likelihood ratios [8–10]. However, improving14

diagnostic accuracy does not necessarily translate into15

improving clinical utility [11].16

The reclassification of patients across clinically rel-17

evant subgroups is a method used to estimate the po-18

tential clinical utility of biomarkers [12,13]. This ap-19

proach summarizes the number of patients who are cor-20

rectly and incorrectly moved between actionable sub-21

groups defined by probability thresholds. For example,22

in the management of IPNs, patients in the low prob-23

ability subgroup should undergo CT surveillance, pa-24

tients in the intermediate probability subgroup should25

undergo further diagnostic testing, and patients in the26

high probability subgroup should undergo biopsy or27

definite surgical resection. A patient with a benign nod-28

ule moved from the intermediate to the low probabil-29

ity group would represent a correct reclassification.30

The bias-corrected net reclassification index (cNRI) is31

the most robust and commonly used method. This ap-32

proach accounts for both correct and incorrect move-33

ments of intermediate probability patients into high- or34

low-probability groups, accounting for random move-35

ments between groups to correct for overly optimistic36

results [14].37

There are important limitations with this method-38

ology, however. Small changes in probability close to39

decision thresholds can result in reclassification inter-40

preted as a potential change in management that is un-41

likely to happen clinically. Conversely, large changes42

that do not cross thresholds are likely to affect patient43

management yet would not be captured as such. This44

“all-or-nothing” approach to threshold-based decisions45

might be, in practice, inaccurate. Additionally, there are46

several disconnects between the mathematical deriva-47

tion of these methods and the clinical reality. First, the48

thresholds that define risk groups are often based on the49

likelihood of disease and the potential for cure, but do50

not consider patients’ preferences or the ability to pro-51

vide the recommended intervention. For example, in the52

management of IPNs, a physician at a well-equipped53

tertiary care center might be more likely to suggest a54

complex intervention than a physician at a community55

clinic that does not have dedicated specialists [15]. Sec-56

ond, thresholds are not hard rules, but rather estimates57

that physicians could use within the clinical context,58

and physician’s judgement is often more accurate than59

validated clinical prediction models [16]. Finally, re-60

classification depends on the model used and the preva-61

lence of cancer in the intended population [7].62

Recently, we proposed the Intervention Probability 63

Curve (IPC) as a model for the likelihood of an inter- 64

vention as a function of the probability of cancer. We 65

showed its use in assessing clinical decision making in 66

lung, prostate, and ovarian cancer [17]. The IPC can be 67

estimated using professional society guidelines or can 68

be obtained by using historical data on past interven- 69

tions. In this work, we take the next step and present a 70

novel approach to assessing the potential clinical utility 71

of biomarkers, the cumulative change in intervention 72

probability curve (CCIP). To assess the impact of new 73

biomarkers, we calculated the change in the likelihood 74

of intervention for each patient based on their change 75

in probability from pre-test to post-test. The summary 76

statistics of the change in likelihood of intervention over 77

the population represents the potential clinical utility of 78

the added biomarker. We show this application using a 79

recently published biomarker data. 80

2. Methods 81

2.1. Datasets 82

The National Lung Screening Trial (NLST) dataset 83

was used to derive the IPC for this analysis and was 84

obtained from the National Cancer Institute. The NLST 85

dataset has been previously described [17,18]. Briefly, 86

the NLST is a multicenter, randomized controlled trial 87

(RCT) comparing low-dose helical CT with chest ra- 88

diography for lung cancer screening in current and 89

former smokers. CT images were reviewed by radi- 90

ologists for the presence of lung nodules, masses, or 91

other abnormalities suspicious for lung cancer. Diag- 92

nostic evaluations in response to a positive screening re- 93

sult were collected. Diagnostic invasive procedures in- 94

cluded transthoracic CT-guided, bronchoscopic or sur- 95

gical lung biopsy. Data from nodules detected in the 96

CT arm of the trial was used to calculate the probability 97

of cancer using the Mayo Clinic Model. The data from 98

the screening visit immediately prior the diagnosis of 99

cancer was used in subjects diagnosed with a lung can- 100

cer. For patients with benign nodules, the first screening 101

visit with a reported CT abnormality was used. 102

The combined biomarker model (CBM) dataset 103

was used to show the potential clinical utility of this 104

biomarker combination using the IPC. This dataset has 105

been previously described [19]. Briefly, the dataset in- 106

cludes 457 adult subjects 18–80 years old with inciden- 107

tal or screening detected IPNs 6–30 mm in size (Ta- 108

ble S1). Subjects were enrolled across multiple centers 109
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in the United States including: Vanderbilt University110

Medical Center and the Tennessee Valley VA Health-111

care System Nashville Campus (N = 171), University112

of Pittsburgh Medical Center (UPMC, N = 99), the113

Detection of Early Cancer Among Military Personnel114

(DECAMP, N = 99) consortium involving 12 clinical115

centers, and the University of Colorado Denver Hos-116

pital and the Rocky Mountain Regional VA Medical117

Center (UC Denver,N = 88). Participants had prospec-118

tively collected serum samples and CT scans with a119

slice thickness of 3 mm or less at the initial detection of120

the nodule. Disease outcome was biopsy proven cancer,121

biopsy proven benign, or two years longitudinal follow-122

up for benign nodules that were not biopsied (at least123

3 years for subsolid nodules). The CBM includes clin-124

ical variables, and two biomarkers: a radiomic model125

derived from chest CTs, and the hs-CYFRA 21-1 assay.126

Data obtained from the National Cancer Institute is127

publicly available. The NLST data use was approved128

by ECOG-ACRIN (NCI Protocol number A6654T4).129

Subjects enrolled in the CBM study were prospectively130

consented, and the study was approved by the IRB.131

Only deidentified data was used for the purpose of this132

study. All studies were conducted in accordance with133

the declaration of Helsinki.134

2.2. Derivation of IPC curve and statistical methods135

The intervention probability curve (IPC) has been136

previously described. It models the likelihood that an137

intervention was chosen in practice based on the pretest138

probability of a cancer calculated using a validated clin-139

ical prediction model [17]. Briefly, the cumulative dis-140

tribution function was used as the IPC curve, and the141

NLST dataset was used to fit the curve.142

IPx =
(1− C0 − C1)

σ
√

2π

∫ x

−∞
e

−(x−µ)2

2σ2 dx+ C0

Patients were grouped into equal width bins based143

on their pre-test probability of cancer (estimated using144

the Mayo model) using 20 bins ranging from 0 to 1. In145

each bin, the number of patients with interventions was146

divided by the total number of patients in that bin. The147

binning process was iterated 100 times, using bootstrap148

sampling (repeated sampling with replacement) in each149

of the 100 rounds. In each repetition, a 1% Gaussian150

noise was introduced to the probability associated with151

each patient, effectively introducing small variations152

in the signal. This noise was generated by drawing a153

random number from a Gaussian distribution with a154

mean of 0 and a standard deviation of 1, which was then155

multiplied by 0.01 and added to the cancer probability.156

The average proportion for each bin across these 100 157

iterations was used to fit the IPC function. These opera- 158

tions, including histogram binning, repeated sampling, 159

and the addition of noise, were carried out using MAT- 160

LAB R2020b (MathWorks, Natwik MA, USA), while 161

the fitting of the IPC was performed using GraphPad 162

Prism (GraphPad Software, San Diego, CA, USA). All 163

R2 presented are approximate, as calculated according 164

to Kvalseth’s method [20]. 165

The IPC derived from the NLST dataset was applied 166

to the clinical decision of performing a biopsy to obtain 167

a diagnosis for an IPN in the CBM dataset. The pretest 168

probability of cancer was estimated using the Mayo 169

Clinic Model as originally published [5]. The posttest 170

probability of cancer was estimated using the CBM as 171

published, which is derived using a combination of clin- 172

ical variables, a 10-feature radiomic model, and the hs 173

CYFRA 21-1 [19]. Performance of the CBM and each 174

individual component is illustrated in Figure S1. For 175

each patient, we calculated the difference in probability 176

by subtracting the pre- from the posttest probability of 177

cancer. The intervention probability (IP) was estimated 178

for each patient using the pretest probability (IPPre) and 179

posttest probability (IPPost) in the IPC function fit to 180

the NLST dataset. Then, the change in probability of 181

intervention (∆IP) was calculated for each patient by 182

subtracting the pretest probability of intervention from 183

the posttest probability of intervention. To construct 184

95% confidence intervals for all outcomes, the IPC re- 185

classification analysis was performed 1000 times with 186

bootstrap sampling, then the 2.5th and 97.5th percentile 187

of outcomes across the 1000 folds was reported. 188

3. Results 189

A histogram of the change in probability of cancer 190

across the patient population is presented in Fig. 1A, 191

with benign (blue) and cancer (red) separate. The me- 192

dian change in probability of cancer for benign nod- 193

ules was −0.067 (95% CI: −0.091 to −0.049), and for 194

cancers was 0.000 (95% CI: −0.026 to 0.036). To de- 195

termine the change in the probability of intervention 196

(∆IP) for each patient, the intervention probability at 197

the pretest score (IPPre) was subtracted from the inter- 198

vention probability at the posttest score (IPPost). Distri- 199

bution plots of the ∆IP values are shown in Fig. 1B, for 200

benign (left, blue) and cancer (right, red). 201

To capture the effect of the posttest probability on 202

the population, we averaged the ∆IP for all cancers 203

and obtained the population intervention probability for 204
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Fig. 1. Population-based assessment of changes in intervention probability. While the mean of the distributions is similar, the spread of distributions
shows the change in probability is more tightly clustered around zero in the cancer population than the change in probability.

cases (P∆IPCase), determined to be 0.1019. Similarly,205

the ∆IP for all controls is averaged to obtain the popula-206

tion intervention probability (P∆IPControls), determined207

to be −0.0359. These suggest that in general, patients208

with cancer are more likely to undergo the intervention209

after applying the biomarker test, while benign patients210

are less likely to undergo the intervention.211

Figure 2 shows the cumulative distribution (CD) of212

∆IP for cases and controls. A shift of the CD to the left213

of ∆IP = 0 represents an overall improvement in the214

classification for controls (benign nodules). The area215

under the curve (AUC) is therefore a summary statis-216

tic of overall shift. The AUC from −∞ to 0 captures217

the correct movement of controls (blue shaded area,218

Fig. 2A), calculated to be 0.105 (95% CI: 0.091–0.131).219

The area above the curve (AAC) from 0 to∞ captures220

the incorrect movement (grey shaded area, Fig. 2A),221

calculated to be 0.023 (95% CI: 0.016–0.035). A per-222

fect posttest would result in an AAC of 0, meaning no223

benign patients were more likely to receive an inter-224

vention after receiving the biomarker. Subtracting the225

AAC from the AUC provides the shift in the net prob-226

ability of intervention equal to 0.082 (95% CI: 0.062–227

0.109). We performed the same analysis in cases. The228

correct movement is 1 – AAC from 0 to∞ (red shaded 229

area, Fig. 2B), calculated to be 0.044 (95% CI: 0.033– 230

0.059). The incorrect movement is the AUC from −∞ 231

to 0 (grey shaded area, Fig. 2B), calculated to be 0.043 232

(0.034–0.056). The shift in the net probability of in- 233

tervention for cases is therefore 0.044–0.043 = 0.001 234

(95% CI: −0.019–0.020). These results suggest a po- 235

tential decrease in interventions by 8.2% in patients 236

with benign nodules and a potential increase in inter- 237

ventions by 0.1% in patients with cancer after applying 238

the CBM. 239

The magnitude of the net change in the probability of 240

intervention will depend on the number of true-positives 241

who did not get the intervention and true-negatives who 242

did get the intervention. Therefore, a biomarker with 243

high accuracy may show a small improvement if ap- 244

plied to a clinical situation where patients are already 245

managed appropriately, while a biomarker with moder- 246

ate accuracy may show a relatively larger improvement 247

if applied to a clinical situation with high rates of over 248

or undertreatment. In the management of IPNs in the 249

NLST setting, the larger benefit of the CBM is seen in 250

benign nodules as many of these patients undergo un- 251

necessary invasive procedures given how similar these 252

nodules look to cancer. 253
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Fig. 2. Cumulative change in the Intervention Probability for benign and malignant nodules. Panel A shows the Cumulative Change in Intervention
Probability for benign nodules. Blue shaded area represents the correct movement of controls with ∆IP < 0. Panel B shows the Cumulative
Change in Intervention Probability for malignant nodules. Red shaded area represents the correct movement of cases with ∆IP > 0. AAC: area
above the curve, AUC: area under the curve, ∆IP: change in probability of intervention.

Fig. 3. Graphical representation of the total estimated clinical utility of the biomarker for the (A) IPC and (B) cNRI analysis. The CCIP curve
shows where patients were moved in their probability of cancer estimate, and by how much, while the cNRI shows only changes between defined
groups. CCIP: Cumulative Change in Intervention Probability, NRI: Net Reclassification Index.

From the cumulative change in the intervention prob-254

ability curve (CCIP) we can also assess the proportion255

of subjects that had a change in the ∆IP by a certain256

amount. For example, the CCIP for controls (Fig. 2A)257

cross ∆IP = 0 at 0.81 (95% CI: 0.74–0.86), meaning258

that 81% of controls are moved down (∆IP < 0). Sim-259

ilarly, the CCIP for cases (red line) crosses ∆IP = 0260

at 0.46 (95% CI: 0.43–0.57), meaning that 54% (95%261

CI 43–57%) of cases were moved up (∆IP > 0). The262

proportion of the population that is moved by a certain263

amount will depend on the clinical context and the na-264

ture of the intervention. In many cases, however, only265

shifts greater than a specified amount may be clinically266

relevant. For example, let’s assume that only a change267

greater than 10% in either direction (|∆IP| > 0.1) is268

clinically significant. We can see that 36% of controls269

and 15% of the cases will have this selected clinically270

relevant change, Fig. 2.271

On a more summary level, we can estimate the im- 272

pact of total downward movements (∆IP < 0, blue 273

shaded for benign, and grey shaded for cancer) or up- 274

ward movements (∆IP > 0 red shaded for cancer, grey 275

shaded for benign), Fig. 3A. The grey shaded area 276

therefore represents all incorrect movements, and the 277

blue/red shaded area represents all correct movements. 278

When these two plots are overlaid, we can arrive at a 279

simplified representation of the total movement of prob- 280

ability of intervention across cases and controls. On the 281

left side of Fig. 3A (∆IP < 0), the incorrect movement 282

of cases (grey area from Fig. 2B, AUC = 4.3%, 95% CI 283

3.5% to 5.6%) is subtracted from the correct movement 284

of controls (blue area in Fig. 2A, AUC = 10.5%, 95% 285

CI 9.0% to 13.0%), resulting in an area between the 286

curves (ABC) = 6.2% (95% CI 4.2% to 8.8%). Sim- 287

ilarly, on the right side of the graph in Fig. 3A (∆IP 288

> 0), the incorrect movement of controls (grey area 289
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Fig. 4. Reclassification based on clinical thresholds from ACCP guidelines vs change in probability of intervention. ACCP: American College of
Chest Physician, NLST: National Lung Cancer Screening Trial.

from Fig. 2A, AUC = 2.3%, 95% CI 1.6% to 3.5%)290

is subtracted from the correct movement of cases (red291

area in Fig. 2B, AUC = 4.4%, 95% CI 3.3% to 5.9%),292

resulting in an ABC = 2.1% (95% CI 0.4% to 3.7%)293

for improvement in positive changes in probability of294

intervention.295

3.1. IPC versus cNRI296

From the previous study evaluating the CBM in the297

context of IPN management, the reclassification of pa-298

tients across risk groups was tabulated, and the bias-299

corrected cNRI was calculated [19]. The two-way con-300

fusion matrix showing the total number of controls and301

cases and their classification is shown in Fig. 3B. Here,302

we used the ACCP risk thresholds of 0.05 for low prob-303

ability and 0.65 for high probability of cancer. There304

were 167 benign nodules in the intermediate probability305

group based on the Mayo Clinic Model. A total of 46 of306

these were correctly reclassified as low probability and307

4 were incorrectly reclassified as high probability after308

applying the CBM. Likewise, there were 153 malignant309

nodules in the intermediate probability group, of which310

50 were correctly reclassified as high risk and 1 incor-311

rectly reclassified as low risk. The cNRI was 0.148 for312

the control population and 0.211 for the case popula-313

tion. Here, the cNRI provides an optimistic interpreta-314

tion of how many cancer patients would benefit from315

the biomarker test compared to the CCIP analysis. In316

fact, most of the 50 cases that moved from intermediate317

probability based on the Mayo Clinic Model (between318

5% and 65% probability of cancer, according to Amer-319

ican College of Chest Physician guidelines) to high320

probability (greater than 65% probability of cancer)321

based on the CBM received the intervention (biopsy)322

based on an intermediate to high pretest probability of 323

cancer. 324

4. Discussion 325

We previously described the IPC, which models the 326

likelihood of an intervention as a function of the proba- 327

bility of cancer and showed its use in assessing clinical 328

decisions in lung, prostate, and ovarian cancer [17]. In 329

this work, we demonstrate that the IPC could also pro- 330

vide a method to estimate the potential clinical utility 331

of biomarkers. Like the cNRI, it provides information 332

regarding the possible clinical benefit of biomarkers but 333

in a continuous rather than a binary way. We highlighted 334

this benefit using data from a recently published CBM 335

that includes clinical information, hs CYFRA-21-1 and 336

a radiomic signature. 337

Management of IPNs depends on the pretest proba- 338

bility of cancer. Clinical guidelines make recommen- 339

dations based on probability thresholds. The Ameri- 340

can College of Chest Physician (ACCP) guidelines de- 341

fine low and high probability thresholds at 0.05 and 342

0.65 [2]. A mathematical consequence of threshold- 343

based-reclassification is that a change in probability is 344

not counted unless it crosses the threshold, regardless of 345

the absolute magnitude of the change. For example, if a 346

biomarker changes the posttest probability from 0.16 to 347

0.48, it is not counted as a reclassification, even though 348

this change is large enough to potentially cause a shift 349

in clinical management (increase in probability of in- 350

tervention from 16% to 48%). Likewise, a biomarker 351

that changes the posttest probability from 0.64 to 0.97 352

would be counted even though this change is unlikely to 353

impact clinical care (increase in probability of interven- 354
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tion from 64% to 97%). These scenarios are highlighted355

in Fig. 4.356

The IPC illustrates the benefits of analyzing data as357

continuous rather than using cutoffs. As shown a Fig. 4,358

the cNRI does not account for large changes in posttest359

probability within the intermediate probability group360

that would lead to a change in management. Conversely,361

small changes around the cutoffs would lead to “re-362

classification” into low or high probability groups, al-363

though these movements would not result in a change364

in clinical management.365

The IPC analysis of the CBM estimated that 8%366

of the benign nodules could avoid an invasive proce-367

dure while the cancer nodules would largely remain un-368

changed (0.1%). This contrasts with the cNRI analysis369

which suggests a net reclassification index of 0.148 for370

the benign population and 0.211 for the cancer pop-371

ulation. The reason for this difference, particularly in372

the malignant population, is the nature of management373

patterns among moderate-to-high risk patients and low374

risk patients. Based upon analysis of management deci-375

sions within the NLST study, the likelihood of interven-376

tion did not increase much once the pretest probabil-377

ity was approximately 55% or higher [17]. Therefore,378

a biomarker that changes a patient from a 50% to an379

70% posttest probability would likely not change man-380

agement. The cNRI assumes that every cancer patient381

moved above the high probability threshold will have382

an increase in intervention, while in practice, that inter-383

vention had already occurred in many given the mod-384

erately high probability of cancer. This phenomenon385

can be quantitatively captured by the IPC analysis using386

empirical data as the foundation for the IPC curve.387

One limitation of using the IPC to assess the potential388

clinical utility of biomarkers is the assumption that the389

IPC will not change over time. In practice, it is possible390

that providers might alter their practice pattern as they391

gain experience with the new biomarker, which would392

change the IPC. This limitation, however, is common393

to any method used to assess possible clinical utility.394

Another potential limitation is the use of NLST and the395

CBM datasets. All the centers in the CBM study were396

expert centers and might not reflect common practice397

in community care settings. Further analysis may re-398

veal that the IPC differs between community clinics399

and tertiary care centers. Lastly, while this approach400

provides an estimation of the possible clinical utility401

of a biomarker, it is not a substitute for real world data402

collected within the context of a randomized controlled403

trial.404

5. Conclusion 405

The intervention probability curve is a novel method 406

that could provide useful insights when assessing the 407

potential clinical utility of novel biomarkers. It provides 408

a continuous evaluation that can overcome some of the 409

quantization errors inherent in reclassification analy- 410

sis. While the IPC is not a substitute for a prospec- 411

tive clinical trial, it can be a valuable tool for assessing 412

biomarkers prior to clinical implementation. 413
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