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Abstract.
BACKGROUND: Increasing evidence has indicated that abnormal methionine metabolic activity and tumour-associated
macrophage infiltration are correlated with hepatocarcinogenesis. However, the relationship between methionine metabolic activity
and tumour-associated macrophage infiltration is unclear in hepatocellular carcinoma, and it contributes to the occurrence and
clinical outcome of hepatocellular carcinoma (HCC). Thus, we systematically analysed the expression patterns of methionine
metabolism and macrophage infiltration in hepatocellular carcinoma using bioinformatics and machine learning methods and
constructed novel diagnostic and prognostic models of HCC.
METHODS: In this study, we first mined the four largest HCC mRNA microarray datasets with patient clinical data in the GEO
database, including 880 tissue mRNA expression datasets. Using GSVA analysis and the CIBERSORT and EPIC algorithms, we
quantified the methionine metabolic activity and macrophage infiltration degree of each sample. WGCNA was used to identify
the gene modules most related to methionine metabolism and tumour-associated macrophage infiltration in HCC. The KNN
algorithm was used to cluster gene expression patterns in HCC. Random forest, logistic regression, Cox regression analysis and
other algorithms were used to construct the diagnosis and prognosis model of HCC. The above bioinformatics analysis results
were also verified by independent datasets (TCGA-LIHC, ICGC-JP and CPTAC datasets) and immunohistochemical fluorescence
based on our external HCC panel. Furthermore, we carried out pancancer analysis to verify the specificity of the above model and
screened a wide range of drug candidates.
RESULTS: We identified two methionine metabolism and macrophage infiltration expression patterns, and their prognoses were
different in hepatocellular carcinoma. We constructed novel diagnostic and prognostic models of hepatocellular carcinoma with
good diagnostic efficacy and differentiation ability.
CONCLUSIONS: Methionine metabolism is closely related to tumour-associated macrophage infiltration in hepatocellular
carcinoma and can help in the clinical diagnosis and prognosis of HCC.
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1. Introduction

In 2021, the number of new cases of liver cancer
in China ranked fifth among tumours, with approxi-
mately 410,000 and 320,000 deaths [1]. Most of the
early clinical symptoms of liver cancer are hidden, and
70% of liver cancer is diagnosed at advanced stages.
The targeted treatment scheme is limited, the nonre-
sponse rate is high, and there are many side effects of
drugs [2]. Hepatocellular carcinoma (HCC) is the most
common type of liver cancer. Therefore, it is urgent to
further explore the occurrence and mechanism of devel-
opment of HCC, to identify molecular patterns of HCC,
and to formulate hierarchical management methods for
HCC [3].

Metabolic reprogramming is one of the basic charac-
teristics of most tumours, including HCC [4]. Initially,
scientific researchers found that due to the need for
rapid metabolism and the use of metabolites to support
various biosynthesis pathways, tumours showed depen-
dence on glycolysis [5]. Researchers have successively
found that the metabolism of other biological macro-
molecules also plays an important role in the cancer
process. Fatty acid metabolism is involved in intracel-
lular signal transduction and cytoskeleton formation
and plays a key role in the processes of tumour drug
resistance and ferroptosis [6]. Glutamine metabolism
is regarded as another major energy source of tumours
in addition to glucose [7]. By competing with T lym-
phocytes for glutamine, tumour cells not only promote
their own growth but also inhibit the normal function
of immune cells. Even some small molecules regarded
as metabolic waste in previous studies, such as lac-
tic acid and β-hydroxybutyric acid, have also been re-
ported to be involved in metabolic stress and the for-
mation of the tumour immune microenvironment [8].
Methionine metabolism refers to the fact that under en-
zyme stimulation, methionine in cells not only directly
participates in protein synthesis but also participates
in the formation of methyl donors, participates in the
structural modification of nucleic acids and proteins,
and promotes their normal functions [9]. Even methyl
donors can directly regulate the mTOR signalling path-
way and play an important role in tumours. It has been
found that tumours can be divided into different pat-
terns based on different molecular signals. For exam-
ple, glycolysis-driven and oxidative phosphorylation-
driven studies further explain the nonresponsiveness of
tumours to drugs; however, they mainly focus on the
glucose metabolism pathway, while research on me-
thionine metabolism in tumour typing is still limited at
present [10].

The life activities of tumour cells in vivo cannot
be separated from the support provided in the tumour
microenvironment. Tumour-associated macrophages
(TAMs) have been regarded as the most critical immune
microenvironment component in tumors [11]. Tumour-
associated macrophages can play various roles through
the secretion of soluble cytokines and metabolic sub-
strates and direct antigen receptor binding, and recent
studies have found that their secreted exosomes are im-
portant [12]. Current studies have found that tumour-
associated macrophages are involved in almost all ma-
lignant behaviours of tumors [13]. Scientists and our
previous studies have revealed that metabolism, such as
glycolysis and m6A and other methyl donor-dependent
apparent modifications, is involved in the regulation of
TAMs in HCC [14]. These studies suggest a correlation
between methionine metabolism and tumour-associated
macrophages. However, there are few studies on the re-
lationship between methionine metabolism and TAMs
in HCC, which still needs to be further explored.

In this study, we combined more than 1000 HCC
samples from multiple datasets in the GEO, TCGA and
ICGC databases and used machine learning K-means
to identify two HCC patterns related to macrophage
and methionine metabolism. Based on bioinformatics
analysis, we explored the molecular characteristics of
these two patterns and found that they are related to
tumour prognosis. Finally, we also used random for-
est, SVM and multivariate Cox regression analyses to
construct the diagnosis and prognosis model of HCC,
which further enriched the clinical value of this study.

2. Material and methods

2.1. Data acquisition and processing

mRNA expression and patient clinical data were
downloaded from the gene expression omnibus (GEO)
database (GSE14520, GSE54236, GSE76427, and
GSE116174), The Cancer Genome Atlas (TCGA)
database [15] (TCGA-LIHC dataset), Genotype-Tissue
Expression (GTEX) database (GTEX liver dataset) [16],
and International Cancer Genome Consortium (ICGC)
database (ICGC-JP dataset) [17]. Batch calibration of
different datasets was accomplished using the “SVA”
(3.1.1) R package. Gene difference analysis was per-
formed in the form of count data and corrected using the
limma software package. Downstream function analysis
utilized the form of TPM data. Differential expression
analysis was performed using the “LIMMA” (3.54.1) R
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software package. The protein expression data of HCC
patients were downloaded from the Clinical Proteomic
Tumor Analysis Consortium (CPTAC) database [18].

2.2. Identification of methionine metabolism- and
macrophage-related gene modules

The methionine metabolic pathway score was based
on the Kyoto Encyclopedia of Genes and Genomes
(KEGG) downloaded dataset (Table S1) and the
“GSVA” (1.46.0) R package for quantitative scor-
ing [20]. Tumour-associated macrophages in the HCC
group were quantified using the previously published
“EPIC” and “CIBERSORT” algorithms [20]. The
“WGCNA” (1.68) R package was used for weighted
correlation network analysis (WGCNA), and an appro-
priate soft threshold was chosen to cluster genes with
similar coexpression in the same module [19]. Methio-
nine metabolism and macrophage infiltration data were
combined with the above modules to identify related
gene clusters.

2.3. Recognition of methionine metabolism- and
macrophage-related gene expression patterns in
hepatocellular carcinoma

The aforementioned identified gene sets were sub-
jected to prognostic correlation analysis, and the crit-
ical value of p was less than 0.05. Then, the K-means
algorithm was used to identify the above gene expres-
sion patterns in GEO meta-datasets using the “Consen-
susClusterPlus” (1.58.0) R software package [19]. The
same algorithm was used to verify the above results in
the TCGA-LIHC dataset.

2.4. Functional prediction analysis of the different
gene patterns

In the different gene patterns identified above, the
differences in signalling pathways and immune cell
infiltration among different subgroups were evaluated
by using the “clusterProfiler” (4.2.2) R package and
“CIBERSORT” algorithm 20. The “survival” (3.5-0) R
package was used for survival analysis [19].

2.5. Construction of the diagnostic and prognostic
model

The aforementioned 47 related genes used for geno-
typing were further analysed for differences, and the

cut-off value was an absolute value of logFC greater
than 1. Based on 5x cross validation, a diagnosis model
was constructed by using random forest and logistic
regression, and a ROC curve was used for diagnosis ef-
ficiency. We verified the above built models in the inde-
pendent TCGC-LIHC, ICGC-JP and CPTAC datasets.
The prognostic model was used to analyse the prog-
nosis of the aforementioned 47 genes in the TCGA-
LIHC dataset, and a total of 21 prognostic genes were
identified. Screening of important variables was accom-
plished with lasso regression analysis. Multivariate Cox
regression analysis was used to construct a prognostic
model, and the aforementioned model was validated in
the TCGA-LIHC dataset and the independent ICGC-JP
dataset [21].

2.6. Evaluation of drug effects

The CTRP2.0 database, which contains the sensitiv-
ity data for 481 compounds over 835 CCLs, and the
PRISM database, which contains the sensitivity data for
1448 compounds over 482 CCLs, were used to evalu-
ate the efficacy of compounds according to K-nearest
neighbour (KNN) imputation. The top and bottom 20%
of the high and low subgroups were used as cut-off
points. The specific methods were described by Shixue
Dai etÂăal. [22].

2.7. Immunohistofluorescence

Samples were prepared through gradient dehydra-
tion of paraffin sections and EDTA antigen thermal re-
pair. Primary antibody (MAT1A, affinity cat. DF12210,
dilution 1:200 with TBST; and CD68, Proteintech
cat. 3A9A7, dilution 1:300 with TBST) was incu-
bated overnight. After three washes with PBS, im-
munofluorescence secondary antibody (FITC Anti-
Mouse, cat. Ab6785, dilution 1:500; Alexa Fluor R© 647
Anti-Rabbit, cat. ab150083, dilution 1:500) was incu-
bated at room temperature for 1Âăh. The nuclei were
stained with DAPI. All tissues were observed under a
fluorescence microscope with the same intensity light
source and exposure time for quantitative comparison.

2.8. Statistical analysis

SPSS (22.0), R (4.1.0) and Python (3.4) software
were used for statistical analysis. Unless otherwise in-
dicated, a P value < 0.05 was considered statistically
significant. Two-tailed Student’s t tests were used to
test the differences between different groups.
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Fig. 1. Identify genes related to methionine metabolism and macrophage infiltration. A. Flow chart of identification of genes related to macrophage
and methionine metabolism. B. Identification of differentially expressed genes in hepatocellular carcinoma based on geo meta data set, the
absolute value of FC was greater than 1.5, and the p value was less than 0.05. C. WGCNA analysis identifies gene modules related to methionine
metabolism and macrophage infiltration.

Fig. 2. Pattern recognition of tumor gene expression. A. Based on the 47 genes related to prognosis identified above, two gene expression patterns
were identified by KNN analysis. B. PCA analysis further verified the aforementioned typing based on the expression of all genes. C. To analyze
the difference of prognosis between the two models of HCC patients. D. In the TCGA-LIHC dataset, PCA analysis was used to verify the
aforementioned typing results. E. In the TCGA-LIHC dataset, survival analysis verified the difference in the prognosis of the different modes
mentioned above.

3. Results

3.1. Screening methionine- and macrophage-related
gene modules in hepatocellular carcinoma

Based on the four large human HCC datasets
(GSE14520, GSE54236, GSE76427, and GSE116174),

which were named the GEO meta-dataset in the GEO
database, we used GSVA to score the methionine
metabolic pathway of each HCC sample as previously
reported and used EPIC and CIBERSORT, which are
currently the most widely used, to quantify tumour tis-
sue macrophages (Fig. 1A). Furthermore, we used the
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Fig. 3. Molecular characteristics of two expression patterns. A. Correlation analysis between two molecular expression patterns and clinical
features in GEO-meta dataset. B. Difference of immune cell infiltration in hepatocellular carcinoma between two molecular expression patterns
based on CIBESORT algorithm in GEO-meta dataset. C. Difference analysis of methionine metabolism activity and related gene expression
between two molecular expression patterns in hepatocellular carcinoma in GEO-meta dataset. D. Analysis of the difference of KEGG signal
pathway between two molecular expression patterns in hepatocellular carcinoma in GEO-meta dataset. E. Difference of immune cell infiltration
in hepatocellular carcinoma between two molecular expression patterns based on CIBESORT algorithm in TCGA-LIHC dataset. F. Difference
analysis of methionine metabolism activity and related gene expression between two molecular expression patterns in hepatocellular carcinoma
in TCGA-LIHC dataset. G. Analysis of the difference of KEGG signal pathway between two molecular expression patterns in hepatocellular
carcinoma in TCGA-LIHC dataset. H. Immunohistochemical fluorescence identifies the aforementioned gene expression pattern in the external
HCC Panel (n = 16).

GEO meta-dataset to identify differentially expressed
genes. The critical values were an absolute value of
logFC greater than 0.585 and P less than 0.05. A total
of 1314 differentially expressed genes were identified,
including 650 downregulated genes and 664 upregu-
lated genes (Fig. 1B and Table S2). Based on WGCNA,
we divided the above 1314 genes into six modules and
conducted coexpression analysis with macrophages and
methionine metabolic activity. It was found that the

turquoise module was the most significantly related to
the above, so we focused on it in subsequent research
(Fig. 1C).

3.2. Identification of two HCC patterns and
correlation with prognosis

In the survival analysis, with a cut-off value of p
less than 0.05, we identified a total of 47 prognosis-
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Fig. 4. Construct and validate the diagnosis model of HCC. A. Flow chart of diagnosis model construction and verification. B. The cutoff value is
logfc greater than 1, and the differentially expressed genes are further identified in the aforementioned 47 genes. C. The diagnostic model was
constructed by random forest and logistic regression, and the ROC curve was used to evaluate the diagnostic efficiency. D. Verify the above model
in TCGA-LIHC dataset. E. Verify the above model in ICGC-JP dataset. F. Verify the above model in CPTAC dataset.

related genes in the aforementioned gene module for
downstream analysis (Table S3). Based on the GEO
meta-dataset, we used the k-means algorithm to cluster
and found that HCC can be divided into two patterns
based on macrophage- and methionine metabolism-
related genes (Fig. 2A). PCA based on the expression
of all genes also showed that the above clustering was
obvious (Fig. 2B). Survival analysis showed that the
prognosis of Cluster 1 was significantly better than that
of Cluster 2 (Fig. 2C). In the independent TCGA-LIHC
dataset of HCC, we verified the above results, which
suggests the reliability of our above typing (Fig. 2D–F).

3.3. Molecular characteristics of the two tumour
patterns

The above patterns were matched with clinical traits
for correlation analysis. We found that pattern 2, with
a worse prognosis, had a later TNM and BCLC stage
and a larger tumour volume. These results internally
supported the aforementioned survival analysis results
(Fig. 3A). Interestingly, in pattern 2, there was less
tumour-associated macrophage infiltration and weaker
methionine metabolic activity (Fig. 3B and C). KEGG
signalling pathway analysis showed that pattern 2 had

weaker fatty acid metabolism and PPAR pathway ac-
tivity and stronger cell cycle activity (Fig. 3D and Ta-
ble S4). Similar results were obtained based on TCGA
dataset analysis (Fig. 3E–G). Using immunofluores-
cence double labelling, our own HCC cohort also sup-
ported our clustering results (Fig. 3H).

3.4. Construction of the HCC diagnosis model based
on the above methionine- and macrophage-related
genes

Although the pathological examination of HCC is
the gold standard for the diagnosis of HCC, it is limited
by the professional skills of pathologists, especially in
some smaller medical institutions. We tried to build
a diagnostic model of HCC by using the previously
identified genes. First, we raised the differential gene
expression threshold to the absolute value of logFC
= 1, identified 22 candidate genes, and constructed a
diagnosis model by using random forest and logistic
regression models (Fig. 4A and B). In the GEO meta-
dataset of the training set, the random forest and logistic
regression models showed similar excellent discrimina-
tion efficiency. However, in the test set (TCGA, ICGC
and CPTAC datasets), the logistic regression model



D. Wen et al. / Analysis of macrophages and methionine in HCC 43

Fig. 5. Construct and validate the prognosis model of HCC. A. In the TCGA-LIHC dataset, the prognostic significance of 47 genes was further
identified and analyzed. B. Using lasso regression analysis, identify important prognostic related genes in the GEO-meta dataset. C. Multivariate
Cox regression was used to construct a prognostic model, and ROC curve was used to evaluate the discrimination efficiency. D. Verify the above
model in TCGA-LIHC dataset. E. Verify the above model in ICGC-JP dataset.

Fig. 6. Combined prognostic models and current clinical prognostic indicators. A. Prognostic significance of risk score detected by univariate Cox
regression analysis. B. Prognostic significance of risk score by multivariate Cox regression analysis. C. Nomogram was constructed to combine the
above risk score with TNM stage and BCLC stage. D. ROC curve predicts the discrimination efficiency of nomogram in the first year. E. ROC
curve predicts the discrimination efficiency of nomogram in the third year. F. ROC curve predicts the discrimination efficiency of nomogram in the
fifty year.
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Fig. 7. Evaluation of drug effects. A. The results of Spearman’s correlation analysis and differential drug response analysis of three CTRP-derived
compounds. B. The results of Spearman’s correlation analysis and differential drug response analysis of one PRISM-derived compounds. Note that
lower values on the y-axis of boxplots represented greater drug sensitivity. ∗ < 0.05, ∗∗∗ < 0.001.

was significantly better than the random forest model
(Fig. 4C–F).

3.5. Construction of a prognostic model for
hepatocellular carcinoma based on the above
methionine- and macrophage-related genes

We performed univariate Cox regression analysis in
the TCGA dataset based on the previously identified
methionine- and macrophage-related genes. Twenty-
one prognosis-related genes were identified (Fig. 5A).
Using lasso regression analysis, we further identified
the key variables, and a total of 8 genes were screened
and used to construct the prognostic model (Fig. 5B).
Using multivariate regression analysis, we constructed
a prognostic model for HCC. In the training set GEO
meta-dataset and the independent ICGC and TCGA
datasets, the ROC curve showed good discrimination
efficiency of the model (Fig. 5C–E). Clinical correlation
analysis showed that patients in the high-risk group had

later BCLC and TNM stages, further supporting the
reliability of our model (Table 1).

3.6. Nomogram based on the prognostic model and
clinical indicators

To make better use of the above prognostic model in
the clinic, we conducted univariate and multivariate Cox
regression analyses and found that the above risk score
and BCLC and TCGA stages were independent prog-
nostic factors (Fig. 6A and B). A nomogram was con-
structed based on the TCGA staging, BCLC staging and
risk score (Fig. 6C). In the GEO meta-dataset, TCGA
dataset, and ICGC dataset, the nomogram above showed
a better ability to distinguish prognosis (Fig. 6D–F).

3.7. Bioinformatics prediction of drug candidates

To identify candidate drugs for the high-risk group,
we comprehensively analysed the PRISM and CTRP2.0
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Table 1
Correlation of clinical characteristics between high and low risk
groups based on geo meta dataset

GEO-meta dataset
Characters Low risk High risk P value

Gender 0.4550
Female 35 41
Male 216 210

Bclc stage 0.0068
0–A 136 114
B–C 34 56

Age (years) 0.0050
< 60 132 158
> 60 79 52

TNM stage < 0.0001
I–II 142 122
III–IV 28 47

ALT (U/L) 0.1172
6 50 77 65
> 50 44 56

AFP (ng/ml) < 0.0001
6 300 83 45
> 300 36 74

Tumor size (cm) 0.0681
6 5 83 70
> 5 37 51

Multinodular 0.0284
Yes 19 33
No 102 88

Cirrhosis 0.0943
Yes 108 115
No 13 6

databases and found that four compounds may be effec-
tive in the low-risk group based on the KNN algorithm.
The results based on PRISM found that six drugs had
better responses in the low-risk group (Fig. 7A), and
the results based on CTRP2.0 found that three drugs
had better responses in the low-risk group (Fig. 7B).
These results can provide some guidance for clinical
treatment.

4. Discussion

Advanced HCC often lacks surgical indications, and
patients can only expect to benefit from systematic treat-
ment. Paradoxically, researchers have reached a consen-
sus that the more advanced the HCC is, the more het-
erogeneous it is. Therefore, the current commonly used
treatment methods such as sorafenib and PD-L1 are
only effective for a small number of HCC patients (less
than 40%) [23]. In recent years, many factors such as
PD-L1 expression, tumor mutation load, macrophages,
wnt pathway activation, fatty liver and other factors
have been reported to be involved in the efficacy of im-
munotherapy [24–26]. Macrophage is an important and

critical factor for immunotherapy, because it is closely
related to the above influencing factors of immunother-
apy [27]. In this study, we first identified methionine and
tumour-associated macrophage-related genes. Based on
these genes, we identified two HCC expression patterns
using the KNN algorithm. Pattern 1 has stronger me-
thionine metabolic activity and immune cell infiltration,
such as T cells, than pattern 2. This is also consistent
with our and other previous studies showing that me-
thionine metabolism is involved in the regulation of the
tumour immune microenvironment. The prognostic cor-
relation analysis showed that the survival time of mode
1 patients was significantly better than that of mode 2
patients. Some studies suggest that increased methion-
ine metabolic activity and macrophage infiltration are
often associated with poor prognosis of patients. How-
ever, it has also been reported that SAM, an interme-
diate of methionine metabolism, inhibits the growth of
HCC, and macrophages are also considered to have dual
roles in the process of HCC progression [28]. For exam-
ple, M1 type macrophages are considered to activate tu-
mor immunity under certain HCC background [28]. In
the independent online TCGA-LIHC dataset, our above
results were further confirmed. Furthermore, we de-
tected the presence of two expression patterns in hepa-
tocellular carcinoma using immunofluorescence double
labelling experiments.

In the past, researchers have built diagnostic mod-
els using logistic regression or machine learning, such
as random forest [30]. However, this is often a single
data set or only a bioinformatics method is used. It is
unclear about the diagnostic efficacy of macrophages
and methionine for HCC [31]. Consistent with previ-
ous findings, the random forest model is superior to
logistic regression in the context of a training set. How-
ever, we verified this hypothesis externally in other in-
dependent datasets, including protein data and RNA-
seq data. Logistic regression has better stability than
the random forest model. This may be due to the fact
that random forests are more dependent on the stabil-
ity of a single data set. However, in clinical, a uni-
fied sequencing method seems unrealistic [31]. The
AUC value was more than 0.95 in all datasets, and
its diagnostic efficiency was even higher than that of
more AFP currently used in clinical practice. We also
screened prognosis-related genes in the aforementioned
gene panel. A prognostic model was constructed. It
was shown in the TCGA-LIHC, ICGC and GEO meta-
dataset that the model was closely related to the prog-
nosis of patients, and the AUC also showed a good abil-
ity to distinguish. At present, BCLC stage and TNM
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stage are the main indices used to judge the progno-
sis of patients with HCC. Multivariate Cox regression
analysis showed that our risk index was an independent
prognostic model relative to TNM and BCLC stages.
Furthermore, combining BCLC, TNM staging and our
risk score can better distinguish the prognosis of HCC
patients [2,32].

Similar to previous studies, our study also has certain
limitations. For example, only one GEO meta-dataset is
used in the analysis related to BCLC stage. The TCGA-
LIHC and ICGC datasets lack the BCLC stage of pa-
tients. Drug sensitivity analysis is only based on on-
line database analysis, and we will further verify this
information in future studies.

5. Conclusions

In summary, we analysed the landscape related to
macrophage and methionine metabolism in HCC. We
also attempted to construct diagnostic and prognostic
models and predicted potential therapeutic drugs for
patients in high-risk groups. To promote the rigor of sci-
entific research and the novelty of the model, we would
love to see our results subjected to more thorough vali-
dation in well-designed multicentre prospective studies.
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