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Abstract.
BACKGROUND: Image-based biomarkers could have translational implications by characterizing tumor behavior of lung cancers
diagnosed during lung cancer screening. In this study, peritumoral and intratumoral radiomics and volume doubling time (VDT)
were used to identify high-risk subsets of lung patients diagnosed in lung cancer screening that are associated with poor survival
outcomes.
METHODS: Data and images were acquired from the National Lung Screening Trial. VDT was calculated between two
consequent screening intervals approximately 1 year apart; peritumoral and intratumoral radiomics were extracted from the
baseline screen. Overall survival (OS) was the main endpoint. Classification and Regression Tree analyses identified the most
predictive covariates to classify patient outcomes.
RESULTS: Decision tree analysis stratified patients into three risk-groups (low, intermediate, and high) based on VDT and one
radiomic feature (compactness). High-risk patients had extremely poor survival outcomes (hazard ratio [HR] = 8.15; 25% 5-year
OS) versus low-risk patients (HR = 1.00; 83.3% 5-year OS). Among early-stage lung cancers, high-risk patients had poor survival
outcomes (HR = 9.07; 44.4% 5-year OS) versus the low-risk group (HR = 1.00; 90.9% 5-year OS). For VDT, the decision tree
analysis identified a novel cut-point of 279 days and using this cut-point VDT alone discriminated between aggressive (HR =
4.18; 45% 5-year OS) versus indolent/low-risk cancers (HR = 1.00; 82.8% 5-year OS).
CONCLUSION: We utilized peritumoral and intratumoral radiomic features and VDT to generate a model that identify a high-risk
group of screen-detected lung cancers associated with poor survival outcomes. These vulnerable subset of screen-detected lung
cancers may be candidates for more aggressive surveillance/follow-up and treatment, such as adjuvant therapy.
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1. Introduction

Four randomized clinical trials demonstrated that
screening and early detection of lung cancer by low-
dose helical computed tomography (LDCT) reduces
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overall and lung cancer-specific mortality [1,2,6,11,33].
However, despite the benefits of early detection, cancer
screening can result in overdiagnosis which is the de-
tection of asymptomatic cancers that are non-growing
or slow-growing and unlikely fatal if left untreated [10].
Overdiagnosis of pulmonary nodules can result in un-
necessary diagnostic procedures that are often inva-
sive, associated with increased costs, and associated
with added stress for patients and their families [52].
In the US National Lung Screening Trial (NLST), 10
to 27% lung cancers were overdiagnosed in the LDCT
arm of the study [27,34,41–43]. As such, biomarkers
that can discriminate between the variability in growth
rates and lethal potential [42] of lung cancers diagnosed
in lung cancer screening would have important clinical
translational implications.

Radiomics is the conversion of medical images into
structured, mineable data that can subsequently be uti-
lized for statistical analysis and modeling [9,12,13,17,
25,28,29,44]. Radiomic features have shown to provide
rapid and accurate noninvasive biomarkers for lung can-
cer risk prediction, diagnostics, prognosis, treatment
response monitoring, and tumor biology [15,45,47].
Radiomics have many advantages over tissue-based
biomarkers as they are generated from standard-of-care
imaging and they reflect the pathophysiology of the
entire imaged tumor or region-of-interest (e.g., screen-
detected nodule) and not just the portion of the tumor
that was assayed in the case for tissue-based biomark-
ers.

Volume doubling time (VDT) of a pulmonary nod-
ule, defined as the number of days in which the nod-
ule doubles in volume, is a clinically relevant met-
ric in lung cancer screening. VDT has clinical util-
ity in discriminating between nodules that are infec-
tious/inflammatory, malignant, and benign [30,46,51].
Generally, nodules that are of an infectious or inflamma-
tory pathophysiology have a VDT of less than 20 days,
a VDT of less than 400 days (and greater than 20 days)
represents a high likelihood of malignancy, and a VDT
above 500 days is likely a benign nodule [23,24]. To
date, there have been few studies analyzing VDT, a
delta-radiomic, as a potential biomarker to evaluate
lethal potential of lung cancers diagnosed in lung can-
cer screening. Thus, using publicly available data and
LDCT images from the NLST, we generated radiomic
features to determine if we can discriminate between
indolent, slow, and aggressive incidentally diagnosed
lung cancers. Radiomic features describing size, shape,
volume, growth rate (i.e., VDT), and textural character-
istics were calculated from the intratumoral region (area

within the tumor) and from the peritumoral region (area
surrounding the tumor parenchyma). The overarching
goal of this study was to utilize radiomics biomarkers
to generate parsimonious models to predict lung cancer
outcomes in the lung cancer screening setting.

2. Materials and methods

2.1. NLST study population

Deidentified LDCT images and data were obtained
from the National Cancer Institute (NCI) Cancer Data
Access System (CDAS) [14]. The NLST study design
and main findings have been described previously [1,2].
NLST eligibility criteria included current and former
smokers aged 55–74 years with a minimum 30 pack-
years smoking history and former smokers had to have
quit within the past 15 years.

The present study used a subset of lung cancers di-
agnosed in the LDCT-arm of the NLST and has been
described elsewhere [38]. Briefly, we identified 314
screen-detected, incident lung cancer patients who were
not diagnosed with lung cancer at baseline screening
(T0) but were subsequently diagnosed with lung cancer
either at the first follow-up screening (T1) or second
follow-up screening (T2). However, participants were
excluded due to several reasons: unavailable complete
volumetric images sets, nodules at baseline that could
not be identified, and nodules where it was difficult to
contour the tumor. Lung cancer patients who had mul-
tiple nodules at time of their diagnosis were excluded
(N = 20) since we are unable to verify which nodule(s)
were cancer.

The final analytical cohort included 94 participants
who had a negative or positive baseline LDCT screen-
ing. Based on NLST criteria, positive screens were de-
fined as abnormalities on baseline screens or at follow-
up screens that were new, stable or evolved that resulted
as one or more non-calcified masses measuring > 4 mm
in axial diameter [38]. Negative screens were defined
as having no abnormalities, minor abnormalities, or
significant abnormalities not suspicious for lung cancer.

2.2. Radiomics

Nodule identification and tumor segmentation has
been described in detail elsewhere [17]. Briefly, the tu-
mor mask images (i.e., tumor delineations) were im-
ported into in-house radiomic feature extraction tool-
boxes created in MATLAB R© 2015b (The Mathworks
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Fig. 1. Schema for identification of patients diagnosed with cancer at two different timepoints in the NLST.

Inc., Natick, Massachusetts) and C++ (https://isocpp.
org). Using cubic interpolation, the images were resam-
pled to a single voxel spacing of 1 mm × 1 mm × 1 mm
to standardize spacing across all images. Hounsfield
units (HU) in all images were resampled into fixed bin
sizes of 25 HUs discretized from −1000 to 1000 HU.

Using standardized radiomic algorithms from the Im-
age Biomarker Standardization Initiative (IBSI) v5 [56],
a total of 264 radiomic features were extracted from
the semi-automatically segmented intratumoral region
(n = 155) and from the peritumoral region (n = 109)
3 mm outside of the tumor boundary. The peritumoral
regions were generated as an extension of the tumor
segmentations using morphological image processing
operations as previously described [48]. Peritumoral
regions were bounded by a lung parenchyma mask to
exclude the region of interest (ROI) outside of the lung
parenchyma. Shape- and size-based peritumoral fea-
tures were excluded as they explicitly describe and cor-
relate with the intratumoral ROI. The 65 most stable
and reproducible intratumoral and peritumoral radiomic
features that were previously found by our group [48]
were utilized for analysis.

Volume doubling time was calculated for the screen-
ing interval from T0 to T1 and for the screening inter-
val from T1 to T2 (Fig. 1). Below is the equation for
VDT where Ti is the time interval between two LDCT
imaging studies, Vi is the volume of the nodule in the
second LDCT image, and V0 is the volume of nodule
in the first LDCT image:

VDT =
ln 2xTi

ln
(

Vi

V0

)
2.3. Radiogenomics analysis

A previously described dataset [39] of surgically
resected adenocarcinoma lung cancers who had pre-
surgery CTs and gene expression data was used to iden-
tify potential biological underpinnings of the most in-
formative radiomic features identified in our analyses.
The gene probesets were filtered and determined as sig-

nificant using the following criteria based on a Student’s
t test p < 0.001 and mean log fold-change between
high and low prognostic radiomic feature oflfc > log2
(1.4 FC). The significant probesets from the analyses
were intersected yielding a final list of probesets signif-
icantly associated with the most informative radiomic
features. ANOVA and Tukey pairwise mean compari-
son was performed to analyzed gene expression across
the risk groups.

2.4. Statistical analysis

Statistical analyses were performed using Stata/MP
14.2 (StataCorp LP, College Station TX), R Project
for Statistical Computing (version 3.5.2), and R Studio
(version 1.1.463).

Overall survival (OS) and progression-free survival
(PFS) were the main endpoints and were assessed from
date of lung cancer diagnosis to the date of an event or
last follow up. For OS, an event was defined as death
and for PFS an event was established as death or pro-
gression of cancer. All survival data were right censored
at 5-years.

To generate a parsimonious model, the 65 stable ra-
diomic features and VDT were subjected to Classifica-
tion and Regression Tree (CART) analysis, adapted for
survival analysis, to stratify patients into risk groups.
The risk groups were analyzed by Cox regression mod-
els, Kaplan-Meier survival curves, and log-rank tests.
The most informative radiomic features identified in the
CART analysis were internally cross-validated using R
package “rms” [16]. The Harrell’s concordance index
(C-index) was used to evaluate the performance of the
multivariable Cox regression models. Backward logis-
tic regression model was used to identify radiomics fea-
tures significantly associated with VDT dichotomized.

3. Results

3.1. Patient characteristics

The demographics of the lung cancer patients are
provided in Table 1. Mean age of enrollment into the
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Table 1
Patient characteristics

Characteristics
All patients
(N = 94)

Age, mean(sd) 64.3 (5.4)
Sex

Female 39 (41.5%)
Male 55 (58.5%)

Smoking status
Former 39 (41.5%)
Current 55 (58.5%)

Pack-years smoked mean (sd) 63.4 (23.9)
Self-reported COPD

No 81 (86.2%)
Yes 13 (13.8%)

Family history of lung cancer
No 72 (76.6%)
Yes 22 (23.4%)

Histology
Adenocarcinoma-BAC 52 (55.3%)
Small cell 3 (3.2%)
Squamous 18 (19.2%)
Other NOS 21 (22.3%)

Stage
I and II 76 (80.8%)
III and IV 18 (19.2%)

Treatment
Surgical 74 (78.7%)
Chemotherapy/other 6 (6.4%)
Radiation 14 (14.9%)

Baseline screening (T0)
Positive (T0+) 40 (42.6%)
Negative (T0−) 54 (57.4%)

Abbreviations: sd = standard deviation; FH = family history; Pack-
years = packs smoked/day x years smoked; COPD = chronic ob-
structive pulmonary disease; NOS = not otherwise specified; 1BAC
and adenocarcinoma were combined into one group.

NLST was 64.3 years, 58.5% participants were male,
58.5% were current smokers, 55.3% were diagnosed
with adenocarcinoma, and 80.8% had an early-stage
lung cancer (stage I or II).

3.2. Screening interval from T0 to T1

Radiomics were calculated from LDCT images at
T0 and VDT was calculated from T0 to T1 as seen in
Fig. 2A. The mean number of days between T0 and
T1 was 369 days (range: 282 to 620 days). VDT was
not significantly correlated to intratumoral or peritu-
moral features. VDT and the 65 radiomic features that
we identified as stable and reproducible were included
as inputs into CART analysis and subsequent decision
tree revealed four risk groups as terminal nodes: low-
risk, intermediate-risk, high-risk, and very-high-risk
(Fig. 2B). The decision tree structure included VDT and
two radiomic features (intratumoral feature compact-
ness and peritumoral feature average co-occurrence).

There are differences in VDT across the four risk-
groups. The very-high risk group has a lower VDT (me-
dian VDT: 108.56) between T0 to T1 when compared
to the high, intermediate, and low risk group (median
VDT: 114.6, 143.2, and 499.2, respectively). From T0
to T1, Kruskal-Wallis test revealed that there is a statis-
tically significant difference in VDT between the four
risk groups (P = 0.0001). Pairwise analyses revealed,
that when compared to the low-risk group, VDT was
statistically significant different for the intermediate-
risk (P < 0.0001), high-risk group (P < 0.0001), and
very-high risk group (P < 0.0001) as presented in
Fig. 2B. CART analysis identified a novel VDT thresh-
old (i.e., cutpoint) of 234 days which discriminated
between high-risk lung cancers (HR = 3.49; 40% 5-
year OS) versus low-risk cancers (HR = 1.00; 80.8%
5-year OS) (Fig. 2C). Similar results were observed for
PFS (Supplemental Fig. 1A). The very-high-risk group
(Fig. 2D) was associated with extremely poor OS (HR
= 11.71; 42.9% 2-year OS and 21.4 % 5-year OS, log-
rank P < 0.0001) versus the high (HR = 5.08; 82.4%
2-year OS and 22.9% 5-year OS), intermediate (HR =
1.61; 93.3% 2-year OS and 72.7% 5-year OS) and low-
risk group (HR = 1.00; 89.5% 2-year OS and 82.1%
5-year OS). Similar findings were observed for PFS
(Supplemental Fig. 2A). Among early-stage patients,
the very-high-risk group was associated with extremely
poor survival (HR = 14.84; 33.3% 2-year and 33.3%
5-year OS, log-rank P < 0.001) versus the low-risk
group (HR = 1.00; 95.2% 2 year and 90.4% 5-year OS)
(Fig. 2E). Among late-stage patients, there was no sig-
nificant association with OS (Fig. 2F). Similar results
were found for PFS (Supplemental Fig. 2B and C).

There were no statistically significant differences
between the four risk groups by age, smoking status,
number of pack-years smoked, baseline screening, and
family history of lung cancer (Table 2). However, there
were statistically significant differences across the risk
groups for sex (P = 0.02), self-reported COPD (P =
0.003), histology (P = 0.007), treatment (P = 0.038),
and stage of disease (P = 0.042). In terms of lung can-
cer stage, 64.3% of the patients in the very-high-risk
group had lung cancer early-stage vs. 87.5% in the low-
risk group (P = 0.042). As such, multivariable Cox
regression models were used to adjust for potential con-
founding factors including sex, treatment, self-reported
COPD, and stage. The very-high-risk group was asso-
ciated with an elevated hazard ratio (OS: HR = 10.90;
95% Confidence Interval: [3.98, 29.85] and PFS: HR
= 4.72; 95% Confidence Interval: [1.85, 12.07]) when
compared to high, intermediate, and low-risk groups
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Fig. 2. Risk-groups associated with overall survival for all patients and among early-stage patients diagnosed in the screening interval T0 to
T1. (A) Schema identifying patients diagnosed in the screening interval T0 to T1. (B) The tree structure from the classification and regression
tree (CART) analysis identified four risk groups based on two radiomics features and VDT. VDT was statistically significant different between
very-high, high, and intermediate when compared to low-risk group. (C) Overall survival for VDT dichotomized by 234 days. Overall survival for
the risk patient risk groups among all patients (D) and for early-stage (E), and for late-stage patients (F).

(Table 3 and Supplemental Table 1) with a C-index of
0.85. The multivariable model using 10-fold cross vali-
dation achieved high prediction performance (C-index
= 0.81). Among early-stage patients, the very-high-risk
group was associated with an elevated hazard ratio (OS:
HR = 21.63; 95% Confidence Interval: [3.70, 123.60]
and PFS: HR = 5.92; 95% Confidence Interval: [1.81,
12.07]) when compared to high, intermediate and low-
risk groups (Table 3 and Supplemental Table 1) with a
C-index of 0.84.

3.3. Screening intervals from T0 to T1 and T1 to T2

For this analysis, we utilized the data from Section
3.2 above and included participants who were diag-
nosed with lung cancer at T2. Radiomics were calcu-
lated from T0 and VDT was calculated from T0 to
T1 and between T1 to T2, as seen in Fig. 3A. The
mean number of days between T1 and T2 was 370 days
(range: 287 to 480 days). The same stable radiomic
features were combined with VDT and subjected to
CART analysis and revealed three risk groups: low-risk,

intermediate-risk, high-risk (Fig. 3B). Due to the ad-
dition of participants who were diagnosed with lung
cancer at T2, a new decision tree structure was identi-
fied. The decision tree structure included one radiomic
feature (intratumoral feature compactness) and VDT.
There are differences in VDT across the three risk-
groups. The high-risk group has a lower VDT (me-
dian VDT: 104.58) between T0 to T1 and from T1 to
T2 when compared to the intermediate, and low risk
group (median VDT: 132.53 and 459.23, respectively)
(P = 0.0001). Pairwise analyses demonstrated, that
when compared to the low-risk group, median VDT was
statistically significant different for intermediate-risk
(P < 0.0001) and high-risk group (P < 0.0001) as pre-
sented Fig. 3B. CART identified a novel VDT threshold
(VDT = 279 days) that discriminated between high-risk
lung cancers (HR = 4.18; 45% 5-year OS) and low-risk
lung cancers (HR = 1.00; 82.8% 5-year OS) (Fig. 3C).
Similar results were observed for PFS (Supplemental
Fig. 1B). The high-risk group was associated with ex-
tremely poor OS (Hazard Ratio (HR) = 8.15; 56.3%
2-year OS and 25.0 % 5-year OS, log-rank P < 0.0001)
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Fig. 3. Risk-groups associated with overall survival for all patients and among early-stage patients diagnosed in the screening interval T0 to T1 or
T1 to T2. (A) Schema including patients diagnosed in the screening interval T1 to T2. (B) The tree structure from the classification and regression
tree analysis (CART) identified three risk groups based on one radiomics feature and VDT. VDT was statistically significant different between
high- and intermediate risk groups when compared to low-risk group. (C) Overall survival for VDT dichotomized by 279 days. Overall survival for
the risk patient risk groups among all patients (D) and for early-stage (E), and for late-stage patients (F).

versus the intermediate (HR = 3.28; 78.0% 2-year OS
and 53.3% 5-year OS), and low-risk group (HR = 1.00;
100.0% 2-year OS and 83.3% 5-year OS) (Fig. 3D).
Similar findings were observed for Progression Free
Survival (PFS) (Supplemental Fig. 3A). Among early-
stage patients, the high-risk group was associated with
a significantly decreased OS (HR = 9.07; 66.7% 2-year
and 44.4% 5-year OS, log-rank P < 0.0001) versus the
low-risk group (HR = 1.00; 96.9% 2-year and 90.9%
5-year OS) (Fig. 3E). When stratifying by late-stage
patients, there was no significant association with OS
(Fig. 3F). Similar results were found for PFS (Supple-
mental Fig. 3B and C).

There were no statistically significant differences
between the three risk groups by age, smoking sta-
tus, number of pack-years smoked, treatment, baseline
screening, and family history of lung cancer (Table 2).
However, there were statistically significant differences
across the risk groups for sex (P = 0.003), self-reported
COPD (P = 0.003), histology (P =< 0.0001), and
stage of disease (P = 0.018). In term of lung cancer
stage, 56.3% of the patients in the high-risk group had
lung cancer early-stage vs. 89.2% in the low-risk group
(P = 0.018). As such, multivariable Cox regression

models were used to adjust for potential confounding
factors including sex, treatment, and stage. The high-
risk group was associated with an elevated hazard ra-
tio (OS: HR = 3.62; 95% CI: [1.12, 11.69] and PFS:
HR = 2.33; 95% CI: [0.90, 6.05]) when compared to
intermediate, and low-risk groups (Table 3 and Supple-
mental Table 1) with a C-index of 0.78 in OS. Among
early-stage patients, the high-risk group was associated
with an elevated hazard ratio (OS: HR = 7.82; 95%
Confidence Interval: [1.44, 42.43] and PFS: HR = 3.30;
95% Confidence Interval: [0.88, 12.35]) when com-
pared to intermediate and low-risk groups (Table 3 and
Supplemental Table 1) with a C-index of 0.72 in OS.

3.4. Predicting VDT using T0 radiomics features

When dichotomizing VDT by the novel thresh-
old of 279 days, backward logistic regression iden-
tified the intratumoral radiomic feature compact-
ness as the most informative radiomic feature (OR:
2.54; 95% CI 0.91, 7.12]). Compactness 2, a mor-
phological feature, is a measure of how compact
the shape of the region-of-interest is relative to a
sphere (most compact) [3]. Compactness 2 was ex-
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Table 3
Multivariable Cox proportional hazards models for overall survival

Screening interval from
T0 to T1

Screening interval from
T0 to T1 or T1 to T2

Characteristic
All patients2

HR (95% CI)
Early-stage patients

HR (95% CI)
All patients2

HR (95% CI)
Early-stage patients

HR (95% CI)
Risk group

Low 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
Intermediate 1.12 (0.30, 4.13) 2.28 (0.37, 14.08) 2.38 (0.85, 6.61) 3.38 (0.85, 13.45)
High 3.12 (1.11, 8.75) 9.66 (1.37, 67.99) 3.62 (1.12, 11.69) 7.82 (1.44, 42.43)
Very high 10.90 (3.98,29.85) 21.36 (3.70, 123.60) n/a n/a

Sex
Female 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
Male 1.61 (0.68, 3.85) 2.96 (0.55, 15.97) 1.46 (0.62, 3.43) 1.96 (0.60, 6.40)

Stage
I and II 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
III and IV 8.25 (3.42, 19.90) n/a 7.03 (3.10, 15.93) n/a

Histology
Adenocarcinoma-BAC1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
Squamous 2.84 (1.01. 7.97) 3.05 (0.73, 12.78) 1.38 (0.55, 3.47) 1.08 (0.35, 3.35)
Small cell 1.45 (0.33, 6.42) n/a 1.52 (0.32, 7.23) n/a
Other NOS 0.84 (0.28, 2.53) 0.31 (0.04, 2.11) 0.66 (0.26, 1.65) 0.69 (0.19, 2.53)

Self-reported COPD
No 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
Yes 2.49 (0.91, 6.81) 2.45 (0.61, 9.77) 2.10 (0.76, 5.81) 1.07 (0.29, 3.99)

Treatment
Surgical 1.00 (Reference) 1.00 (Reference) n/a n/a
Chemotherapy/other 6.58 (1.48, 29.36) 372.88 (12.99, 10707.83) n/a n/a
Radiotherapy 3.61 (1.43, 9.11) 2.13 (0.53, 8.51) n/a n/a

Harrell’s C-index 0.85 0.84 0.80 0.72

Abbreviations: COPD = chronic obstructive pulmonary disease; NOS = not otherwise specified; 1BAC and adenocarcinoma
were combined into one group. Bold values represent statistically significant.

tracted from the semi-automatically segmented intratu-
moral region and peritumoral 3 mm outside of tumor
boundary. Intratumoral Compactness 2 was identified
as a stable and reproducible radiomic feature [48].

According to Aerts et al. [3] the formula is:

Fmorph.comp.2 = 36π
V 2

A3

To identify a potential prognostic threshold, com-
pactness was included into CART to identify the most
informative cutpoint associated with OS (Fig. 4A). A
VDT < 279 and Compactness >= 0.60 had similar
prognosis capabilities with poor outcomes (Fig. 4B).

3.5. Radiogenomics analysis

To reduce false positives in the radiogenomics anal-
ysis, we utilized a very high p-value threshold (P <
0.0001) to identify gene probesets associated with Com-
pactness. From the radiogenomic analyses, MIR34A
was found to be most significant gene associated (P =
2.01E-05) with the compactness radiomic features
(Fig. 5). When Compactness was dichotomized at the
median, mean VDT was higher in Compactness low vs

Compactness high (mean = 999.84 [3522.55] vs 656.60
[SD = 2345.99] (P = 0.007).

4. Discussion

Overdiagnosis is a serious adverse effect of cancer
screening and early detection. A recent meta-analysis
of randomized trials on overdiagnosis of lung cancer
with LDCT [7] estimated that 49% of the LDCT screen-
detected cancers may be overdiagnosed. Though the
authors conclude, “there is great uncertainty about the
degree of overdiagnosis in lung cancer screening due
to the heterogeneity” of screening trials, there is sub-
stantial evidence [7,11,18,35,42] that overdiagnosis is
a real world problem and robust biomarkers such as
radiomics could have translational implications by risk
stratifying screen-detected lung cancer. To that end,
we utilized VDT and peritumoral and intratumoral ra-
diomic features to identify high-risk screen-detected
lung cancers associated with poor survival outcomes.
Among patients diagnosed with lung cancer at the first
screening interval (T1), very-high risk patients had ex-
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Fig. 4. Intratumoral feature Compactness and VDT have similar prognosis capabilities. (A) The tree structure of the classification and regression tree
analysis (CART) which identified the survival cutpoint of compactness. (B) Overall Survival for VDT dichotomized at 279 days and Compactness
dichotomized at 0.60. Abbreviations: RHR = relative hazard ratio.

Fig. 5. Association between radiomics and gene expression. MIR34A
expression by dichotomizing Compactness at the median.

tremely poor survival outcomes (HR = 11.71; 21.4% 5-
year OS) versus the low-risk group (HR = 1.00; 82.1%
5-year OS). Among early-stage patients, the very-high
risk group had extremely poor survival outcomes (HR

= 11.71; 21.4% 5-year OS) versus the low-risk group
(HR = 1.00; 82.1% 5-year OS). When combined pa-
tients diagnosed with lung cancer at the first (T1) and
second (T2) screening intervals, patients in the high-
risk group also exhibited extremely poor survival out-
comes (HR = 8.15; 25% 5-year OS) versus the low-risk
group (HR = 1.00; 83.3% 5-year OS; C-index = 0.69).
Among early-stage patients, the high-risk patients had
poor survival outcomes (HR = 9.07; 44.4% 5-year OS)
versus the low-risk group (HR = 1.00; 90.9% 5-year
OS).

VDT has been largely utilized as a diagnostic
biomarker to discriminate malignant and benign nod-
ules [8,31,53]; however, the thresholds to discrimi-
nate between malignant and benign pulmonary nod-
ules are inconsistent. Additionally, prior studies utilized
VDT as a biomarker to differentiate between indolent
and aggressive lung cancers diagnosed [5,21,36,50,51]
and have also utilized VDT as a prognostic fac-
tor [32,40,49]. For example, a VDT of less than 400
days was found to be an independent risk factor for
poor disease-free survival [32]. In a study based on
chest x-rays, the 5-year survival rate of fast-growing



498 J. Pérez-Morales et al. / VDT and radiomic features predict tumor behavior of screen-detected lung cancers

nodules with a VDT of < 113 days was associated
with significantly lower than slow-growing nodules
with a VDT > 113 days [49]. Setojima et al. separated
whole tumor VDT (WVDT) and solid-part tumor VDT
(SVDT) and identified cut-offs 214 days for WVDT
and less than 215 days for SVDT that were associ-
ated with poor recurrence-free survival and overall sur-
vival [40]. The decision tree in our analysis identified
novel VDT thresholds (VDTs of 234 and 279) that ex-
hibited independent capacity to discriminate between
high-risk/aggressive tumors and low-risk/indolent tu-
mors. Because a VDT between 20 and 400 days rep-
resents a high likelihood of malignancy, the cumula-
tive evidence suggests that this broad range is capturing
heterogeneous behaviors, including lower risk cancers
such as indolent and slowing growing tumors.

While prior studies by group have utilized radiomic
features only [37] and the combination of radiomics
and an a priori VDT threshold [29] (i.e., < 400 vs. >
400) as predictors of lung cancer behavior, this is the
first study to identify novel VDT thresholds in combi-
nation of radiomics to characterize the lethal potential
of lung cancers diagnosed in lung cancer screening.
Another novel aspect of this work is that we identified
a single timepoint, baseline radiomic feature (compact-
ness) that predicts VDT and identified potential biolog-
ical underpinnings of VDT (Fig. 4). Because VDT is
a delta-radiomic that requires serial images over time
to calculate, a radiomic feature from a single timepoint
that could act as a surrogate could be important be-
cause VDT could be calculated through a proxy. In-
terestingly, the compactness radiomic feature had sim-
ilar prognostic capabilities as VDT (Fig. 4B). Com-
pactness is a measure of how compact the shape of the
tumor is relative to a sphere and, much like VDT, has
been found to be a diagnostic feature that differenti-
ates malignant from benign nodules [22,26]. Prior work
has also show that compactness is associated with sur-
vival [3]. Additionally, our radiogenomics analyses re-
vealed that high compactness is associated with a high
expression of the MIR34A gene. MicroRNA 34a (miR-
34a) is a microRNA that is encoded by the MIR34A
gene and the miR-34 family members are tumor sup-
pressive miRNAs appear to have a crucial role in re-
pressing tumor progression by involving in epithelial-
mesenchymal transition (EMT) via EMT-transcription
factors, p53, and other signally pathways [19,20,54].
In prior studies, high expression of MIR34A in plasma
and tumor tissue was associated with prolonged overall
survival and disease-free survival among non-small cell
lung cancer patients [55]. Interestingly, Aherne et al.

found that MIR34A was significantly increased in the
adenoma and early-stage cancer groups compared to
controls [4]. However, the role of MIR34A on nodule
growth and behavior is currently unknown.

We acknowledge some limitations of this study. First,
the sample size is modest because we utilized lung can-
cer cases with specific inclusion and exclusion criteria
from the NLST. However, we utilized bootstrapping for
internal validation which revealed the models were well
calibrated. Hopefully other lung cancer screening trials,
such as NELSON [11], LUSI [6], and MILD [33], will
make their images and data public so that independent
validation analyses can be performed. Additional re-
search is also needed to validate the biological under-
pinnings of the gene identified in the radiogenomics
analysis.

The results from our analyses revealed that radiomics
combined with VDT can identify a vulnerable sub-
set of screen-detected lung cancers that are associated
with poor survival outcome suggesting such patients
may need more aggressive treatment, such as adjuvant
therapies, and more aggressive surveillance/follow-up.
Further research is needed to validate these findings in
other lung cancer screening trials and programs and to
fully elucidate the biological underpinnings of these
radiomic features and VDT.

Acknowledgments

Funding support from U54-CA163068, U54-CA1630
71, P20 CA202920, U01-CA143062, and U01-CA2004
64. None of the authors are affiliated with the National
Cancer Institute. The authors thank the NCI for access
to NCI’s data collected by the National Lung Screening
Trial. The statements contained herein are solely those
of the authors and do not represent or imply concur-
rence or endorsement by the NCI.

Author contributions

Conception: J.P-M, R.J.G, M.B.S
Interpretation or analysis of data: J.P-M, H.L, W.M,
I.T,T.K, S.A.E, M.B.S
Preparation of the manuscript: J.P-M, H.L, W.M, I.T,
T.K, S.A.E, Y.B, R.J.G, M.B.S
Revision for important intellectual content: J.P-M, H.L,
W.M, I.T, T.K, S.A.E, Y.B, R.J.G, M.B.S
Supervision: M.B.S and R.J.G



J. Pérez-Morales et al. / VDT and radiomic features predict tumor behavior of screen-detected lung cancers 499

Conflict of interest

R.J.G is a consultant for HealthMyne Imaging Sys-
tems. J.P-M, H.L, W.M, I.T, T.K, S.A.E, Y.B, R.J.G,
and M.B.S. declare no competing interests.

Supplementary data

The supplementary files are available to download
from http://dx.doi.org/10.3233/CBM-210194.

References

[1] D.R. Aberle, A.M. Adams, C.D. Berg, W.C. Black, J.D. Clapp,
R.M. Fagerstrom, I.F. Gareen, C. Gatsonis, P.M. Marcus and
J.D. Sicks, Reduced lung-cancer mortality with low-dose com-
puted tomographic screening, N Engl J Med 365 (2011), 395–
409.

[2] D.R. Aberle, C.D. Berg, W.C. Black, T.R. Church, R.M. Fager-
strom, B. Galen, I.F. Gareen, C. Gatsonis, J. Goldin, J.K. Go-
hagan, B. Hillman, C. Jaffe, B.S. Kramer, D. Lynch, P.M. Mar-
cus, M. Schnall, D.C. Sullivan, D. Sullivan and C.J. Zylak, The
National Lung Screening Trial: Overview and study design,
Radiology 258 (2011), 243–253.

[3] H.J.W.L. Aerts, E.R. Velazquez, R.T.H. Leijenaar, C. Parmar,
P. Grossmann, S. Carvalho, J. Bussink, R. Monshouwer, B.
Haibe-Kains, D. Rietveld, F. Hoebers, M.M. Rietbergen, C.R.
Leemans, A. Dekker, J. Quackenbush, R.J. Gillies and P. Lam-
bin, Decoding tumour phenotype by noninvasive imaging us-
ing a quantitative radiomics approach, Nature Communications
5 (2014), 4006.

[4] S.T. Aherne, S.F. Madden, D.J. Hughes, B. Pardini, A. Nac-
carati, M. Levy, P. Vodicka, P. Neary, P. Dowling and M.
Clynes, Circulating miRNAs miR-34a and miR-150 associated
with colorectal cancer progression, BMC Cancer 15 (2015),
329.

[5] D.R. Baldwin, S.W. Duffy, N.J. Wald, R. Page, D.M. Hansell
and J.K. Field, UK Lung Screen (UKLS) nodule management
protocol: Modelling of a single screen randomised controlled
trial of low-dose CT screening for lung cancer, Thorax 66
(2011), 308–313.

[6] N. Becker, E. Motsch, A. Trotter, C.P. Heussel, H. Dienemann,
P.A. Schnabel, H.U. Kauczor, S.G. Maldonado, A.B. Miller,
R. Kaaks and S. Delorme, Lung cancer mortality reduction by
LDCT screening-Results from the randomized German LUSI
trial, Int J Cancer 146 (2020), 1503–1513.

[7] J. Brodersen, T. Voss, F. Martiny, V. Siersma, A. Barratt and
B. Heleno, Overdiagnosis of lung cancer with low-dose com-
puted tomography screening: Meta-analysis of the randomised
clinical trials, Breathe (Sheff) 16 (2020), 200013.

[8] M.E. Callister, D.R. Baldwin, A.R. Akram, S. Barnard, P.
Cane, J. Draffan, K. Franks, F. Gleeson, R. Graham, P. Mal-
hotra, M. Prokop, K. Rodger, M. Subesinghe, D. Waller and
I. Woolhouse, British Thoracic Society guidelines for the in-
vestigation and management of pulmonary nodules, Thorax
70(Suppl 2) (2015), ii1–ii54.

[9] D. Cherezov, S.H. Hawkins, D.B. Goldgof, L.O. Hall, Y. Liu,
Q. Li, Y. Balagurunathan, R.J. Gillies and M.B. Schabath,
Delta radiomic features improve prediction for lung cancer

incidence: A nested case-control analysis of the National Lung
Screening Trial, Cancer Med 7 (2018), 6340–6356.

[10] R. Clay, S. Rajagopalan, R. Karwoski, F. Maldonado, T. Peikert
and B. Bartholmai, Computer Aided Nodule Analysis and Risk
Yield (CANARY) characterization of adenocarcinoma: radi-
ologic biopsy, risk stratification and future directions, Transl
Lung Cancer Res 7 (2018), 313–326.

[11] H.J. de Koning, C.M. van der Aalst, P.A. de Jong, E.T.
Scholten, K. Nackaerts, M.A. Heuvelmans, J.-W.J. Lammers,
C. Weenink, U. Yousaf-Khan and N.J.N.E.j.o.m. Horeweg,
Reduced lung-cancer mortality with volume CT screening in a
randomized trial, 382 (2020), 503–513.

[12] B. Dreno, J.F. Thompson, B.M. Smithers, M. Santinami, T.
Jouary, R. Gutzmer, E. Levchenko, P. Rutkowski, J.J. Grob,
S. Korovin, K. Drucis, F. Grange, L. Machet, P. Hersey, I.
Krajsova, A. Testori, R. Conry, B. Guillot, W.H.J. Kruit, L.
Demidov, J.A. Thompson, I. Bondarenko, J. Jaroszek, S. Puig,
G. Cinat, A. Hauschild, J.J. Goeman, H.C. van Houwelingen,
F. Ulloa-Montoya, A. Callegaro, B. Dizier, B. Spiessens, M.
Debois, V.G. Brichard, J. Louahed, P. Therasse, C. Debruyne
and J.M. Kirkwood, MAGE-A3 immunotherapeutic as adju-
vant therapy for patients with resected, MAGE-A3-positive,
stage III melanoma (DERMA): A double-blind, randomised,
placebo-controlled, phase 3 trial, Lancet Oncol 19 (2018),
916–929.

[13] X. Fave, L. Zhang, J. Yang, D. Mackin, P. Balter, D. Gomez,
D. Followill, A.K. Jones, F. Stingo, Z. Liao, R. Mohan and L.
Court, Delta-radiomics features for the prediction of patient
outcomes in non-small cell lung cancer, Sci Rep 7 (2017), 588.

[14] D.S. Gierada, P. Pinsky, H. Nath, C. Chiles, F. Duan and D.R.
Aberle, Projected outcomes using different nodule sizes to
define a positive CT lung cancer screening examination, J Natl
Cancer Inst 106 (2014).

[15] R.J. Gillies and M.B. Schabath, Radiomics improves cancer
screening and early detection, Cancer Epidemiol Biomarkers
Prev 29 (2020), 2556–2567.

[16] F. Harrell, Regression Modeling Strategies version 6.1-1, 2021.
[17] S. Hawkins, H. Wang, Y. Liu, A. Garcia, O. Stringfield, H.

Krewer, Q. Li, D. Cherezov, R.A. Gatenby, Y. Balagurunathan,
D. Goldgof, M.B. Schabath, L. Hall and R.J. Gillies, Predicting
Malignant Nodules from Screening CT Scans, J Thorac Oncol
11 (2016), 2120–2128.

[18] B. Heleno, V. Siersma and J. Brodersen, Estimation of over-
diagnosis of lung cancer in low-dose computed tomography
screening: A secondary analysis of the danish lung cancer
screening trial, JAMA Intern Med 178 (2018), 1420–1422.

[19] H. Hermeking, The miR-34 family in cancer and apoptosis,
Cell Death & Differentiation 17 (2010), 193–199.

[20] H. Hermeking, MicroRNAs in the p53 network: microman-
agement of tumour suppression, Nat Rev Cancer 12 (2012),
613–626.

[21] M.A. Heuvelmans, M. Oudkerk, G.H. de Bock, H.J. de Kon-
ing, X. Xie, P.M. van Ooijen, M.J. Greuter, P.A. de Jong, H.J.
Groen and R. Vliegenthart, Optimisation of volume-doubling
time cutoff for fast-growing lung nodules in CT lung can-
cer screening reduces false-positive referrals, Eur Radiol 23
(2013), 1836–1845.

[22] W. Jun, L. Xia, D. Di, S. Jiangdian, X. Min, Z. Yali and T.
Jie, Prediction of malignant and benign of lung tumor using a
quantitative radiomic method, Annu Int Conf IEEE Eng Med
Biol Soc 2016 (2016), 1272–1275.

[23] M. Kanashiki, T. Tomizawa, I. Yamaguchi, K. Kurishima, N.
Hizawa, H. Ishikawa, K. Kagohashi and H. Satoh, Volume dou-
bling time of lung cancers detected in a chest radiograph mass



500 J. Pérez-Morales et al. / VDT and radiomic features predict tumor behavior of screen-detected lung cancers

screening program: Comparison with CT screening, Oncol Lett
4 (2012), 513–516.

[24] J.P. Ko, E.J. Berman, M. Kaur, J.S. Babb, E. Bomsztyk, A.K.
Greenberg, D.P. Naidich and H. Rusinek, Pulmonary Nodules:
Growth rate assessment in patients by using serial CT and
three-dimensional volumetry, Radiology 262 (2012), 662–671.

[25] P. Lambin, E. Rios-Velazquez, R. Leijenaar, S. Carvalho, R.G.
van Stiphout, P. Granton, C.M. Zegers, R. Gillies, R. Boellard,
A. Dekker and H.J. Aerts, Radiomics: Extracting more infor-
mation from medical images using advanced feature analysis,
Eur J Cancer 48 (2012), 441–446.

[26] E.J. Limkin, S. Reuzé, A. Carré, R. Sun, A. Schernberg, A.
Alexis, E. Deutsch, C. Ferté and C. Robert, The complexity of
tumor shape, spiculatedness, correlates with tumor radiomic
shape features, Scientific Reports 9 (2019), 4329.

[27] R.M. Lindell, T.E. Hartman, S.J. Swensen, J.R. Jett, D.E.
Midthun, H.D. Tazelaar and J.N. Mandrekar, Five-year lung
cancer screening experience: CT appearance, growth rate, lo-
cation, and histologic features of 61 lung cancers, Radiology
242 (2007), 555–562.

[28] Y. Liu, H. Wang, Q. Li, M.J. McGettigan, Y. Balagurunathan,
A.L. Garcia, Z.J. Thompson, J.J. Heine, Z. Ye, R.J. Gillies
and M.B. Schabath, Radiologic features of small pulmonary
nodules and lung cancer risk in the national lung screening
trial: A nested case-control study, Radiology 286 (2017), 298–
306.

[29] H. Lu, W. Mu, Y. Balagurunathan, J. Qi, M.A. Abdalah, A.L.
Garcia, Z. Ye, R.J. Gillies and M.B. Schabath, Multi-window
CT based Radiomic signatures in differentiating indolent ver-
sus aggressive lung cancers in the National Lung Screening
Trial: A retrospective study, Cancer Imaging 19 (2019), 45.

[30] P. Maisonneuve, V. Bagnardi, M. Bellomi, L. Spaggiari, G.
Pelosi, C. Rampinelli, R. Bertolotti, N. Rotmensz, J.K. Field,
A. Decensi and G. Veronesi, Lung cancer risk prediction to
select smokers for screening CT – a model based on the Italian
COSMOS trial, Cancer Prev Res (Phila) 4 (2011), 1778–1789.

[31] A. Nair, A. Devaraj, M.E.J. Callister and D.R. Baldwin, The
Fleischner Society 2017 and British Thoracic Society 2015
guidelines for managing pulmonary nodules: Keep calm and
carry on, Thorax 73 (2018), 806.

[32] S. Park, S.M. Lee, S. Kim, J.G. Lee, S. Choi, K.H. Do and J.B.
Seo, Volume doubling times of lung adenocarcinomas: Cor-
relation with predominant histologic subtypes and prognosis,
Radiology 295 (2020), 703–712.

[33] U. Pastorino, M. Silva, S. Sestini, F. Sabia, M. Boeri, A. Can-
tarutti, N. Sverzellati, G. Sozzi, G. Corrao and A. Marchi-
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