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Abstract.
BACKGROUND: Gatrointestinal stromal tumors (GISTs) are the main mesenchymal tumors found in the gastrointestinal system.
GISTs clinical phenotypes differ significantly and their molecular basis is not yet completely known. microRNAs (miRNAs) have
been involved in carcinogenesis pathways by regulating gene expression at post-transcriptional level.
OBJECTIVE: The aim of the present study was to elucidate the expression profiles of miRNAs relevant to gastric GIST
carcinogenesis, and to identify miRNA signatures that can discriminate the GIST from normal cases.
METHODS: miRNA expression was tested by miScriptTMmiRNA PCR Array Human Cancer PathwayFinder kit and then we
used machine learning in order to find a miRNA profile that can predict the risk for GIST development.
RESULTS: A number of miRNAs were found to be differentially expressed in GIST cases compared to healthy controls. Among
them the hsa-miR-218-5p was found to be the best predictor for GIST development in our cohort. Additionally, hsa-miR-146a-5p,
hsa-miR-222-3p, and hsa-miR-126-3p exhibit significantly lower expression in GIST cases compared to controls and were among
the top predictors in all our predictive models.
CONCLUSIONS: A machine learning classification approach may be accurate in determining the risk for GIST development in
patients. Our findings indicate that a small number of miRNAs, with hsa-miR218-5p as a focus, may strongly affect the prognosis
of GISTs.
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1. Introduction

Gastrointestinal stromal tumours (GISTs) are some
of the most frequent mesenchymal tumours of the
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gastrointestinal tract. The major initial event in GIST
pathogenesis is linked with gain-of-function mutations
of the receptor tyrosine kinase genes (KIT) or that of
the platelet-derived growth factor gene (PDGFRA) [1].
GISTs may be developed in any part of the gastrointesti-
nal tract, but are mainly found in the stomach [2]. These
tumours present asymptomatically in 18% of cases, es-
pecially as small tumours (< 2 cm) of the gastrointesti-
nal tract. The symptoms exhibited by GIST patients are
most commonly: bleeding into the bowel or abdominal
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Table 1
Clinical and histopathological characteristics of GIST cases

Characteristics n = 20 n % Characteristics n %
Gender Ckit

Male 14 70 Negative 4 20
Female 6 30 Positive 16 80

Clinic Cd34
University 17 85 Negative 5 25
NHS 3 15 Positive 15 75

Location Dog1
Stomach 20 100 Negative 2 10
Other 0 0 Positive 18 90

Grade Subtype
Very low 2 10 Spindle cell 9 45
Low 7 35 Epithilioid 2 10
Mild 2 10 Mixed 9 45
High 9 45 Mitotic index (mitosis per 50HPF)

Surgical margins < 5 10 50
Evolved No 5–10 5 25
Free Yes > 10 5 25

Dimensions
Tumor necrosis < 2 6 30

Yes 10 50 2–5 4 20
No 10 50 5–10 7 35

> 10 3 15

cavity, anaemia, abdominal mass or pain and intestinal
obstruction [3]. The gold standard for primary localized
GISTs is complete (R0) resection without rupturing the
tumour. Individuals with intermediate or high risk of
recurrence can be considered for adjuvant treatment
with imatinib [4]. The prognosis of locally advanced
or metastatic diseases remains poor even if there is sig-
nificant improvement in diagnosis and there are avail-
able therapeutic agents that improve survival of GIST
patients [5]. Imatinib offers a stable response in ad-
vanced disease, in most cases, for about 2–3 years [6],
however after long term treatment, resistance develop-
ment is common. Sunitinib and regorafenib are second
line therapeutic agents in imatinib resistant GISTs but
with unsatisfactory outcomes in progressive disease [7].
Therefore, it is important to identify underlying molec-
ular pathways in GIST pathogenesis to provide novel
therapeutic approaches

Recently non-coding RNAs have been studied for
their involvement in post-transcriptional regulation of
gene expression and have attracted scientific interest for
the identification of their role in carcinogenesis. Among
them it has been suggested that micro-RNA (miRNA)
expression is related to carcinogenesis and the pheno-
typic expression of several tumors including GISTs [8].
Regarding the latter, specific miRNA expression pro-
files are associated with chromosome 14q loss [9,10],
GISTs anatomical site [11], KIT and/or PDGFRA mu-
tation [10], GIST development risk [9] and overall sur-
vival [11]. Additionally, expression of specific miRNAs

is related to imatinib resistance in GIST [12,13]. Thus,
a number of studies support that miRNAs can be used
as diagnostic, prognostic and/or predictive biomark-
ers or have therapeutic potential and this increasing
recognition on their role in GISTs opens the way for
additional studies in the field that could improve the
clinical practice. In the present work we study the ex-
pression profiles of miRNAs relevant to carcinogenesis,
in a cohort study of 20 patients with stomach GIST
and we employ machine learning approaches to help us
not only understand the clinical features of GIST, but
also to evaluate this approach for future personalized
medicine applications.

2. Material and methods

2.1. Patients and tissue samples

Tissue from twenty gastric GISTs and twenty healthy
gastric biopsies were included in the study. All tumors
were sporadic, as assessed by personal and family his-
tories. The criteria used to collect the samples were: 1)
only gastric GISTs included in the study, 2) all the neo-
plasms were primary tumors and resectable according
to the preoperative evaluation, and 3) no neoadjuvant
therapy had been performed. Healthy gastric biopsies
were received from patients suspected of non-malignant
diseases (i.e. gastritis). All cases were identified in the
1st Propaedeutic Department of Surgery of Hippocra-
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tion General Hospital, National and Kapodistrian Uni-
versity of Athens between March 2015 and November
2018. Authorization for the use of these tissues for re-
search purposes was obtained from the Hospital Re-
view Board and all the samples were obtained with in-
formed consent from the participants. The clinical and
histopathological details of all cases are presented in
Table 1.

2.2. MiRNA expression

MiRNA isolation was performed using the Nucle-
oSpin miRNA kit (Machnery-Nagel, Germany). Re-
verse transcription of 500 ng of RNA was performed
with the miScript II RT Kit (Qiagen), and the ex-
pression of a panel which tests for 84 miRNAs, was
performed using the miScriptTMmiRNA PCR Array
Human Cancer PathwayFinder (MIHS-102Z, Qiagen)
and miScript SYBR Green PCR Kit (Qiagen). This
panel includes miRNAs that have been correlated
with the diagnosis, staging, progression, or prognosis
of various tumors. Each array contains six different
snoRNA/snRNA as a normalization control for the array
data (SNORD61, SNORD68, SNORD72, SNORD95,
SNORD96A, RNU6-6P), miRNA reverse transcription
control (RTC) and positive PCR control (PPC). Samples
were grouped into two categories: Normal and Cancer.
The miRNA relative expression was calculated by the
2−∆Ct method for each miRNA in each sample nor-
malizing on the geometric mean of 5 out of 6 controls
(SNORD95 underperformed). Between our groups fold
change was calculated with the 2−∆∆Ct method and is
represented by fold regulation in a biologically mean-
ingful way. Finally, p-values were calculated based on
a Student’s t-test of the replicate normalized miRNA
expression values for each miRNA in the control and
cancer groups and were corrected for FDR using the
Benjamini-Hochberg method (p.adjust function in R).
Supplementary Table 1 contains all the raw Ct values
of our experiments.

2.3. Machine learning modeling approach

To further assess the value of our expression results
and refine it by identifying the most important miR-
NAs, which might be able to distinguish between our
groups, we employed several classification and regres-
sion models using the caret package [14] in R [15] on
the entire miRNA panel regardless of previous differen-
tial expression results. This allowed for wider approach
which didn’t preclude several features (miRNAs). We

used the previously calculated relative expression per
miRNA per sample, after preprocessing with “scale”
and “center”, to train and validate the accuracy of six
models using the appropriate algorithms: two Classifi-
cation And Regression Trees (rpart2 and bagtree), one
Random Forest implementations (ranger), a k-Nearest
Neighbors (knn), a Support Vector Machine (svm) and a
C5.0 classification tree (C5.0). All training models used
a leave-group-out cross-validation (LGOCV) approach
with a 70%–30% partitioning and 100 iterations. Be-
cause of the large differences of the number and iden-
tity of predictors each model used, we also employed
a Recursive Feature Extraction method to identify the
best set of predictor miRNAs [16,17].

2.4. miRNA target identification and functional
analysis

miRNA target identification was performed using the
multimir R package [18]. Two different sets of gene
targets were identified: one based on validated miRNA-
target interactions from 3 databases (“mirecords” [19],
“mirtarbase” [20], and “tarbase” [21]) and one using
predicted miRNA-target interactions from 8 databases
(“diana_microt”, “elmmo”, “microcosm”, “miranda”,
“mirdb”, “pictar”, “pita”, and “targetscan”) [22]. Both
gene lists were used as input to the clusterprofiler pack-
age [23] to be enriched using Gene Ontology [24] terms
(both from GO-Biological Process and GO-Molecular
Function). We also validated the target genes using Dis-
ease Ontology [25] and the DisGeNet database [26] for
their associations with specific phenotypes (e.g. neo-
plasms). The p-values for the GO, DO and DisGeNet
rankings were calculated using one-sided Fisher’s exact
test and FDR adjusted by q-value.

3. Results

3.1. Differential MiRNA expression

The analysis of the two sample groups (Normal and
Cancer) showed, in total, 56 differentially expressed
miRNAs with a p value < 0.05 (Fig. 1). Of those, three
were overexpressed in the GIST group (hsa-miR-196a-
5p, hsa-miR-148a-3p, and hsa-miR-125a-5p) while the
others are downregulated, all with at least 2-fold dif-
ference between groups. Highlighted by downregula-
tion are hsa-let-7f-5p, hsa-miR-126-3p, hsa-miR-222-
3p, hsa-miR-146a-5p and hsa-miR-218-5p with fold
differences ranging from 31.95 to 180.27-fold. Table 2
showcases all the dysregulated miRNAs in GIST with
their respective metrics.



240 I.K. Stefanou et al. / miRNAs and GIST

Table 2
Differentially expressed miRNAs in GIST. Fold regulation is based on the
2−∆∆Ctmethod while p-values derive from a student t-test between GIST and
healthy samples. FDR was calculated using the Benjamini-Hochberg method

miRNA miRNA family Fold regulation p-value FDR
hsa-miR-196a-5p mir-196 24.61 0.00163 0.005995
hsa-miR-148a-3p mir-148 11.84 0.00461 0.007874
hsa-miR-125a-5p mir-10 10.94 0.00394 0.007874
hsa-miR-7-5p mir-7 −2.39 0.01173 0.012632
hsa-miR-181c-5p mir-181 −2.71 0.02348 0.02348
hsa-miR-372-3p mir-290 −2.90 0.00726 0.009423
hsa-miR-19a-3p mir-19 −2.95 0.00655 0.009226
hsa-miR-15a-5p mir-15 −2.97 0.00822 0.00959
hsa-miR-127-5p mir-127 −3.34 0.01100 0.012078
hsa-miR-181d-5p mir-181 −3.47 0.00484 0.007972
hsa-miR-133b mir-133 −3.98 0.00752 0.009423
hsa-miR-122-5p mir-122 −4.48 0.00749 0.009423
hsa-miR-214-3p mir-214 −4.58 0.00067 0.005995
hsa-miR-184 mir-184 −4.74 0.00133 0.005995
hsa-miR-378a-3p mir-378 −4.84 0.00095 0.005995
hsa-miR-10a-5p mir-10 −5.18 0.00299 0.007163
hsa-miR-301a-3p mir-130 −5.35 0.00937 0.010709
hsa-miR-150-5p mir-150 −5.65 0.00563 0.008627
hsa-let-7a-5p let-7 −5.67 0.00659 0.009226
hsa-miR-132-3p mir-132 −5.67 0.00570 0.008627
hsa-miR-16-5p mir-15 −6.00 0.01926 0.01961
hsa-miR-191-5p mir-191 −6.16 0.00276 0.007025
hsa-miR-373-3p mir-373 −6.19 0.00143 0.005995
hsa-miR-215-5p mir-192 −6.56 0.00264 0.007025
hsa-miR-32-5p mir-32 −6.75 0.00447 0.007874
hsa-miR-135b-5p mir-135 −7.08 0.00377 0.007874
hsa-miR-21-5p mir-21 −7.11 0.01480 0.015638
hsa-miR-1-3p mir-1 −7.16 0.00394 0.007874
hsa-miR-29b-3p mir-29 −8.02 0.00069 0.005995
hsa-miR-100-5p mir-10 −8.45 0.00047 0.005995
hsa-miR-23b-3p mir-23 −8.45 0.00178 0.005995
hsa-miR-142-5p mir-142 −8.60 0.00811 0.00959
hsa-miR-27a-3p mir-27 −8.63 0.00451 0.007874
hsa-miR-335-5p mir-335 −9.51 0.00214 0.006658
hsa-miR-200c-3p mir-8 −9.57 0.00522 0.008352
hsa-miR-20b-5p mir-17 −9.95 0.00070 0.005995
hsa-miR-155-5p mir-155 −10.26 0.01092 0.012078
hsa-miR-27b-3p mir-27 −10.33 0.00696 0.009423
hsa-miR-96-5p mir-96 −11.07 0.00149 0.005995
hsa-miR-181b-5p mir-181 −11.11 0.00464 0.007874
hsa-miR-20a-5p mir-17 −11.46 0.00182 0.005995
hsa-miR-17-5p mir-17 −11.83 0.00774 0.009423
hsa-miR-149-5p mir-149 −11.83 0.00155 0.005995
hsa-miR-18a-5p mir-17 −13.59 0.00273 0.007025
hsa-miR-128-3p mir-128 −13.68 0.00251 0.007025
hsa-miR-193b-3p mir-193 −14.92 0.00760 0.009423
hsa-miR-205-5p mir-205 −16.44 0.00376 0.007874
hsa-let-7c-5p let-7 −17.26 0.00048 0.005995
hsa-miR-134-5p mir-134 −19.62 0.00179 0.005995
hsa-miR-25-3p mir-25 −19.96 0.00592 0.008724
hsa-miR-148b-3p mir-148 −22.46 0.00307 0.007163
hsa-let-7f-5p let-7 −31.98 0.01581 0.016396
hsa-miR-126-3p mir-126 −43.99 0.00075 0.005995
hsa-miR-222-3p mir-221 −58.65 0.00451 0.007874
hsa-miR-146a-5p mir-146 −69.74 0.00121 0.005995
hsa-miR-218-5p mir-218 −180.27 0.00078 0.005995
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Fig. 1. Volcano plot of all 84 miRNAs in our assay. Red dots represent miRNAs with a −1 <log2FC> 1 (Fold Regulation of at least 2) and
−log10p > 1.31 (p < 0.05, Student t-test).

Fig. 2. Overall Accuracy and Kappa for the seven models trained and validated on our miRNA dataset.



242 I.K. Stefanou et al. / miRNAs and GIST

Fi
g.

3.
To

p
20

pr
ed

ic
to

rs
fo

re
ac

h
m

od
el

ra
nk

ed
by

im
po

rt
an

ce
.



I.K. Stefanou et al. / miRNAs and GIST 243

Fig. 4. Validation of the miRNA predictors using Disease Ontology and the DisGeNet database. Lists of validated and predicted target interactions
were used and the top 30 results are represented ranked by adjusted p-value (q-value of one-sided Fisher’s exact test).

3.2. Machine learning models

As described in our methodology, we trained and
validated seven classification models on the normal-
ized miRNA expression data. For each one the mean
Accuracy and Kappa was calculated along with their
percent of false negative hits. The Random Forest (rfor-
est), Classification And Regression Trees (rpart) and
Bootstrap Aggregating of Classification And Regres-
sion Trees (CARTbag) models performed similarly hav-
ing mean accuracies of 99.58%, 99.5% and 9933% re-
spectively. These were followed by the C5.0 (C50), k-
nearest neighbors (KNN), and support vector machine
(SVM) models which had mean accuracies of 95.91%,
89.58%, and 86.67% respectively. All models were ap-
plied without individual tuning, which might increase
their performance. Figure 2 shows the total Accuracy
and Kappa for each model. What was more important
for us, was to see which miRNAs each model picked

as predictors for distinguishing sample groups. Fig-
ure 3 shows the top 20 preferred predictors (miRNAs
which can predict if a sample belongs to the normal or
GIST group) along with their percent importance for
each model. Unfortunately the models could provide
a consensus only on hsa-mir-218-5p and most of them
agreed on some subsets. For example the C5.0 model
only accounted for hsa-mir-218-5p as the sole predic-
tor. For this reason we applied a Recursive Feature Ex-
traction (RFE) algorithm to identify a subset of our
miRNAs which can best explain our sample groupings.
The RFE algorithm reported 100% accuracy and Kappa
when using groupings of 1, 4, 5, 6, 9 and 10 miRNAs.
We wanted our downstream analysis to be as broad
as possible, so we selected the grouping of ten miR-
NAs which included hsa-miR-218-5p, hsa-miR-222-
3p, hsa-miR-196a-5p, hsa-let-7c-5p, hsa-miR-125a-5p,
hsa-miR-126-3p, hsa-miR-146a-5p, hsa-miR-149-5p,
hsa-miR-30c-5p, and hsa-miR-148a-3p.
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3.3. miRNA target identification and functional
analysis

Using the 10 miRNAs previously identified we per-
formed a miRNA-target analysis using databases which
provide both validated and predicted interactions. The
validated results included 21,648 miRNA-gene inter-
actions, whereas, the predicted results were 34710
(∼ 40% of them were shared between the result lists).
To validate both lists we used the Disease Ontology and
DisGeNet database. Figure 4 shows the results of both
databases for the validated and predicted gene targets.
It is apparent that the results provided by the validated
targets list in more oriented towards neoplastic pheno-
types and directly associate our miRNA predictors with
cancer. Finally, to further elucidate the biological back-
ground of our predictors we enriched their validated
targets through Gene Ontology using the Biological
Process and Molecular Function annotations (Fig. 5).

4. Discussion

Several studies have identified the differential ex-
pression of miRNAs in GISTs and have shown clearly
different miRNA profiles between GIST and non-
cancerous tissues. In the present study, in addition to
studying the expression of 84 miRNAs involved in the
carcinogenesis of gastric GIST, we also utilized a ma-
chine learning in order to find a miRNA profile that
can predict the risk for GIST development. Most of the
miRNAs that we found to be differentially expressed
in our samples have been previously shown to be as-
sociated with GIST [11,27–30] In agreement with pre-
vious studies hsa-miR-196a-5p, hsamiR-148a-3p and
hsamiR-125a-5p were found to be significantly upregu-
lated in our cohort, whereas hsamiR- let-7f-5p, hsamiR-
126-3p, hsa-miR-222-3p, hsa-miR-146a-5p, hsa-miR-
218-5p among others were found to be significantly
downregulated [11,28–32]. It is important to note that
these miRNAs directly target fundamental genes in
GIST pathogenesis like KIT/AKT, PDGFRA pathways,
and have also been found as crucial carcinogenesis me-
diators in other gastrointestinal cancers such as gastric
cancer [30,33,34].

The miRNAs that were differentially expressed were
used to construct a machine learning classifier approach
to pinpoint the miRNAs that could be independently
related to GIST risk prognosis. All the risk models we
used based on miRNA expression, seem to have a high
accuracy for GIST risk prediction. Hsa-miR-218-5p

was found to be the best predictor for GIST develop-
ment in our cohort. Hsa-miR-218-5p serves as tumor
suppressor in numerous cancer types. Its role in GIST
has been reported in a few studies. Fan et al. [30] in
agreement with our findings, reported that the expres-
sions of miR-218 in tumor tissue and GIST cell lines
were significantly decreased compared to the normal
GISTadjacent tissue, and found that miR-218 can neg-
atively control the expression of the KIT protein and
inhibit the proliferation and invasion of GIST cells. Ad-
ditionally it has been suggested that miR-218 increases
the sensitivity of GIST to imatinib and more specifically
that the expression of miR-218 is down-regulated in an
imatinib mesylate-resistant GIST cell line (GIST430),
while miR-218 over-expression can enhance the sensi-
tivity of GIST cells to imatinib mesylate [35].

Hsa-miR-146a-5p, hsa-miR-222-3p, and hsa-miR-
126-3p exhibit significantly lower expression levels in
GIST cases compared to controls in our study and were
among the top predictors in all of our models. The role
of hsa-miR-146a-5p has not yet been investigated in
GIST cases, but it is known that it acts as a tumor sup-
pressor miRNA in some cancers (ie non-small cell lung
cancer, esophageal squamous cell cancer, pancreatic
cancer), and as an oncogenic miRNA in others (i.e.
bladder cancer, cervical cancer, melanoma) [36]. Al-
though, In a number of neoplasms, controversial re-
sults have been produced; for example, in gastric cancer
there is evidence indicating a tumor suppressive role for
miR-146a, but several studies have provided support
for the opposite [37,38]. Regarding hsa-miR-222-3p, in
agreement with our results, it has been found reduced in
most GISTs, in contrast to other tumors [39], however
the functional role of this downregulation is not fully
understood. Ihle et al. suggested that miR-222 down-
regulation induces apoptosis in vitro by a signaling cas-
cade involving KIT, AKT and BCL2, and this miRNA
appears to functionally counteract oncogenic signaling
pathways in GIST [40]. Hsa-miR-126-3p has not been
extensively studied in GISTs but Choi et al. reported
that it was down-regulated in high risk GISTs and is
implicated in cell cycle arrest, cell growth and death [9].
Also, in other cancers like non-small-cell lung cancer
(NSCLC), hepatocellular carcinoma (HCC), cholangio-
carcinoma (CCA) miR-126-3p’s expression in tumor
tissues was also decreased [41]. Our results demonstrate
that the previously mentioned miRNA signatures can
be predictive indicators for GIST development.

The analysis of the miRNA-target regulatory net-
works shows mainly the involvement of neoplastic phe-
notypes and that our miRNA predictors are directly as-
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sociated with cancer. The gene ontology analysis was
significantly enriched in chromatin remodeling and his-
tone modification, whereas molecular function focused
on the regulation of cell adhesion molecules and cad-
herin binding. Indeed, it is strongly believed that epi-
genetic phenomena including chromatin modifications
underlie GIST tumorigenesis and influence the clinical
course and response to treatment [42]. Additionally,
cell adhesion molecules like L1 cell adhesion molecule
(CD171) overexpression predicts poor prognosis in
GISTs [43] and E-cadherin significant under-expression
was closely related to metastasis of GISTs [44]. There-
fore, the miRNA expression may influence the GIST
prognosis via the regulation of important pathways re-
lated to carcinogenesis.

Even though we performed comprehensive machine
learning and bioinformatics analyses using the miRNA
expression profile of GIST and confirmed the classifica-
tion accuracy by cross-validation, there are some limi-
tations in our study. The sample size was small since we
only used gastric GIST in order to have a homogenous
population, and our samples were from one surgery
clinic. Due to the limited sample availability the study
lacks validation experiments to assess the expression
of the predictive miRNAs and the corresponding tar-
get genes. Our high accuracy scores are not caused by
overfitting but are prone to exaggeration due to cross-
validation. This can be amended in future works by
using larger datasets that can effectively be partitioned
into different training and validations sets. Therefore
further studies are needed to support our findings.

In conclusion, a Machine Learning classification ap-
proach may be accurate in determining the risk for GIST
development in patients. Moreover a small number of
miRNAs, with hsa-miR218-5p as a focus, may strongly
affect the prognosis of GIST.
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