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Abstract. The term “neural plasticity” was first used to describe non-pathological changes in neuronal structure. Today,
it is generally accepted that the brain is a dynamic system whose morphology and function is influenced by a variety of
factors including stress, diet, and exercise. Neural plasticity involves learning and memory, the synthesis of new neurons, the
repair of damaged connections, and several other compensatory mechanisms. It is altered in neurodegenerative disorders and
following damage to the central or peripheral nervous system. Understanding the mechanisms that regulate neural plasticity
in both healthy and diseased states is of significant importance to promote cognition and develop rehabilitation techniques
for functional recovery after injury. In this minireview, we will discuss the mechanisms by which environmental factors
promote neural plasticity with a focus on exercise- and diet-induced factors. We will highlight the known circulatory factors
that are released in response to exercise and discuss how all factors activate pathways that converge in part on the activation
of BDNF signaling. We propose to harness the therapeutic potential of exercise by using BDNF as a biomarker to identify
novel endogenous factors that promote neural plasticity. We also discuss the importance of combining exercise factors with
dietary factors to develop a lifestyle pill for patients afflicted by CNS disorders.
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INTRODUCTION

Neural plasticity is defined as the ability of the
nervous system to perform adaptive structural and
functional changes [1]. Impaired neural plasticity is
observed in central nervous system (CNS) disorders
[2] including psychiatric diseases such as depression
[3]. Neural plasticity is influenced by environmental
factors such as exercise, diet and stress [4]. Exercise
promotes neural plasticity primarily by inducing the
release of metabolites and proteins from the muscle,
liver and bones that converge on the activation of hip-
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pocampal brain derived neurotrophic factor (BDNF)
[5–12] signaling. The activation of BDNF signaling
increases synaptogenesis, neurogenesis, angiogene-
sis and gliogenesis [13]. It also enhances cerebral
blood flow [14], increases grey and white matter vol-
ume [15–17], and mediates neuronal activity [18–21].
As a result, exercise has been linked to improved cog-
nitive and motor function. The composition of the
human diet is also linked to changes in neural plas-
ticity. Indeed, different dietary factors either promote
or inhibit neural plasticity.

In this minireview, we will highlight the com-
mon pathways that are modulated by the liver-brain,
muscle-brain, and bone-brain axes to induce neu-
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ronal plasticity. We will specifically focus on the
convergence of the different circulatory factors that
regulate neural plasticity on Bdnf expression and sig-
naling in the brain. Our discussions will highlight the
importance of using Bdnf expression and signaling
as a biomarker to identify novel exercise and dietary
factors that can be of therapeutic value. These discus-
sions will also pave the way to completing the puzzle
of how the different organ systems interact with the
brain to modulate its responses.

ENVIRONMENTAL FACTORS INVOLVED
IN NEURAL PLASTICITY

Two important environmental factors that modu-
late neural plasticity are exercise and diet. Exercise
activates the liver-brain, muscle-brain and bone-brain
axes to modulate neural plasticity. We will next focus
on how exercise and dietary signals are integrated in
the brain to promote neural plasticity.

EXERCISE-INDUCED FACTORS AND
NEURAL PLASTICITY

Exercise promotes healthy brain function and
improves the symptoms of a wide range of neu-
rodegenerative diseases [22–24]. These effects are
achieved by promoting neural plasticity [25, 26]. For
example, mice with access to a running wheel exhibit
a significant increase in hippocampal neurogenesis
and enhanced spatial and temporal memory [27].
Magnetic resonance imaging (MRI) studies revealed
that extended voluntary exercise increases hippocam-
pal volume in mice [28]. Similar findings were also
reported in human studies. MRI was used to show that
adults who practiced moderate-intensity exercise for
12 weeks have significant increases in the volume
of several brain regions, especially the hippocampus
[29]. Altogether, these findings suggest that physi-
cal activity improves cognitive functions by inducing
structural changes in different brain regions.

Exercise mediates its positive effects on the brain
by activating several distinct pathways including neu-
rotrophic and angiogenic pathways. One important
pathway that is induced by exercise is BDNF sig-
naling. In animal models, exercise induces BDNF
expression in the hippocampus [30]. For example,
middle-age rats that undergo daily treadmill exer-
cise have increased hippocampal BDNF protein and
mRNA levels as well as enhanced spatial memory
and object recognition [31, 32]. BDNF production
provides trophic support and increases synaptogen-

esis and dendritic and axonal branching and spine
turnover. Blocking BDNF signaling inhibits the
exercise-mediated improvement of spatial learning
tasks [33] as well as the exercise-induced expres-
sion of synaptic proteins [34]. Moreover, mice with
a single nucleotide polymorphism in the BDNF gene
Val66Met (BDNFMet/Met) have impaired exercise-
induced neural plasticity [35]. BDNF promotes
neural plasticity by activating tropomyosin receptor
kinase B (TrkB) [36]. Exercise fails to promote neu-
rogenesis and to enhance neural plasticity in TrkB
deficient mice [37]. In humans, aerobic exercise train-
ing induces an increase in serum BDNF levels. This is
associated with an increase in the volume of the hip-
pocampus, suggesting that exercise-induced BDNF
expression could reverse hippocampal volume loss
and expand spatial memory [38]. Indeed, exercise
induces hippocampal BDNF signaling through an
elaborate coordinated response that involves several
tissues and organs.

Exercise activates cross-talk between different tis-
sues and the brain. It promotes the liver, muscles
and bones to release factors into the circulation that
reach the brain and promote learning, memory for-
mation and neural plasticity [10, 11]. Not all the
potential exercise factors have been identified or care-
fully studied. However, careful examination of what
is currently known about exercise factors reveals that
they activate converging and redundant pathways in
the brain with BDNF signaling playing a pivotal role
in the integrated response. Indeed, the integrated and
beneficial effect of circulating exercise factors on
cognitive function and neural plasticity is mediated
in large part through the induction or activation of
hippocampal BDNF signaling [5, 9–12, 39]. From
here, hippocampal BDNF expression can be used as
a biomarker to identify novel exercise factors that
can become part of a comprehensive treatment for
CNS disorders such as depression. Currently a lim-
ited number of exercise factors have been identified
and have been shown to regulate the communication
between the liver, muscle, bones and the brain. We
will discuss what is known about these exercise fac-
tors below, while highlighting how they all regulate
BDNF signaling supporting the usefulness of using
this pathway as a biomarker to identify novel exercise
factors that may have therapeutic relevance.

Liver-brain axis

Upon exercise, the liver secretes the ketone body
beta-hydroxybutyrate (BHB) [9], as well as the
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protein, glycosylphosphatidylinositol-specific phos-
pholipase D1 (Gpld1) [6]. BHB is a specific inhibitor
of the class I histone deacetylases [40] that increases
BDNF levels in the hippocampi of mice [9, 41] and
rescues neurogenesis in the dentate gyrus of adult
mice [42]. Similar to BHB, Gpld1 promotes BDNF
protein expression and in turn rescues impaired neu-
rogenesis and several age-related cognitive deficits
[6].

Muscle-brain axis

The muscle also secretes several factors during
exercise that regulate neural plasticity by induc-
ing BDNF expression [5, 8, 12, 43]. Such factors
include the myokine FNDC5 and its cleavage prod-
uct irisin [7, 12], lactate [5], cathepsin B [44] and
�-ketoglutaric acid (AKG) [45].

Increases in FNDC5 levels in cortical neuronal
cultures enhance BDNF levels, thereby promoting
neural plasticity [12]. This increase in FNDC5 is
mediated through the exercise-dependent activation
of Peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (PGC1a) [12]. Moreover, periph-
eral delivery of FNDC5 also induces hippocampal
BDNF expression [12]. Indeed, exercise-induced
FNDC5 and its cleavage product irisin are effective
in rescuing neural plasticity deficits in AD mouse
models [46] and depression models [47–49].

Lactate is also an exercise factor released by the
muscle and delivered by the blood to the hippocampus
where it promotes spatial learning, memory for-
mation and rescues depression-like symptoms [5,
50]. Lactate promotes neural plasticity by induc-
ing the expression of plasticity-related genes such
as BDNF, activity-regulated cytoskeleton-associated
gene (Arc), c-Fos, and the zinc finger-containing tran-
scription factor 268 (Zif268) gene [5, 43, 51]. This
induction is downstream of Sirt-1 dependent acti-
vation of the PGC1a/FNDC5 pathway [5] and can
also be mediated through stimulation of N-methyl
D-aspartate (NMDA) receptor activity [43, 51]. Inter-
estingly, blocking the monocarboxylate transporter
that is responsible for both lactate as well as BHB
uptake into neurons abolishes exercise’s ability to
promote learning and memory formation [5]. This is
consistent with both lactate and BHB being necessary
for voluntary exercise’s positive effects on learning
and memory formation.

During exercise, the muscle releases Cathepsin
B, which in turn induces the expression of dou-
blecortin and BDNF in adult hippocampal progenitor

cell cultures [44]. Blocking cathepsin B prevents neu-
rite outgrowth, indicating that this exercise factor is
involved in neural plasticity [8]. It is important to
block BDNF signaling in order to determine whether
it is indeed responsible for cathepsin B’s effects.

Finally, the muscle releases multiple Kreb’s cycle
intermediates during exercise. For example, the mus-
cle releases AKG during resistance exercise [45].
This metabolite extends the life span of aging mice
by regulating inflammatory processes [52]. Whether
this endogenous metabolite is another exercise factor
that regulates neuronal plasticity and rescues cog-
nitive deficits associated with neurodegeneration or
social avoidance associated with depression and the
involvement of BDNF signaling needs to be further
investigated.

Bone-brain axis

The bones have emerged as an endocrine organ
that releases osteocalcin during exercise. A single
session of a high-intensity interval exercise in seden-
tary males increases osteocalcin levels. Increases
in osteocalcin levels are tightly associated with
increases in BDNF expression and neural plas-
ticity [53]. Osteocalcin is released by the bones
into the circulation, crosses the blood brain barrier
(BBB) and activates the G Protein-Coupled Recep-
tor 158 (GPR158) receptors in the hippocampus
[54]. This signaling pathway promotes hippocampal-
dependent memory through the activation of the
inositol 1,4,5-trisphosphate and BDNF pathways
[54]. Interestingly, osteocalcin is necessary for the
ability of plasma from young animals to rescue
cognitive deficits in aging animals [54]. Indeed,
even though osteocalcin is not expressed in the
brain of mice, its genetic deletion leads to impaired
cognitive behavior and increased depression and
anxiety-like behavior [55]. Taken together, current
evidence emphasizes the importance of this bone-
derived protein for the proper function of the brain.
However, it is important to determine whether osteo-
calcin is both necessary and sufficient to mediate the
effects of exercise.

DIET AND NEURAL PLASTICITY

Another lifestyle factor that is tightly linked to
exercise and that regulates neural plasticity is diet
[56]. Diets rich in factors such as BHB and lactate
that are released in response to exercise also mediate
neural plasticity. Interestingly, like exercise, multiple
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diets and dietary factors that enhance neural plastic-
ity also converge in part on their ability to activate
BDNF signaling in the brain.

Multiple studies have highlighted the impor-
tance of different dietary factors and their ability
to modulate neural plasticity [57]. For example,
omega-3 fatty acids have long-lasting effects that
persist in adulthood. These fatty acids are structural
components of the brain and are crucial for neu-
ronal membrane synthesis [58]. Adolescents with
increased levels of omega-3 fatty acids have reduced
risks of developing psychotic disorders [59]. Both
enhanced emotional function and memory improve-
ment are observed in rats fed with omega-3 fatty
acids [60, 61]. Three omega-3 fatty acids – �-
linolenic acid (ALA), eicosapentaenoic acid (EPA),
and docosahexaenoic acid (DHA)- increase neuro-
genesis, promote long-term potentiation, induce the
expression of synaptic proteins and enhance cognitive
function and mood [62]. Liu and colleagues (2015)
demonstrated that injection of DHA in two different
rodent models of spinal cord injury promotes neu-
ral plasticity by inducing anatomical sprouting [63].
DHA also normalizes BDNF levels, reduces oxida-
tive damage, and counteracts learning disability after
traumatic brain injury in rats [64]. Combined supple-
mentation of vitamin B12 and omega-3 fatty acids
increases NGF levels in the hippocampus, and BDNF
in both hippocampus and cortex and decreases refer-
ence and working memory error in rats [65].

Other dietary factors that regulate the expression of
genes involved in neural plasticity are ketone bodies
[66]. Like exercise, intermittent metabolic switching
is linked to the production of ketones such as BHB
and acetoacetate (ACA) [67]. Low carbohydrate and
protein diets that are enriched in fat, such as the keto-
genic diet, promote the synthesis of ACA and BHB
in the liver [68]. BHB in turn upregulates the expres-
sion of BDNF, promoting synaptic plasticity through
the activation of tyrosine kinase receptors that stim-
ulate synaptogenesis, neuroplasticity, and neuronal
survival [9, 39]. In an uncontrolled intervention study
in which sedentary obese adults followed a 12-week
ketogenic diet, serum BDNF levels were significantly
increased within the first 2 weeks. This increase was
associated with enhanced working memory and pro-
cessing speed [69].

High protein diets rich in branched chain amino
acids (BCAA) rescue social deficits induced by
chronic stress and increase BDNF expression in
the hippocampus [48]. Inhibition of TRKB sig-
naling abolishes the ability of BCAA to promote

resilience to stress and to rescue social avoidance
[48]. Interestingly, BCAA activate the exercise-
regulated PGC1a/FNDC5 pathway known to induce
hippocampal BDNF signaling. Although both vol-
untary exercise and BCAA promoted resilience to
stress, combining them did not yield synergistic
effects confirming that they affect similar pathways
[48].

Finally, the Mediterranean diet has neuroprotective
effects [70]. This diet depends on the extensive use
of olive oil, as well as the consumption of fish, and
meat along with the moderate intake of wine [71].
This diet is rich in olive oil constituents, omega-3
fatty acids, and polyphenols that exert antioxi-
dant and anti-inflammatory effects, and promote the
expression of BDNF, leading to increased neural plas-
ticity and cell survival [72]. The Mediterranean diet
also increases serum levels of osteocalcin which is
known to increase BDNF levels in the hippocampus
[73, 74].

It is worthwhile to mention that not all dietary fac-
tors are beneficial; some may be detrimental to neural
plasticity, cognitive functions and stress responses.
For example, prolonged consumption of a high-fat
diet exacerbates depressive-like behaviors in male
adult rats, as well as decreases synaptic markers
within the hippocampus. This suggests that chronic
intake of this diet has detrimental effects on neural
plasticity and behavioral function [75]. Interestingly,
BDNF levels oscillate during the consumption of a
high-fat diet; initially, levels increase, but progres-
sively they fall below baseline levels after long-term
consumption [76]. In addition, Fusco and colleagues
(2019) suggested that a maternal high-fat diet could
have multigenerational negative effects on synaptic
plasticity through epigenetic mechanisms that inhibit
BDNF expression in the hippocampus of the progeny.
Epigenetic modifications that are related to gene acti-
vation, such as H3K9ac and H3K4me3, were found
to be decreased in the germline and hippocampus
of male descendants of mothers consuming this diet
[77].

Altogether, the aforementioned studies provide
strong evidence for the important roles played by
dietary factors in regulating neural plasticity. Reg-
ulation of BDNF expression in response to metabolic
changes and diet serves as a pivot linking periph-
eral factors to neural plasticity. Interestingly, diet is
a key modifiable factor that regulates neural plas-
ticity by influencing the composition of the gut
microbiota and in turn the bidirectional interplay
between the gut and the brain. The role of BDNF
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in this interplay needs further investigation. In addi-
tion, different combinations of dietary factors and
exercise factors need to be tested to identify com-
binations that may yield synergistic effects on neural
plasticity.

CLINICAL IMPLICATIONS

The exercise and dietary factors discussed con-
verge on regulation of BDNF signaling. Defects in
BDNF signaling are observed in a number of dis-
eases. Post-mortem studies in AD patients show
significantly decreased BDNF expression in the hip-
pocampus, and cortex [78, 79]. In addition, decreased
levels of BDNF are observed in the cortex of
AD mouse models [80, 81]. Conversely, BDNF
gene delivery to the brain of transgenic AD mice
prevents neuronal loss and synaptic degeneration
and enhances neurogenesis [82]. In rats, exogenous
BDNF treatment decreases the A� peptide in brains
[83]. Neuroprotective effects were also observed in
non-human primate models of AD [84]. Reduced
BDNF mRNA is measured in dopaminergic neurons
in Parkinson’s disease (PD) [85]. In Huntington’s
disease (HD), the presence of mutant Huntingtin
results in aberrant BDNF transport and in decreased
BDNF expression [86, 87]. Indeed, symptomatic HD
patients who exhibit impaired motor function have
significantly lower BDNF levels [88].

Since BDNF signaling is disrupted in a wide
array of CNS disorders, there have been considerable
efforts to develop BDNF as a therapeutic (reviewed
in [89]). Despite the encouraging preclinical data,
the ability to deliver BDNF to the brain remains a
challenge. This is because it is a polar protein that
doesn’t easily cross the BBB. This necessitates its
direct delivery into the brain. Indeed, several clinical
trials were conducted to assess the neuroprotective
effect of exogenous BDNF administration. Clinical
trials did not show any significant effects on survival
following either subcutaneous/intrathecal recombi-
nant BDNF administration. However, further analysis
of these studies suggests that the trials failed because
BDNF could not cross the BBB to reach the degener-
ating neurons [89]. Indeed, the use of the recombinant
BDNF protein is hampered by protein degradation,
and an inability to cross the BBB in significant quan-
tities. The use of viral vectors may also activate the
immune response, induce mutations and overload
the neurons with excess BDNF, which is associated
with epilepsy. As a result, harnessing the therapeutic

potential of endogenous pathways that can promote
BDNF signaling in the brain may serve as a strategy
to overcome the difficulties associated with BDNF
delivery. From here, focusing on identifying endoge-
nous exercise factors and dietary factors that can
easily cross the BBB to induce BDNF signaling at
physiological levels and not pathological levels can
allows us to assemble an exercise/diet pill that can be
tested as a therapeutic for CNS disorders. As men-
tioned previously, it is important to control for age
and sex differences while assembling this pill.

CONCLUSIONS

During physical activity, the liver, muscles and
bones release a host of factors that include proteins
and metabolites into the circulation. These circula-
tory exercise factors cross the BBB, and increase
BDNF expression resulting in enhanced neural plas-
ticity, spatial learning and memory formation [5, 12,
44]. It is clear that the composition of the circula-
tory factors following exercise dramatically changes
[6]. Indeed, blood transfusion experiments revealed
that these factors mediate the effects of exercise on
neurogenesis and cognition [6]. It is important to
systematically assess the available proteomic and
metabolomic data to identify novel exercise factors
that promote neural plasticity. Considering that a
vast majority of the currently established exercise
factors mediate their function through activation of
hippocampal BDNF signaling and considering the
disruptions in BDNF signaling observed in CNS
diseases, rapid screens of the top identified metabo-
lites and proteins to determine their ability to induce
BDNF can help in narrowing down the search for
novel components of an exercise pill. An important
consideration is the need to assess the effectiveness
of the exercise factors across different sexes and age
groups. Most of the beneficial effects of the currently
known exercise factors have been primarily identi-
fied in young males. Thus, it is important to compare
the composition of the circulatory factors in males
versus females as well as in younger versus older
animals. Such studies will help in developing per-
sonalized exercise pills that could vary according to
the age or sex of the individual requiring treatment.
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