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Review

Flavonoids as an Intervention for
Alzheimer’s Disease: Progress and Hurdles
Towards Defining a Mechanism of Action1

Katriona L. Hole and Robert J. Williams*
Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, UK

Abstract. Attempts to develop a disease modifying intervention for Alzheimer’s disease (AD) through targeting amyloid
� (A�) have so far been unsuccessful. There is, therefore, a need for novel therapeutics against alternative targets coupled
with approaches which may be suitable for early and sustained use likely required for AD prevention. Numerous in vitro
and in vivo studies have shown that flavonoids can act within processes and pathways relevant to AD, such as A� and tau
pathology, increases in BDNF, inflammation, oxidative stress and neurogenesis. However, the therapeutic development of
flavonoids has been hindered by an ongoing lack of clear mechanistic data that fully takes into consideration metabolism
and bioavailability of flavonoids in vivo. With a focus on studies that incorporate these considerations into their experimental
design, this review will evaluate the evidence for developing specific flavonoids as therapeutics for AD. Given the current
lack of success of anti-A� targeting therapeutics, particular attention will be given to flavonoid-mediated regulation of tau
phosphorylation and aggregation, where there is a comparable lack of study. Reflecting on this evidence, the obstacles that
prevent therapeutic development of flavonoids will be examined. Finally, the significance of recent advances in flavonoid
metabolomics, modifications and influence of the microbiome on the therapeutic capacity of flavonoids in AD are explored.
By highlighting the potential of flavonoids to target multiple aspects of AD pathology, as well as considering the hurdles,
this review aims to promote the efficient and effective identification of flavonoid-based approaches that have potential as
therapeutic interventions for AD.
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ALZHEIMER’S DISEASE: THE NEED FOR
NOVEL THERAPEUTICS

At the time of writing, there are at least 50 million
people living with dementia worldwide [1]. Due to

1This article received a correction notice (Erratum) with
the reference: 10.3233/BPL-239000, available at http://doi.org/
10.3233/BPL-239000.

∗Correspondence to: Dr. Robert J. Williams, Department of
Biology and Biochemistry, University of Bath, Bath, BA2 7AY.
Tel.: +44 (0)1225 386553; E-mail: r.j.williams@bath.ac.uk.

increasing life expectancies, this is predicted to triple
by 2050, and yet there are still no therapeutics capable
of preventing or slowing the onset of dementia. The
most common cause of dementia, Alzheimer’s dis-
ease (AD), is a neurodegenerative disease that is
traditionally characterized by deposition of amyloid
plaques and neurofibrillary tangles (NFTs), caused by
amyloid � peptide (A�) and tau aggregation respec-
tively. More recently, chronic neuroinflammation and
gliosis have joined plaques and tangles as hallmarks
of AD. One of the major obstacles to preventing AD
progression is that by the time a clinical diagnosis
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has been given, irreversible brain atrophy has already
occurred (Fig. 1), and pathological cascades are well
developed.

The amyloid cascade hypothesis (ACH) postulates
that it is the accumulation of A� oligomers that
initiates a downstream cascade causing neuroinflam-
mation, tau-induced toxicity, synaptic dysfunction
and neuronal loss [2]. Support for this hypothe-
sis comes from the identification that mutations in
the amyloid precursor protein (APP), presenilin-1
(PS1) [3, 4] and presenilin-2 (PS2) [5, 6], which
either enhance the accumulation of A� or promote
an increased ratio of the longer, more aggregation
prone A�1–42 over A�1–40 [7–9], are sufficient to
cause early onset familial AD (FAD) [10]. APP can
be processed in either a non-amyloidogenic path-
way, driven by the �-secretase enzyme ADAM10,
or in a pro-amyloidogenic pathway involving the
�-secretase enzyme BACE1. Following cleavage
by either of these enzymes, there is a second
cleavage event by �-secretase which yields either
p3 (non-amyloidogenic) or A� (pro-amyloidogenic)
(Fig. 1A). Presenilin forms the catalytic subunit of
the �-secretase enzyme complex [11]. According to
the ACH, the failure to clear A�1–42 initiates conse-
quent pathological pathways that lead to the onset of
dementia [2]. This hypothesis has been the foundation
for the development of many A�-targeting therapeu-
tics, with the idea that by targeting this initial A�
accumulation, the resulting toxic pathways can be
inhibited.

Disappointingly, therapeutics targeting APP pro-
cessing directly, such as BACE1 inhibitors, have
failed at Phase III [12], likely due to off target effects
[13]. Moreover, methods to reduce soluble and/or
aggregated forms of A� via antibody strategies have
had disappointing outcomes [14, 15], although, it
should be noted that recent reports claim that the
A�-targeting antibody Aducanumab meets its pri-
mary endpoint. It is becoming increasingly clear that
reducing the levels of A� in the brain is unlikely to
provide significant clinical benefit when delivered at
the stage of mild cognitive impairment (MCI) or later.
It is likely that, in order to be maximally effective,
the use of A�-targeting therapeutics will be required
from the start of, and throughout, the long prodromal
phase of AD. This limitation necessitates a strategic
shift, either switching attention to targets that corre-
late better with later stage disease progression, such
as neuroinflammation or tau, or sticking with the
existing targets but putting the focus on biomarker
development to enable better patient stratification

for earlier intervention. An additional approach is to
identify and validate safe and cost-effective lifestyle
interventions which could be widely implemented
throughout mid-life to reduce AD risk at a population
level.

Flavonoid rich diets: Impact on cognitive decline
and AD

Epidemiology has long suggested that diets rich in
polyphenols, such as the Mediterranean diet, might
slow age-related cognitive decline and some studies
indicate reduced risk of dementia [16, 17]. Moreover,
consumption of flavonoids, a large family of dietary
polyphenol compounds, decreases cognitive decline
with aging [18, 19]. Although direct evidence of a
reduction in AD is lacking, the available epidemio-
logical data does suggest that flavonoid consumption
has the potential to ameliorate AD pathology and
provide symptomatic benefit.

There are more than 5000 types of flavonoid, and
they are found almost ubiquitously in plants and
thus are widely available in the human diet. The
six main subclasses of flavonoids are: anthocyani-
dins, flavones, isoflavones, flavonols, flavanones, and
flavan-3-ols (flavanols) (Fig. 2). While flavonoids
are well known for their ability to act as antiox-
idants, it is clear that they are also capable of
regulating intracellular responses principally through
modulation of protein kinase signalling pathways
[20]. Furthermore, there is now a substantial and
growing body of evidence supporting the ability
of flavonoids to interfere in AD-related pathways
[21].

However, the development of flavonoids as ther-
apeutic interventions for AD has been hindered by
considerable uncertainty surrounding bioavailabil-
ity, metabolism and basic pharmacokinetics. In this
review emerging mechanistic evidence for flavonoid-
mediated modulation of AD pathways is evaluated,
with a focus on studies where genuine consideration
has been given to the bioavailability of flavonoids.
The metabolism and bioavailability of flavonoids
in both humans and animal models, including the
increasingly evident role of the gut-microbiome
to these outcomes will be highlighted. Consider-
ing this, approaches to improve the translatability
of flavonoids into therapeutics for AD will be
discussed. Finally, we will examine whether supple-
ment or more conventional drug design approaches
based on flavonoid scaffolds represents the best way
forward.
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Table 1
A summary of the results of flavonoid interventions in AD mouse models. Only interventions that used an oral method of delivery such as in water, diet, oral gavage (O.g.) or intragastric
administration (I.g.) were included. The method of delivery was classified as ‘orally’ where further detail was not supplied. Treatment times of 28–30 days were rounded to 1 month. A decrease
in A� pathology was classified as a decrease in the levels of soluble or insoluble A�1–40 or A�1–42, a reduction in visible A� plaques or a shift in APP processing. A decrease in gliosis involved
decreased levels of microglia or astroglia. Pro-inflammatory markers included iNOS, COX2, NF-κB, TNF-�, M-CSF ICAM-1, TLR4, NLRP3, IL-16, IL-1�, IL-6, IL-17A, IL-12p70 and the
JAK2/STAT3 pathway. Oxidative stress markers included Nrf2, SOD1, GPx, GSH, H2O2, MDA, CAT or HO-1. Synaptic markers included PSD95, SNAP23, SNAP25, Arc, Homer, Synaptotagmin,
Synapsin, Spinophilin, Gephyrin, Synaptophysin and glutamatergic receptor subunits. Evidence for pro-survival/neurogenesis included increases in BDNF, activation of the TrkA pathway and
inhibition of p75NTR pathway as well as decreased neuronal apoptosis and corresponding markers such as caspase-3. Improvement in the Morris Water Maze was classed as a reduced escape
latency, an increased time spent in the target quadrant and an increase in the number of platform crossings. (�) A significant effect was found; (×)no significant effect was found; (–) this variable

was not investigated. * Oxidative stress was identified as a decrease in anti-oxidative enzymes

Flavonoid Mouse Model Concentration Duration Method ↓�-Amyloid ↓p-Tau ↓Gliosis ↓Pro- ↓ Oxidative ↑ Synaptic ↑Pro-Survival Improved Reference
(mg/kg/day) of Pathology inflammatory stress Markers Neurogenesis performance

Delivery Markers on MWM

7,8-DHF 5XFAD 5 2–6 months Orally � – – – – � � � [23]
Tg2576 (APPswe) 7 9–10 months Water × – – – – � � � [77]

Apigenin APPswe/PS1dE0 40 (5 days a
week)

4–7 months O.g. � – – – � – � � [24]

Baicalein APPswe/PS1dE9 40 5–7 months Water – – – – – – – � [25]
80 � � – � – � – �

Baicalin APPswe/PS1dE9 100 8–9 months
(sacrificed at
10months)

O.g. × – � � – – – – [163]

ICR injected with
A�42 into
hippocampus

30 2 weeks after
A�42 injection

O.g. – – – – – – – × [238]

50 – – – – – – – × [78]
100 – – � � – – – �

Cyanidin 3-O-�-
glucopyranoside

APPswe/PS1dE9 5 8–10 months O.g. – – – – – – – � [79])

Dihydromyricetin Tg-SwiDi 2 20–23 months Orally � – – – – � – – [26]
Diosmin 3xTg-AD 1 6–10 months Diet � – – – – – – – [27]

10 � – – – – – – –
EGCG TgCRND8 (APP) 50 2–6 months Orally � – – – – – – – [28]

SAMP8 5 60 days I.g. � – – – – – � � [29]
15 � – – – – – � �

APPswe/PS1dE9 2 12–13 months O.g. � – – � – � – � [30]
6 � – – � – � – �
2 9–10 months Water � – – – – – � � [31]
30 12–15 months O.g. � – – � �* � – � [32]
40 3–6 months Water � – � – – – – – [33]
2 9–10 months I.g. � – � � – – – – [34]
50 8–14 months Water � – – – – – – – [35])

(Continued)
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Table 1
(Continued)

Flavonoid Mouse Model Concentration Duration Method ↓�-Amyloid ↓p-Tau ↓Gliosis ↓Pro- ↓ Oxidative ↑ Synaptic ↑Pro-Survival Improved Reference
(mg/kg/day) of Pathology inflammatory stress Markers Neurogenesis performance

Delivery Markers on MWM

IcrTacSam mice with
intracerebroventricu-
lar injection of
A�42

1.5 3 weeks prior to
A�

Water � – – – – – � � [36]

3 � – – – – – � �
IcrTacSam mice with
daily i.p. injection of
LPS for 1 week

1.5 3 weeks prior to
LPS

Water – – – – – – – � [37]

3 � – � � – – � �
Ts65Dn 30 5–6 months Water – – – – – – – × [239]

(–)-Epicatechin APPswe/PS1dE9 40 3–12 months Diet � – � � – – – × [38]
50 8–12 months Water × – – – � – � × [131]

TASTPM
(APPswe/PS1
M146V)

15mg/day 21 Days from 7
months

Water � – – – – – – – [39]

Eriodictyol LPS injection for 10
days at day 35 of
Eriodictyol treatment

25 45 days from 3
months

I.g. – – – � – – – � [40]

50 � – – � – – – �
100 � – � � – – – �

Fisetin huAPPswe/PS1dE9 25 3–9 months Diet � – � – � � – � [41]
SAMP8 25 3–10 months Diet – – � � � � – – [117]

Formononetin APPswe/PS1dE9 15 7–8 months I.g. � – – � – – – � [42]
Hesperetin C57BL.6N mice

with LPS injection
for 2 weeks by i.p.

50 5 weeks (3
weeks prior to
LPS)

O.g. – – � � – � � � [118]

Hesperidin APPswe/PS1dE9 50 3–7 months Diet × – – – × – – × [43]
100 � – – – � – – �
20 9–12 months I.g. – – – – – – – � [80]
40 – – – – � – – �
80 – – – – – – – �

APP/PS1–21 100 10 days from 5
months

O.g. � – � – – – – – [44]
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Icariin APPswe/PS1dE9 30 10–14 months O.g. � – – – – – – – [45]
60 � – – – – – – –

APP/PS1 60 4–12 months O.g. � – – � – – – � [46]
APP/PS1 60 9–12 months Orally � – – – – – � � [47]
5XFAD 50 � mol/kg/day 8 days from 7–9

months
Orally – – – – – – – � [81]

APP/PS1–21 100 10 days from 5
months

O.g. � – � � – – – – [48]

3xTg-AD 65 6–8 months Diet � – – – – � – � [49]
Tg2576 (APPswe) 60 9–12 months Orally � – – – – – � – [50]
APPV17I Tg 30 � mol/kg/day 4–10 months I.g. � – – – – – – × [51]

100 � mol/kg/day � – – – – – – �
Liquirigenin Tg2576 (APPswe) 3 10–13 months I.g. × – – – – – – × [52]

10 � – – – – – – �
30 � – – – – – – �

Myricetin Tg2576 (APPswe) 0.5% diet 5–14 months Diet � – – – – – – – [53]
Naringin APPswe/PS1dE9 50 3–7 months Diet – – – – – – – × [54]

100 � – – × – – – �
50 – – – – – – – × [82]
100 – – – – – – – �

Pinocembrin APPswe/PS1dE9 40 (5 days a
week)

4–7 months O.g. × – � � – – – � [83]

Puerarin APPswe/PS1dE9 30 8–9 months Orally × – – – � – – � [84]
Quercetin 5XFAD 500 2 –4 months O.g. � – – – – – – � [57]

Intracerebroventricular
injection of
aggregated A�25–35
at 10 weeks

50 2 weeks (from
DPI 5)

Orally – – – � � – – – [58]

APP/PS1 2mg/g diet 1–13 months Diet � � – – – – – � [59]
1–9 months � � – – – – – �
6–13 months × × – – – – – ×

Rutin A�25–35 injected
into third ventricle of
ICR mice

100 2 weeks
(following A�)

Orally – – – – � – – � [85]

APPswe/PS1dE9 100 8–9.5 months Orally � – � � � – – � [55]
Scutellarin APPswe/PS1dE9 50 9–12 months Diet � – � � – – – � [56]
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Fig. 1. Flavonoids can act as multi-modal inhibitors of AD pathology. (A) APP is processed in two pathways. In the non-amyloidogenic
pathway, APP is cleaved by �-secretase (ADAM10) to produce �-C-terminal fragment (�-CTF) and secretory APP (sAPP�) whereas the
pro-amyloidogenic pathway involves cleavage of APP �-secretase (BACE1) to produce �-CTF and sAPP�. �-CTF and �-CTF is then
cleaved by �-secretase to release P3 and A�, respectively, as well as the APP intracellular domain (AICD). Flavonoids have been shown to
inhibit ��-secretase processing as well as promoting �-secretase processing. This causes a shift towards the non-amyloidogenic pathway and
reduces the levels of A� produced. (B) A� can self-aggregate to form oligomers and eventually amyloid plaques. Flavonoids may be able
to inhibit the formation of amyloid plaques by binding to A� and inhibiting aggregation or promoting the formation of non-toxic off-target
oligomers. (C) Toxic A� monomers and oligomers have been shown to induce microglial activation and proliferation. Animal models have
shown that flavonoid intervention can reduce the levels of gliosis in the brain. (D) Activated microglia secrete pro-inflammatory cytokines
such as IL-1� and IL-6. Several flavonoids have been shown to reduce the levels of these cytokines in vivo. (E) The microtubule (MT)
associated protein tau, which is predominantly located in the axon, is hyperphosphorylated in AD, perhaps as a result of pro-inflammatory
cytokine release. This causes the dissociation of tau from the microtubule and mislocalisation to the somatodendritic region. Flavonoids
can inhibit several kinases associated with tau phosphorylation, as well as attenuating the proinflammatory response. Therefore, flavonoids
have the potential to reduce tau phosphorylation. (F) Hyperphosphorylated tau can self-aggregate to form toxic oligomers and eventually
neurofibrillary tangles (NFT). There is evidence that flavonoids can bind to tau and inhibit its aggregation or promote the formation of
non-toxic oligomers. (G) Hyperphosphorylated tau can mislocalise to post-synaptic terminals. Synaptic tau and A� can cause synaptic
dysfunction (H) and eventual synapse loss (I). Flavonoids have been shown to upregulate BDNF to promote adult hippocampal neurogenesis
and synaptogenesis. Upregulation of BDNF may, therefore, prevent the loss of synapses and the consequent loss of neurons (J).
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Fig. 2. The flavonoid backbone and the six main subgroups with examples from each.

INHIBITING AD PATHOLOGY WITH
FLAVONOIDS: MECHANISMS OF
ACTION

There are a very large number of studies describ-
ing protective effects of various polyphenols against
AD-relevant insults following their administration to
cell lines but, unfortunately, we are unable to include
them all here. Likewise, several studies show that
flavonoids can act as acetylcholinesterase (AChE)
inhibitors but, as AChE inhibitors are symptomatic
interventions and not preventative or disease modi-
fying, they will not be discussed here (for review see

[22]). A major advance in the last decade has been
the investigation of flavonoids in mouse models of
AD. Here, the analysis of these in vivo studies will be
mainly limited to those that have employed an oral
route of polyphenol administration in drinking water
or food, as well as via oral gavage; a summary of the
outcomes of those studies that used oral methods of
delivery is shown in Table 1. The doses investigated
range from 1–500 mg/kg/day which in humans would
be equivalent to 0.07–35 g intake for a 70 kg adult.
While little is known about the exact binding partners
of most flavonoids, common molecular mechanisms
have emerged which impact on A� and tau pathology,
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neuroinflammation, oxidative stress and neurogene-
sis (Fig. 1).

Flavonoid inhibition of APP processing and Aβ

deposition

Several flavonoids have shown the capacity to ame-
liorate A� pathology, both in vitro and in vivo [23–59]
(Table 1). This effect may come as a result of a shift
towards the non-amyloidogenic processing pathway,
enhanced degradation of A� and inhibition of aggre-
gation (Fig. 1A, B). The resultant effect is a net
reduction in A�42. A well-established example of
flavonoid-mediated inhibition of APP processing is
seen with epigallocatechin gallate (EGCG), a much
studied catechin that is abundant in tea. EGCG has
been shown in vitro to dose dependently increase the
proportion of mature ADAM10 (mADAM10) rela-
tive to pro-ADAM10, correlating with a shift towards
non-amyloidogenic processing and a decrease in A�
production [60, 61]. The increase in proteolytically
active mADAM10 by EGCG was found to occur
through at least two pathways: oestrogen receptor
� (ER�)-mediated activation of the PI3K/Akt path-
way, and activation of the pro-ADAM10 cleavage
enzyme furin through a PI3K-independent mech-
anism [62]. The finding that EGCG shifts APP
processing towards the non-amyloidogenic pathway
has been confirmed in vivo in several different mouse
models of AD [32, 35–37]. Oral administration of
EGCG was found to promote �-secretase activity
while down regulating �- and �-secretase activity,
and as such decreased the levels of both soluble and
insoluble A�.

Another example is that of the flavone baicalein,
which increases non-amyloidogenic cleavage of
APP while inhibiting pro-amyloidogenic cleavage
through a GABAA receptor-dependent pathway [63].
GABAA receptor activation has been shown pre-
viously to promote non-amyloidogenic processing
of APP [64]. Furthermore, baicalein may regulate
GABAA receptor activation [65], potentially through
inhibition of GABA transaminase which degrades
GABA [66].

Moreover, the modulation of APP processing by
flavonoids is known to occur at very low concen-
trations that could potentially be found in the brain.
For example, (–)-epicatechin ((–)-EC) inhibits ��-
secretase dependent APP processing with a low IC50
of 20.5 nM, which correlates with reduced A� pathol-
ogy in TASTPM mice treated with (–)-EC [39].
Furthermore, both quercetin (100 nM) and quercetin-

3-O--rutinoside (rutin) (50 nM, 100 nM) significantly
increased degradation of BACE1 in SH-SY5Y cells
over expressing APPs we [67]. These effects at low
concentrations enhance the likelihood that flavonoids
could modulate APP processing in vivo.

Another mechanism through which flavonoids
could decrease the levels of A� in the brain is by
enhancing degradation of A�. Neprilysin (NEP), a
zinc-metalloprotease, is an A�-degrading enzyme
which is decreased in affected areas of the AD
brain [68]. EGCG (1–3 � g/ml) increases NEP release
from astrocytes in an Akt/PI3K-dependent manner,
resulting in degradation of exogenous A� [69]. Con-
sequently, intragastric administration of EGCG to
SAMP8 mice, a senescence model of AD, increased
NEP expression and reduced A� level same lio rating
spatial learning [29]. Similarly, oral administration
of a combination of green tea catechins, including
EGCG, to a transgenic human APP over expression
mouse caused an increase in NEP levels, as well
as decreased A�and improved spatial learning [70].
Hence, EGCG can promote the degradation of A�,
as well as inhibiting production.

Alternatively, flavonoids have the potential to tar-
get A� through direct binding and inhibition of
aggregation which has been demonstrated in vitro in
aggregation assays [71–76] (Fig. 1B). A limitation
of these studies is that they are typically under-
taken at high stoichiometric A�-flavonoid ratios that
would not easily be achieved in vivo. Neverthe-
less, such in vitro aggregation assays are useful in
identifying flavonoid structures with anti-aggregative
properties that could be used as molecular scaffolds
for the design of therapeutics. Consideration of the
physiological stoichiometry, impact of the cellular
environment and posttranslational modifications of
the target protein will enhance the overall translata-
bility in vivo.

While in vivo experiments have shown that
flavonoid treatments reduce the levels of insoluble,
aggregated A�, it is not yet possible to determine
whether this is due to direct flavonoid binding to
the target protein or interactions with other proteins
such as kinases, which modulate the tendency for
amyloidogenic proteins to aggregate. Likewise, it is
tempting to relate the changes in spatial learning
and memory observed in through flavonoid inter-
vention in APP-based models of AD[23–25,30–32,
36,41–43,46,49–53,54–59,77–85]to reductions in
A� (Table 1). However, the behavioural recov-
ery observed could be due to recruitment of other
mechanisms, either downstream of A� signalling
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or involved in physiological cognition, particularly
as not all studies with reductions in A�-pathology
correlated with behavioural improvements [38, 51]
and vice versa [77, 83, 84]. Indeed, there is evi-
dence to suggest that flavonoids modulate other
disease-associated mechanisms, therefore having the
potential to act as multi-modal AD therapeutics.

Flavonoid inhibition of tau phosphorylation and
aggregation

Tau is a microtubule-associated protein that, phys-
iologically, binds to microtubules predominantly in
axons [86, 87]. The primary function of tau is thought
to be the stabilisation and organisation of micro-
tubules, aiding in the transport of cargo to and from
synapses. However, in AD, tau is hyperphosphory-
lated [88, 89], and dissociates from the microtubule
(Fig. 1E). Hyperphosphorylation of tau promotes its
mislocalization to the somatodendritic region [86]
(Fig. 1G) where it has been shown to impair nuclear
import [90], and synaptic function [91] (Fig. 1H).
Tau accumulation in the somatodendritic region has
also been associated with local translation of tau
mRNA, which can be induced by A� application
via a FYN/ERK/S6 pathway [92]. Hyperphosphory-
lated tau also aggregates into oligomers, eventually
forming insoluble straight/paired helical filaments
and neurofibrillary tangles (NFT) which are one
of the characteristic hallmarks of AD (Fig. 1F).
Several kinases are thought to contribute to the hyper-
phosphorylated state of tau in AD, especially the
proline directed kinases; GSK-3� [93, 94], CDK5
[95, 96] and members of the MAPK family [97].
The reported activity of flavonoids within MAPK
and other protein kinase signalling pathways raises
the potential for flavonoids to modulate tau phos-
phorylation, thereby impacting on the development
of tau pathology. This is highlighted in Fig. 3,
which demonstrates the extent to which flavonoids
have the potential to influence tau phosphorylation
[98–109].

A number of studies have demonstrated a role for
JNK in tau phosphorylation [110, 111], and inhibit-
ing JNK in primary cortical neurons, a transgenic
A� mouse model and human fibroblasts derived from
AD patients all showed a decrease in phosphorylation
of tau at Ser202, Ser205 and Ser422 [108]. Several
flavonoids have been shown to inhibit JNK activity
in vitro [112–115], although not typically at concen-
trations found in vivo. Despite this, there is evidence
from animal models of AD that oral or intragastric

flavonoid administration can inhibit the activity of
JNK [30, 40, 116–118].

The MAPK member p38 kinase has also been
proposed to contribute to hyperphosphorylation of
tau both directly [119] and indirectly, for example
through activation of the CDK5 activator p35 [120]
(Fig. 3). As such, increased levels of p38 kinase
and CDK5 were found to correlate with tau hyper-
phosphorylation in a htau transgenic mouse model
[121]. Furthermore, both p38 kinase and JNK were
found associated with NFTs in AD brains [122] and
in a patient with P301L-associated FTDP-17 [123].
Moreover, as will be discussed later, several lines
of evidence suggest that neuroinflammation induces
p38 kinase-dependent phosphorylation of tau [120,
124–126]. However, despite evidence supporting p38
kinase-mediated phosphorylation of tau as well as
flavonoid interactions with p38 kinase [127] and
flavonoid modulation of p38 kinase activity in a
variety of systems [40, 128, 129], there have been
few attempts to directly link the two mechanisms.
For example, administration of proanthocyanidins by
oral gavage reduced lead-induced tau phosphoryla-
tion which correlated with levels of activated p38
kinase and JNK, but no direct association was made
[130] (Table 1).

An alternative mechanism for the inhibition of
tau phosphorylation by flavonoids is through acti-
vation of the PI3K/Akt pathway which inhibits the
key tau kinase GSK-3� (Fig. 3) by phosphoryla-
tion at Ser9. Delivery of naringin [54], hesperidin
[43, 80], EGCG [30], (–)-EC [131], and baicalin
[25] through oral routes to mouse models of AD
have all been found to inhibit GSK-3� phosphory-
lation at Ser9. Additionally, several in vitro and in
silico models have pointed towards direct inhibition
of GSK-3� by flavonoids. For example, crystal struc-
ture studies of GSK-3� in complex with the flavonol
morin revealed direct inhibition of GSK-3� through
interactions with the ATP binding pocket [132],
which correlates with studies demonstrating reduc-
tion in tau phosphorylation in 3×Tg mice carrying
mutations in APPswe, PS1 M146V and taup301L[133].
Similarly in silico docking studies with quercetin and
other citrus flavonoids suggested direct interaction
with the GSK-3� active site and direct inhibition
was confirmed in vitro [124, 131]. Furthermore,
unlike other serine/threonine protein kinases, GSK-
3� phosphorylation prefers pre-phosphorylation 4
amino acids C-terminally to the target phospho-
rylation site [135–138]. This adds an additional
layer of regulation, as inhibition of other tau-kinases



176 K.L. Hole and R.J. Williams / Reducing the Risk of Dementia with Flavonoids

Fig. 3. Flavonoids can modulate kinases involved in the hyperphosphorylation of tau. (A) Tau contains an amino-terminal domain, a proline
rich region and microtubule binding repeats (R1–R4). The diagram highlights the identified phosphorylation sites on tau which have been
shown to be phosphorylated by kinases that can be modulated by flavonoids: GSK3�, ERK2, CDK5, JNK, p38 and Akt [98–109]. (B) A
diagram explaining how flavonoids may attenuate tau phosphorylation by modulation of kinases.

can consequently inhibit GSK-3� phosphorylation
of tau.

The few studies that have looked to directly link
flavonoid treatment with tau phosphorylation have
shown promising results. Oral delivery of grape
seed polyphenolic extract (GSPE), which contains
high concentrations of proanthocyanidins, particu-
larly catechin and (–)-EC oligomers, has been shown
to inhibit tau phosphorylation at several key sites,
such as: Ser202/Ser205 (AT8), Ser396/Ser404 (PHF-
1), Thr212/Ser214 (AT100) [139] and Thr181 [140].
Alongside this, significant reductions in the presence
of Sarcosyl-insoluble tau follow GSPE treatment,
suggestive of a reduction in aggregation [139, 140].
It has been suggested that the mechanism through

which GSPE elicits these effects is primarily through
inhibition of ERK1/2, as GSPE treatment did not cor-
relate with inhibition of GSK3�. A role for ERK1/2
in phosphorylation of tau in AD is supported by
in vitro studies and immunohistological analysis of
post-mortem brains [97, 141, 142].

Therefore, several flavonoids have the capacity
to reduce tau phosphorylation, either through inhi-
bition of GSK-3� via activation of the PI3K/Akt
pathway or modulation of MAPKs that are capable
of phosphorylating tau directly (Fig. 3). However,
there is a clear lack of studies exploring the direct
link between flavonoid-mediated modulation of tau-
phosphorylating kinases and the phosphorylation
state of tau itself. As such, more studies are required
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to determine whether flavonoid-mediated inhibition
of tau phosphorylation is achievable at the nanomo-
lar concentrations that might be detected in brain. It
will be essential to investigate this in order to deter-
mine the full therapeutic potential of flavonoidsin AD
prevention.

Similar to A�, flavonoids have also been suggested
to inhibit tau aggregation (Fig. 1F). Flavanols are the
predominant group associated with inhibition of tau
aggregation, although the flavone baicalein has been
shown to inhibit tau oligomerization, albeit with a rel-
atively high IC50 (∼35 � M) [143]. GSPE inhibits tau
aggregation of the 306VQIVYK311 hexapeptide [140,
144], which is thought to be essential in aggregation
of full length tau [145] and destabilises tauopathy
patient-derived fibrils [146]. Interestingly, the oxida-
tion of (–)-EC by H2O2 has been shown to facilitate
inhibition of tau aggregation [147]. Studies giv-
ing more consideration to stoichiometric ratios have
demonstrated that (–)-Epicatechin-3-gallate (ECG)
inhibits tau aggregation with an IC50-of 1.8 � M [148]
and EGCG inhibits the aggregation of a tau peptide
at substoichiometric levels (0.1X) [149]. While more
studies are needed to determine the impact of this
inhibition of tau aggregation in a cellular context,
these studies suggest that flavonoid-mediated inhi-
bition of tau aggregation is a possible approach for
reducing AD pathology.

Flavonoids, therefore, have the potential to inter-
fere in the pathological phosphorylation of tau, as
well as in the formation of tau oligomers and NFTs.
Considering that tau phosphorylation and aggre-
gation occurs consequently to A� pathology, and
therefore, is a more tractable target for impairing AD
progression, a reduction in tau pathology could sug-
gest intervention is possible at MCI and later stages
of disease.

Flavonoid modulation of neuroinflammatory
response in AD

The role of neuroinflammation in the develop-
ment and progression of AD has long been debated.
However, astrogliosis, microgliosis and chronic
inflammation are now well accepted pathological
hallmarks of AD, alongside plaques and tangles
[150]. Genome wide association studies (GWAS)
[151] and transcriptomics [152, 153] have high-
lighted the involvement of the innate immune system
in AD. In particular microglia have been linked to A�
and tau spreading and propagation [154], synaptic
phagocytosis [155–157], and the release of pro-

inflammatory cytokines that promote AD pathology
[150, 158].

An increasing number of studies have implicated
microglia as the missing link between A� accumu-
lation and tau pathology (Fig. 1C). In transgenic
mice expressing the P301S mutation associated with
frontotemporal dementia (FTD), microglial activa-
tion and synapse loss occurred prior to development
of tau tangles [159]. Furthermore, suppression of
the immune response with FK506 reduced tau
pathology and increased lifespan. Histological anal-
ysis of post-mortem brain correlated increased
microglial activation with AD pathology, suggest-
ing that microglial activation occurred following
A� plaque deposition but prior to NFT formation
[160]. Analysis of the transcriptional profile of APPs-
we/PS1dE9 and Tau22 transgenic mouse models,
which exhibit amyloid and tau pathology respec-
tively found that while A� pathology activated the
expression of several AD risk genes associated with
microglia, this did not occur in the tau transgenic
mouse [161]. Thus, providing further evidence that
microglial activation lies upstream of tau phosphory-
lation and downstream of A�. Furthermore, silencing
genes associated with the microglial inflammasome
(Nlrp3–/– and Asc–/–) in the Tau22 transgenic mouse
model of tauopathy led to reduced tau phospho-
rylation and aggregation [162]. Significantly, this
pathway could be stimulated by A�-fibrils and was
essential to A�- associated induction of tau phos-
phorylation in Tau22 mice following hippocampal
injection of APP/PS1 brain homogenate [162]. This
work presents a possible timeline of AD pathology,
with A� accumulation initiating activation of NLRP3
inflammasomes (Fig. 1C) in microglia, which conse-
quently cause release of IL-1� (Fig. 1D) and thus
triggers tau phosphorylation (Fig. 1E). As IL-1�
release has been shown to cause tau phosphorylation
in a p38-MAPK-dependent manner [125, 126], this
presents an additional target for flavonoid interven-
tion.

A reduction in gliosis [33, 34, 37, 38, 40, 41,
44, 48, 55, 56, 59, 78, 83, 117, 118, 163] as well
as neuroinflammatory markers [25, 30, 32, 34, 37,
38, 40, 42, 46, 48, 55, 56, 58, 78, 83, 117, 118,
163] has been shown in many animal models of AD
orally administered with flavonoids (Table 1). Addi-
tionally, several flavonoids have been identified that
inhibit microglial activation and IL-1� release. The
isoflavone genistein reduced mRNA levels of IL-1�
and TNF-� through a G-protein coupled oestrogen
receptor (GPER)-dependent mechanism in primary
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microglia and BV2 cells [164]. Pre-treatment with
the flavanone pinocembrin inhibited LPS-induced
activation of BV2 cells and consequent release of
pro-inflammatory mediators including IL-1� [165].
In vivo, intra-gastric administration of procyanidins
reduced morphine-induced activation of NLRP3 and
IL-1�, likely through inhibition of p38 kinase [166].
Furthermore, a number of in vivo studies of flavonoid
intake in AD mouse models have shown a reduc-
tion in IL-1� following oral or gastric administration
of EGCG [32, 34], formononetin [42] and eriodic-
tyol [40]. Alongside this, many studies have reported
decreases in levels of activated microglia following
flavonoid treatment [167]

In addition to IL-1�, other pro-inflammatory
cytokines have been suggested to play a role in AD.
Tumour necrosis factor-� (TNF-�), which can be
reduced by flavonoids [167], has also been implicated
in AD [168, 169]. TNF-�, and to a lesser extent IL-1�
was found to upregulate �-secretase cleavage of APP
through a JNK-dependent pathway, albeit in stably
transfected HEK293 cells [170]. Furthermore, IL-6,
which has been shown to be down regulated following
administration of baicalin [78], formononetin [42]
and eriodictyol [40], induces AD-like phosphoryla-
tion of tau in primary rat hippocampal neurons [120]
(Fig. 1D). This phosphorylation was found to be due
to activation of p38 kinase which caused upregulation
of the CDK5 activator p35. Therefore, it is possible
that flavonoid-induced down regulation of IL-6 in AD
mouse models could reduce tau phosphorylation.

Given the accumulating evidence linking
microglial activation, pro-inflammatory cytokine
release and tau phosphorylation, it would be of
interest to determine whether flavonoid-mediated
attenuation of the microglial responses correlates
with decreased tau pathology.

Flavonoid modulation of antioxidant responses
in AD

Flavonoids are generally known for their antioxi-
dant capacity [171], which may have benefit in AD as
oxidative stress has been implicated in neurodegen-
eration [172]. Evidence from post-mortem studies on
AD-brain shows that, relative to control brain, there
is a net reduction in the ability to decrease H2O2
levels and stimulate anti-oxidative stress pathways
[173, 174]. H2O2 can act as a messenger molecule
activating signalling pathways, such as MAPK [175,
176], or react with metallic cations, such as Fe2+, to
produce HO· [177] which can damage cellular com-

ponents such as lipids and proteins. Imbalances in
brain-iron levels have been reported in AD [178–181]
and likely contribute to cognitive decline [182], sup-
porting the suggestion that oxidative stress promotes
AD pathology. Indeed, studies in transgenic APP/PS1
mice showed that increasing oxidative stress in the
brain through delivery of a pro-oxidant iron rich diet
increased the deposition of A� [183].

While flavonoids have the capacity to act directly
as reactive oxygen scavengers by donating hydrogen,
it is unlikely that this is the mechanism by which
theyelicit their antioxidant potential due to the low
circulating concentration of flavonoids in the brain
relative to better characterised ROS scavengers such
as ascorbic acid [184, 185]. Instead, it is most likely
that the mechanism through which flavonoids inhibit
oxidative stress is through modulation of intracellu-
lar pathways such as the MAPK pathway. The MAPK
pathway responds to changes in the cellular environ-
ment, such as oxidative stress, and transduces these
stimuli into cellular responses through phosphoryla-
tion or activation of transcription factors. Activation
of anti-apoptotic ERK1/2 and PI3K/AKT pathways,
and downregulation of pro-apoptotic JNK pathways
by flavonoids is neuroprotective against multiple
stressors including oxidative stress at both high [112,
186] and physiological concentrations [114, 128].

Another mechanism through which flavonoids
could act as antioxidants is via PI3K dependent
activation of the transcription factor Nuclear fac-
tor erythroid 2-related factor 2 (Nrf2). Activation
of anti-oxidant response element (ARE) by Nrf2
enhances the expression of antioxidant-related genes,
such as those involved in synthesis of several anti-
oxidative enzymes including glutathione peroxidase
(GPx), catalase (CAT), heme-oxygenase 1 (HO-1)
and superoxide dismutase (SOD) [187]. Flavonoids
have consistently been shown to activate Nrf2 in
non-neuronal cell lines [188–190]. Furthermore,
physiological levels of (–)-EC have been shown to
upregulate ARE activity in astrocytes in a PI3-K
dependent manner [191], which has been shown
to protect neurons against oxidative stress [192].
Quercetin [193] and EGCG [194] have also been
found to promote Nrf2 signalling in primary neu-
rons, however, the effects at physiologically relevant
concentrations were not investigated and there is
uncertainty as to the extent to which Nrf2 is expressed
in mature neurons.

Oral ingestion, or intragastric administration, of
fisetin [41], hesperidin [43, 80], quercetin [58], rutin
[55, 85], apigenin [24], puerarin [84] or (–)-EC [131]
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has been shown to reduce markers of oxidative stress
in the brains of mouse models of AD (Table 1).
This was demonstrated through increased activity of
anti-oxidative enzymes such as GPx, CAT and SOD
and a reduction in measurable H2O2, ROS and mal-
ondialdehyde (MDA). Collectively this supports a
PI3K/Akt/Nrf2/ARE mechanism for conferring neu-
roprotection against oxidative stress by flavonoids
which may be beneficial in ameliorating AD pathol-
ogy.

Flavonoids promote BDNF induced neurogenesis
in AD

Brain-derived neurotrophic factor (BDNF) is
known to play an important role in neural develop-
ment, differentiation and synaptic plasticity through
binding to its receptor TrkB. BDNF levels are also
known to be decreased in the AD brain relative to
healthy controls [195–197]. Furthermore, decreased
levels of BDNF have been linked to delta-secretase
mediated cleavage of both A� and tau and subsequent
neurodegeneration [198, 199]. BDNF also plays an
important role in neurogenesis. The existence of adult
hippocampal neurogenesis (AHN) in humans has
been highly contested through the years, yet new
advances in tissue processing techniques have now
confirmed AHN [200, 201]. Moreover, it has been
shown that, while neurogenesis decreases with aging,
this decline is greatly exaggerated in AD [200]. Tar-
geting BDNF/TrkB signalling to promote synaptic
plasticity and neurogenesis may in turn slow the dete-
rioration of the learning and memory abilities of AD
patients.

There is evidence that flavonoids can promote
BDNF/TrkB signalling and related downstream
effects. Physiological concentrations of (–)-EC
(100 nM) activate the cAMP response element bind-
ing protein (CREB) and consequently upregulate
levels of BDNF in primary cortical neurons [202].
Both quercetin and (–)-EC have been shown to
upregulate the expression levels of BDNF follow-
ing oral administration to several rodent models of
AD [131, 203–205]. Furthermore, oral delivery of
7,8-dihydroxyflavone (7,8-DHF), a TrkB agonist, has
been shown to enhance long term potentiation (LTP),
reduce synaptic loss, and improve performance in the
Morris water maze (MWM) in vivo [23, 77]. Along-
side the increased levels of BDNF seen with quercetin
treatment, increases in neural progenitor cells (NPCs)
and neural stem cells (NSC) associated with neuro-
genesishave also been shown [205].

Given this evidence, flavonoid-induced upreg-
ulation of the BDNF/TrkB pathway to increase
neurogenesis and reduce synaptic loss is an additional
mechanism through which flavonoids may be able to
reduce AD pathology (Fig. 1I).

EMERGING CONSIDERATIONS FOR
FLAVONOID INTERVENTIONS IN AD

Given the low success rate for translating therapeu-
tics from in vivo animal studies to effective human
interventions for AD, it is becoming increasingly
important to ensure that the ‘translatability gap’ is
as small as possible. In this section we consider
emerging evidence as to the extent of metabolism
and bioavailability of flavonoids, and how this could
influence the interpretation of existing data and exper-
imental design moving forward.

Flavonoid metabolome and brain bioavailability

While the ‘key’ metabolites of several notable
flavonoids have been known for years, there is only
limited knowledge of the full metabolite profiles
and, more importantly for AD intervention, which
metabolites reach the brain.

In this respect, important advances in the field have
been the use of radio labelling to determine complete
flavonoid metabolomes. Such examples include iden-
tification of the anthocyanidincyanidin-3-glucoside
(C3G) metabolome in humans [206] as well as the
(–)-EC metabolome in both humans and rodents
[207, 208]. As a result, 24 C3G and >20 (–)-EC
metabolites have now been identified in humans. In
comparing these metabolomes, there are similarities
in the metabolites produced, such as the presence
of structurally related molecules which have been
glucuronidated, methylated or sulphated, as well as
structurally unrelated metabolites such as hippuric
acid. Both of these human studies found that the
flavonoid metabolites were much more abundant than
the parent flavonoid molecule, to the extent that 14C-
(–)-EC itself was undetectable in the plasma or urine.
Therefore, it is likely that the bioactivity in vivo
resides in one or more flavonoid-derived metabolites
rather than the parent flavonoid. This is important as
many in vitro experiments use only parent flavonoids
to determine mechanisms of action and itis unlikely
that these unmetabolized flavonoids will be available
in the brain at active concentrations. In relation to
(–)-EC, structurally related epicatechin metabolites
(SREM) are likely to be the predominant bioactive
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constituents in the human brain, given the absence of
the parent (–)-EC molecule in human plasma [207].
This corresponds with pharmacokinetic studies in
rats which showed that chronic oral administration
of (–)-EC and catechin (C) resulted in a combined
concentration of ∼484 nM (–)-EC/C-glucuronides
and methyl-(–)-EC/C-glucuronides, while unmetab-
olized (–)-EC could only be found in trace amounts
[209]. Despite this many in vitro studies focus on
concentrations >10 � M. Flavonoids often exhibit
biphasic responses, activating protein kinase sig-
nalling pathways at low concentrations (nM) and
inhibiting at high concentrations (�M), or vice versa
[39, 114, 193]. Therefore, it is possible that where
flavonoids are shown to inhibit pro-AD pathways in
vitro at high concentrations, in vivo at nanomolar
concentrations they may elicit different effects.

Considering this, metabolic profiles for other
flavonoids considered as potential therapeutic inter-
ventions for dementia should be established to aid
mechanistic investigations. In order to determine
bioavailability in the brain analysis of cerebral spinal
fluid (CSF) could potentially be undertaken to con-
firm the appearance of flavonoid-derived metabolites.

Species differences in flavonoid metabolism limit
translatability of in vitro and in vivo studies

The metabolism of flavonoids is an important con-
sideration when designing and interpreting animal
studies. While there are plenty of studies on flavonoid
metabolism in rodents, the information about human
metabolism is lacking. As more information becomes
available, it is becoming clear that there are key differ-
ences in flavanol metabolism between species, which
may further limit the translatability of in vivo studies.

An example of this is the absence of (–)-EC-
3’-O-glucuronide and (–)-EC-3’-sulfate, the main
metabolites of (–)-EC found in plasma and urine of
humans, in rats [185, 208]. It is, therefore, not pos-
sible to determine the effect of these metabolites on
the rodent brain through delivery of (–)-EC alone.
Such investigations would require direct i.p. injec-
tion of these metabolites or administration by osmotic
mini-pump.

Furthermore, as mentioned previously, (–)-EC was
not identified in plasma or urine of humans [208],
although it was in rats [207]. Likewise, C3G metabo-
lites were found to be 42 fold more abundant than the
parent C3G molecule in humans [206], whereas in
mice the difference was only 6 fold [210]. Therefore,
highlighting doubts about the contribution of unme-

tabolized flavonoids in the human brain relative to the
rodent models used in pre-clinical trials.

Studies of key quercetin metabolites in gerbils,
mice and rats showed that there are species depen-
dent differences in the metabolism of quercetin [211].
Given what we now know about (–)-EC metabolism,
it is likely that this would correlate with differences
in quercetin metabolism between humans and rodents
as well. Without knowing what flavonoid metabolites
are found in humans, and particularly in the brain, it is
hard to pre-determine if flavonoids would elicit ther-
apeutic benefit in humans, despite positive findings
in animal models (Table 1).

Harnessing metabolites for flavonoid
intervention studies for AD

Utilising the information now available about
the pharmacokinetics and bioavailability of (–)-
EC, Ottaviani et al. have identified a collection
of SREMs that have the potential to be utilised
as biomarkers for (–)-EC intake [212]. The lev-
els of (–)-EC-3’-glucuronide, (–)-EC-3’-sulfate and
3’-O-methyl-(–)-EC-5-sulfate, collectively termed
SREMB, in the urine can be used to estimate the
amount of (–)-EC ingested 24 hours previously. The
standard practice for epidemiological studies inter-
ested in implications of dietary compounds on health
and disease is through self-reporting of subjects to
estimate consumption, which is inherently unreliable.
With biomarkers to assess the actual amounts of (–)-
EC in the diet, future epidemiological studies will be
able to investigate the effect of (–)-EC on AD with
greater accuracy and certainty.

The impact of the microbiome on flavonoid
metabolism and AD

It is now known that the gut-microbiome is
responsible for the generation of several flavonoid
metabolites [185, 206, 208, 213–216]. The micro-
biome can partake in the deglycosylation, ring fission
and reduction of flavonoids [215], with deglyco-
sylation being of particular importance, as this is
thought to be essential for flavonoid absorption
[217], with the exception of C3G [218]. Despite
making up a large proportion of circulating flavonoid-
derived metabolites, few studies to date have explored
the mechanistic function of microbiome-derived
metabolites in relation to AD. An example of
such biologically relevant metabolites are phenyl-
�-valerolactones and phenyl-�-valeric acids, formed
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from microbiome metabolism of flavanols. In vitro
assays have suggested that these metabolites can per-
meate the blood brain barrier (BBB) [219] and reduce
A�-toxicity [220].There is further suggestion that 3-
HBA and 3-HPP, derived from GSPE metabolism by
the rat microbiome, can impair the aggregation of
A� peptides, nonetheless at high molar ratios [213].
Other studies in SHSY-5Y cells show some ability
of microbiome-derived metabolites of flavanols to
act in a neuroprotective manner against H2O2 treat-
ment and SIN-1-induced stress [221, 222]. There is
recent evidence that flavonoid intake can alter the
composition of the human gut microbiome [223].
However, it is yet to be determined what effect, if
any, this may have on health and disease. An increas-
ing number of studies have suggested a role for the
gut microbiome in AD, most likely through modula-
tion of microglial activation. One study in cognitively
impaired elderly found a significant increase in
abundance of pro-inflammatory bacteria as well as
decreased abundance of anti-inflammatory bacteria
in the gut of A� positive relative to A�-negative
participants [224]. Similarly, it was also found that
AD patients have a distinct gut-microbiome com-
position relative to age and sex-matched controls
[225]. Likewise, 5XFAD mice exhibited a different
microbiome composition relative to non-transgenic
controls and this dysbiosis was suggested to pro-
mote microglial activation [226]. By treating these
mice with GV-971, which promotes normal gut-
microbiome composition, A�, tau and behavioural
pathology was significantly reduced. Interestingly,
the treatment of APPPS1-21 mice with antibiotics
led to a reduction in A� and microglial pathology in
male, but not female, mice, suggesting a sex-specific
role for the microbiome in AD [227]. Therefore, mod-
ulation of the microbiome composition by flavonoids
should be considered carefully as this has potential
to promote or hinder AD progression.

Furthermore, there are important inter-individual
differences in the composition of the gut microbiome
as a result of various factors including age, sex, drug
use and dietary intake [228]. This is significant as
the composition of the human gut microbiome has so
far been shown to alter the metabolism of flavonols
[229, 230] and isoflavones [215]. Therefore, it may
become beneficial to assess the microbiome of an
individual before recommending flavonoid interven-
tions in order to personalise the amount and type of
flavonoids for maximum efficacy. Furthermore, com-
bined treatment with pro-biotics might enhance the
effects of flavonoid intake by ensuring the most effi-

cient microbiota are present in the gut. Moreover, AD
risk factors such as diabetes and obesity also influ-
ence polyphenol uptake and metabolism [231, 232].
Although this might not result from direct changes
to the microbiome, they could impair an individual’s
responsiveness to flavonoid intervention.

Moving forward therefore, the potential contri-
bution of the microbiome should be taken into
consideration when looking to assess the bioavail-
ability and efficacy of flavonoids or flavonoid-derived
drugs particularly when the method of flavonoid
delivery bypasses the gut and other key sites of
metabolism.

Alterations to Promote the Stability,
Bioavailability, Specificity and Activity of
Flavonoids

Like many small molecule and antibody thera-
pies, several flavonoids are likely to exhibit low
brain bioavailability, a potential limitation of their
use as therapeutic interventions in humans[233].
One method to overcome this is to encapsulate the
flavonoids in nanoparticles. This increases their sta-
bility and brain bioavailability as well as promoting
sustained release [234]. Furthermore, nanoparticles
can include targeting peptides in their coating,
allowing for more specific activity. As a result, nano-
encapsulation could reduce the quantity of flavonoid
that would need to be administered.

Nano-encapsulation of EGCG improved bio
availability in rats as well as its �-secretase promot-
ing activity in SHSY-5Y cells [235]. Furthermore,
nanoparticles loaded with EGCG and ascorbic acid
were found to decrease A� deposition and increase
synaptic expression relative to EGCG alone in
APP/PS1 mice, which correlated with improved spa-
tial learning [33]. However, it is unclear whether this
is a result of the nanoparticles or the added ascorbic
acid, which is a powerful antioxidant. It should also
be noted that this study found that the nanoparticles
may disrupt the BBB, which needs to be investigated
further in vivo [33]. Nano-encapsulation of quercetin
also showed significant improvements to cognition
and memory in SAMP8 mice as well as lower levels
of markers of inflammation relative to free quercetin
[236]. These results were in-line with increased
quercetin levels in the brain (∼200 ng/g free
quercetin: 371 ng/g nano-encapsulated quercetin).
Therefore, nano-encapsulating flavonoids may
improve their efficacy in vivo, thus making them
more appealing as therapeutic interventions for AD.
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Their capacity to act at multiple targets associ-
ated with AD pathology makes flavonoids attractive
molecular scaffolds for development of more potent
inhibitors of AD pathology. Alteration of the
flavonoid structure has been found to enhance
inhibition of BACE-1, A� aggregation and acetyl-
cholinesterase (AChE) activity, as reviewed by
Jalili-Baleh (2018) [237]. However, it is possible that
these changes will impact the ability of the flavonoid-
based drug to reach the brain.

While the development of more potent and specific
flavonoid-derived therapeutics has the potential to
elicit stronger effects, the switch from nutraceutical to
pharmaceutical brings its own hurdles. The increased
expense and potency could mean that these com-
pounds are no longer suitable for early and sustained
delivery throughout midlife. In contrast, supplemen-
tation with naturally available flavonoids is likely to
be more widely accessible, with potentially fewer
side effects. As such, even if direct modulation of AD
pathways is weaker, capacity for long term delivery
could contribute to an overall benefit.

Incorporating the Metabolome to Promote
Translatability in Identifying a Therapeutic
Intervention for AD

The identification of the (–)-EC metabolome
yielded a library of potential bioactive molecules, ret-
rospective biomarkers of (–)-EC intake, and a greater
understanding of the limitations of the animal models
used. In the future, it would be of great value to eluci-
date the full human metabolomes of more flavonoids
in order to limit the risk of failure at clinical trials.
Utilising techniques such as the radiolabelling used
by Czank et al. (2013) and Ottaviani et al. (2016) to
identify the full human metabolome of these clin-
ically relevant flavonoids may help to bridge the
translatability gap between pre-clinical investigations
and human interventions.

An important point to consider is that despite
considerable uncertainty that parent flavonoids are
present at sufficient concentrations in the brain, the
metabolites themselves likely have poor bioavail-
ability following oral delivery. To overcome this,
one route would be to nano-encapsulate the metabo-
lite of interest, thus improving its bioavailability.
Alternatively, it may be more efficient to use the
parent-flavonoid as a pro-drug, which with appropri-
ate dosing will facilitate availability of metabolites
in the brain. In this scenario, it will be necessary
to investigate the mechanistic effects of combina-

tions of metabolites that derive from the same parent
flavonoid, to ensure a consistent mechanism of action.

While the incorporation of metabolism and brain
bioavailability creates additional hurdles in exper-
imental design, it also increases the likelihood
of accurately identifying bioactive flavonoids or
flavonoid-derived metabolites that can be used as
therapeutic interventions for AD in humans.

CONCLUSIONS

As this review has highlighted, flavonoids have the
potential to act as multimodal therapeutics to pre-
vent the onset and/or progression of AD. Much of the
research effort to date has focused on the reduction of
A� by flavonoids. The advantage of flavonoids over
conventional A�-targeting drugs such as antibodies
and small molecule inhibitors is that it is possible
for them to be administered as dietary supplements.
Due to their relative affordability and low toxicity,
supplementation with flavonoids could enable early
protection at a young age and throughout life, without
the need for pre-clinical diagnosis. However, deter-
mining if early and consistent flavonoid intake is
capable of preventing AD onset would require an
enormous amount of resource and most importantly,
time. Until it is possible to accurately identify AD
pre-symptomatically, before A� accumulation has
initiated downstream toxic cascades, it may be nec-
essary to shift the focus to flavonoid induced changes
to later-onset pathologies such as neuroinflamma-
tion or tau phosphorylation. To date, tau pathology
is clearly underrepresented in flavonoid-intervention
studies carried out in mouse models of AD despite
the strong basis for flavonoid-modulation of tau phos-
phorylating kinases.

Moving forward, it will be important to incorporate
the bioavailability and metabolism into experimen-
tal planning throughout all stages of pre-clinical
research. To reduce the current translatability gap,
it will be essential to:

1. Focus on physiologically relevant concen-
trations when determining the mechanistic
functions of flavonoids in vitro, to ensure that
said mechanisms are possible in vivo.

2. Identify the complete human metabolomes of
flavonoids of interest to determine functional
metabolites.

3. Compare the mechanisms of action of parent
flavonoids with their human metabolites, both
alone and in combination, to ensure that the
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same mechanisms will be engaged following in
vivo administration.

Taking this into consideration should result in more
efficient and effective identification of flavonoid-
based molecules that could succeed as therapeutic
interventions for AD.
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