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Abstract. Engaging in targeted exercise interventions is a promising, non-pharmacological strategy to mitigate the delete-
rious effects of aging and disease on brain health. However, despite its therapeutic potential, a large amount of variation
exists in exercise efficacy in older adults aged 55 and older. In this review, we present the argument that biological sex may
be an important moderator of the relationship between physical activity and cognition. Sex differences exist in dementia as
well as in several associated risk factors, including genetics, cardiovascular factors, inflammation, hormones and social and
psychological factors. Different exercise interventions, such as aerobic training and resistance training, influence cognition
and brain health in older adults and these effects may be sex-dependent. The biological mechanisms underlying the beneficial
effects of exercise on the brain may be different in males and females. Specifically, we examine sex differences in neuro-
plasticity, neurotrophic factors and physiological effects of exercise to highlight the possible mediators of sex differences
in exercise efficacy on cognition. Future studies should address the potential sex difference in exercise efficacy if we are to
develop effective, evidence-based exercise interventions to promote healthy brain aging for all individuals.
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INTRODUCTION strategies is of utmost importance [2]. Effective
pharmacological treatments of dementia remain elu-

Worldwide, over 47 million people suffer from sive. Engaging in targeted exercise interventions is

dementia and this number is expected to reach 74.7
million by the year 2030 and 131.5 million by 2050;
the estimated total worldwide economic burden will
be 2 trillion dollars by 2030 [1]. In the face of these
staggering numbers, the societal value of identifying
and developing effective intervention and prevention
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a promising, non-pharmacological strategy to miti-
gate the deleterious effects of aging and disease on
brain health [3, 4]. However, despites its therapeu-
tic potential, a large amount of variation exists in
exercise efficacy [5-8]. To maximize effectiveness,
it is vital to understand the sources of this variation
and to identify factors that increase the likelihood of
positive cognitive outcomes from exercise interven-
tions. Given the greater prevalence of AD and faster
rate of progression from mild cognitive impairment
(MCI) to AD in females compared with males [9],
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there is a need to assess potential sex differences in
treatment efficacy, including different exercise inter-
ventions. Unless otherwise specifically stated, this
review focuses on older adults, aged 55 and older.

SEX DIFFERENCES IN DEMENTIA AND
ASSOCIATED RISK FACTORS

Sex differences exist in dementia, although
the relationships are complex and multifactorial.
Females are disproportionally affected by AD, show-
ing twofold greater risk at later ages [10], faster
progression of brain atrophy (1-2.5% per year) [11,
12] and greater AD-related pathology [13—15] than
men. Conversely, some studies find that males are at
higher risk for MCI, a prodromal stage between nor-
mal age-appropriate cognitive changes and dementia
[16], for both the amnestic and non-amnestic type
[17-19]; although, not all studies find this male-
advantage [20, 21]. Recently, it has been suggested
that diagnosis of MCI may be delayed in females,
which may be responsible for the possible increased
risk for MCI seen in males. Specifically, females
show greater verbal memory performance than males,
despite similar levels of neurodegeneration [22, 23].
This finding suggests that females have cognitive
reserve within this domain which delays manifesta-
tion of deficits until greater levels of pathology are
present.

Sex differences in genetic risk factors

Sex differences also exist in risk factors for demen-
tia. Apolipoprotein E €4 (APOE4) is the greatest
genetic risk factor for AD [24], and despite sim-
ilar frequencies, females show greater detrimental
effects. Female carriers of the g4 allele have about
a 1.5x higher risk for AD [25-28], more amyloid
plaques and neurofibrillary tangles [29] and present
with greater verbal memory declines over time [30]
compared with male carriers. Further, APOE4 carri-
ers show lower serum levels of BDNF, an association
only seen in females with AD [31]. On the other
hand, levels of cerebral microbleeds, a component of
vascular cognitive impairment, are exacerbated (2-
fold) in APOE4 males compared with females [32].
Further, recent work suggests the greater risk asso-
ciated with carrying one copy of the &4 allele in
females may only be seen at younger ages, specif-
ically between 65 and 75 years [26]. Thus the
relationship between APOE4, sex and dementia is not
straightforward.

Sex differences in cardiovascular risk factors

Peripheral cardiovascular risk factors for demen-
tia include hypertension, type 2 diabetes, obesity,
atherosclerosis, and hypercholesterolemia. Cardio-
vascular risk profiles vary by sex and thus, their
contributions to the development of dementias could
also differ by sex [33]. Indeed, evidence does suggest
the contribution of some cardiovascular risk factors
may be greater in older females than older males
[34, 35]. For example, the increased risk for vas-
cular cognitive impairment from type 2 diabetes is
19% higher in older females than males [36]. In
males, total cholesterol, a biomarker of cardiovascu-
lar health, is strongly associated with AD symptoms
[37]. Further, a sex difference exists in vascular aging,
a main risk factor for cardiovascular disease. Specif-
ically, endothelial dysfunction, a key component of
vascular aging, occurs gradually in males commenc-
ing approximately in midlife (approximately the third
decade of life in this study), whereas in females, com-
mencement is delayed and accelerates after the onset
of menopause and loss of estrogens [38].

Sex differences in inflammation as a risk factor

Systemic and central (neuro) inflammation is a
risk factor for AD and other dementias, and may
be a stronger risk for aged females [37]. Aging
is accompanied by a chronic, low-grade inflamma-
tory phenotype evidenced by elevated serum levels
of several pro-inflammatory cytokines including
IL-6 and TNF-a and decreased levels of anti-
inflammatory cytokines including IL-10 [39]. High
levels of pro-inflammatory cytokines are related with
cognitive impairment, MCI and AD [40]. Impor-
tantly, in humans the association between increased
peripheral levels of pro-inflammatory cytokines and
cognitive impairment is seen in older females but
not older males [39, 41]. Within the brain, age-
related induction of neuro-inflammatory genes differ
between males and females, with females showing
enhanced expression [42, 43]. Likewise, the aged
female hippocampus presents with 25-40% more
activated microglia, the brain’s resident immune
cells that secrete cytokines, and astrocytes compared
to age-matched males [44]. Interestingly, acceler-
ated or increased microglial development has been
seen in AD brains compared to age-matched con-
trols, and in mice, females show faster microglial
maturation in the hippocampus than males [45],
suggesting that microglia may be involved in the
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sex differences seen in AD. Taken together, this
suggests that sex differences may exist in the associ-
ation among inflammation and dementia. However,
whether inflammation is involved in the etiology or
progression of dementia or both is currently under
investigation [46].

Sex differences in hormones as a risk factor

Sex-specific risk factors for cognitive impairment
also include loss of sex steroid hormones with age.
In women, estrogens are rapidly lost with the onset
of menopause which occurs on average at 51 years
of age, whereas in men the loss of bioavailable
testosterone is much more gradual with approxi-
mately 1-2% reduction per year beginning in the
third decade of life [47, 48]. Menopause is associated
with increased levels of AD biomarkers including
hypometabolism, A deposition, and decreased hip-
pocampal volume [49] and surgical menopause that
occurs prior to natural menopause is further asso-
ciated with an increased risk of AD [50]. Use of
hormone replacement therapy (HRT) may reduce
this risk [51]. However, timing of HRT commence-
ment in relation to estrogen loss is important as
initiation of HRT years after menopause is asso-
ciated with increased risk of dementia, whereas
initiation closer to the onset of menopause may not
be [52]. Furthermore, the type of estrogen taken is
of considerable importance, as estrone and estra-
diol have different effects on cognitive performance
[53-55].

Sex differences in social and psychological risk
factors

Social and psychological risk factors for dementia
may also differ by sex. For example, higher edu-
cation and occupational attainment are protective
factors in both females and men, as they are believed
to increase cognitive reserve delaying the onset of
cognitive deficits through engagement of compen-
satory mechanisms [56-59]. However, historically,
females have had less opportunities to obtain higher
education than men, thus low education may be a
greater risk factor for females [60]. Women are most
often the primary caregivers for people with demen-
tia [61], a source of considerable psychological stress
with physiological consequences. For example, pre-
menopausal female caregivers (average age 38) show
more rapid cellular aging, as indexed by telomere
length [62]. Interestingly, although spousal caregivers

of both sexes show significantly increased risk of
developing dementia, the risk is 3x higher in male
caregivers [63].

EFFECTS OF DIFFERENT EXERCISE
INTERVENTIONS OF COGNITION AND
BRAIN IN OLDER ADULTS

Broadly, there are two distinct forms of exer-
cise: 1) aerobic training (AT; e.g., running, walking),
aimed at improving cardiovascular health; 2) resis-
tance training (RT; e.g., lifting weights), aimed at
improving muscle strength. Although most research
to date has focused on AT, both forms of exercise
have beneficial effects on cognitive and brain plastic-
ity in older adults [3, 64—67], although the underlying
mechanisms may be different. Longitudinal cohort
studies that rarely differentiate between types of exer-
cise, show engaging in physical activity is associated
with less cognitive decline over time in older adults
[68—71]. Results from randomized controlled trials
(RCTs) of targeted interventions provide stronger
support for the relationship between exercise and
cognitive functioning.

Meta-analyses of RCTs in older adults show that
engaging in targeted AT programs promotes cogni-
tive performance [5, 8, 67, 72, 73], although others
have found modest to minimal or no effects [6,
74-76]. The beneficial effect of AT on cognitive
functioning has been seen across different clinical
and non-clinical populations, including MCI, vas-
cular dementia and cognitively healthy older adults
[77-80]. Studies suggest executive functions are the
cognitive domain that most benefits from AT [5, 81].
Moreover, AT interventions can lead to changes in
brain structure, activation, and connectivity, indicat-
ing enhanced functional brain plasticity [for example
see 79, 82, 83-87], and recent work suggest that
brains that are organized with greater connections
within modules and less connections between mod-
ules are more likely to show AT-dependent gains in
executive functions [88].

Although much less studied, RT in older adults
is also beneficial for cognitive functioning [8, 67,
75]. In one of the first large-scale RCTs of RT, Liu-
Ambrose and colleagues showed that engaging in
progressive RT at 2 doses, once or twice per week, for
12 months improved the executive functions of selec-
tive attention and conflict resolution in older women
[89], effects that were maintained for an additional 12
months post-training [90]. Previous to this RCT, evi-
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dence from 2 smaller trials in men only indicated that
RT was beneficial for cognition [91, 92]. Associative
memory performance is also enhanced with 6 months
of RT in older women [93]. The cognitive-gains
from RT are further reflected in hemodynamic effects
within the brain. Specifically, RT in older women
led to functional changes within regions involved in
executive functions — the anterior portion of the left
middle temporal gyrus and the left anterior insula
extending into the lateral orbital frontal cortex [94];
and associative memory — right lingual, occipital-
fusiform, and right frontal pole [93]. Furthermore,
twice-weekly RT reduced volume of white matter
lesions [95] and reduced cortical white matter atrophy
[90].

Despite common cognitive outcomes, AT and
RT exert their benefits through distinct physiology
and are possibly subserved by both divergent and
common mechanistic pathways. For example, AT
increases cardiovascular fitness as measured by maxi-
mum oxygen uptake while RT increases muscle mass
and strength [96]. Work in young adult male rats
suggests that while both AT and RT improved spa-
tial learning and memory, AT preferentially increased
brain-derived neurotrophic factor (BDNF) while RT
preferentially increased a different neurotrophic fac-
tor, insulin-like growth factor-1 (IGF-1) [97]. On
the other hand, both types of training reduce car-
diometabolic risk factors for neurodegeneration [89,
98-103] and associated systemic inflammation [64,
96, 104, 105] to different degrees. Studies are
required to compare and contrast these two forms of
exercise as well as examine their combined influence
on cognition and brain function.

POSSIBLE SEX DIFFERENCES IN
EXERCISE EFFICACY

Possible sex differences in exercise efficacy:
Meta-analytic findings

Older females greater than 65 years of age are
more sedentary and engage in less physical activ-
ity than age-matched males [106, 107] and being
sedentary may have greater negative impact on pro-
cessing speed in older age in females then males
[108]. Thus increasing physical activity levels in
females may have a greater impact on cognition. Col-
combe and Kramer [5] first suggested that females
greater than 55 years of age may show greater cog-
nitive benefits from AT. This was recently confirmed

in a meta-analysis of RCTs showing that sex mod-
erates the effect of exercise on cognitive function
[8]. Specifically, AT was associated with a larger
effect size in studies that utilized a higher percent-
age of females (over 71%) than studies with lower
percentage of females for executive functions (effect
sizes: 2.83 vs. 1.46) [8]. A similar female-advantage
was found for rodent studies that utilized forced
AT (effect size for female studies: 1.24; effect size
for male studies: 0.53) but not voluntary AT for
hippocampus-dependent learning and memory [109].
Further, human studies of RT as well as multimodal
training (e.g., combined AT and RT) also show the
female-advantage for executive functions [8].

Possible sex differences in exercise efficacy: RCT
findings

Direct support for the supposition that older
females show greater cognitive benefits from exer-
cise than males is provided by a recent secondary
analysis of a RCT of 6 months, 3 times per week
progressive AT in participants with mild subcortical
ischemic vascular cognitive impairment. Specifically,
a significant interaction was found between treat-
ment group (AT or control) and biological sex, with
AT significantly improving the executive function of
set-shifting in females (36% improvement in perfor-
mance from baseline) but not males (31% decline
in performance from baseline), an effect that was
retained 6 months after trial termination [110]. Addi-
tional support for a possible sex difference in AT
efficacy is found in two RCTs that stratified analy-
ses by sex. In participants with MCI, Baker et al.,
[77] found AT increased performance compared to
controls on 3 cognitive tests in females but only
on 1 test in males. Additionally, increased adher-
ence to a 12 month AT program was associated with
improved attention and memory in older females with
MCI and with only memory in older males [111].
Although no RCT has examined sex differences in
brain outcomes, in a cross-sectional study Varma et
al., [112] found that greater amounts of objectively
measured walking activity over one week were signif-
icantly associated with larger hippocampal volumes
among older females but not among males and, in
another study, they found greater enhancements in
the volume of the subiculum, which is part of the pos-
terior hippocampus in females only [113]. Together
these findings indicate that engaging in AT leads
to greater beneficial effects on cognition in females
than males.
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HOW CAN SEX MODERATE EXERCISE
EFFICACY?

Despite the many studies investigating the impact
of exercise on cognitive and brain function in humans,
comparatively little is known about the biological
mechanisms underlying these effects, and whether
these vary by sex is yet to be examined. Our current
understanding of how exercise promotes cognitive
and brain function largely stems from animal stud-
ies and is mainly restricted to AT as there is a
dearth of mechanistic evidence for RT. Cotman
[64] proposed an integrative model by which AT
enhances cognition, brain function, and neuroplastic-
ity through induction of neurotrophic factor cascades
(i.e., BDNF, IGF-1, vascular endothelial growth fac-
tor (VEGF)). In support of this model, rodent studies
indicate that central BDNF levels mediate the ben-
eficial effects of AT on the brain [4, 65, 66, 114,
115]. In humans, although AT-induced increases in
peripheral levels of BDNF are generally seen, some
studies do fail to find this effect [116-119] and bio-
logical sex may be an important moderating factor
[116]. BDNF supports neuronal survival and growth,
synaptic plasticity, is involved in cellular mechanisms
required for learning and memory, and sex differences
exist in some of its functions [120-124]. Further-
more, AT benefits cognition through enhancements
in neuroplasticity, including hippocampal neuroge-
nesis; processes which also show sex differences.
Physiological responses to exercise may also under-
lie the beneficial effects on the brain, and these may
also help explain the sex difference in AT efficacy on
cognition.

Sex differences in neuroplasticity

Rodent studies show that running benefits cog-
nition through alterations in neuroplastic processes
in key brain regions involved in learning and mem-
ory, including the hippocampus and prefrontal cortex
(PFC) [for review see 4, 65, 66, 125]. Neuroplastic-
ity, the ability of the adult brain to change, remodel
and reorganize in response to the environment,
includes changes in dendritic branching, synaptoge-
nesis, angiogenesis, and neurogenesis. Many of these
forms of neuroplasticity show sex differences and
are altered by exposure to sex hormones, such as
estradiol and testosterone [55, 126, 127]. Although
a complete review of this topic is beyond the scope
of this manuscript, we include a few examples to pro-
vide evidence that sex differences in exercise efficacy

may be related to sex differences in neuroplasticity.

Sex differences exist in neuroplastic mechanisms
at the structural, cellular, and molecular levels. Den-
dritic spine density on neurons in the CA1 region of
the hippocampus respond to estradiol in female but
not male rodents [128, 129], whereas spine density
responds to testosterone in both females and males
[129, 130]. Further, chronic stress causes retraction
of apical dendrites of CA3 neurons of the hippocam-
pus [131] and shrinkage of certain dendrites in the
medial PFC [132] in males but not female rats. Adult
hippocampal neurogenesis, the production of new
neurons in the dentate gyrus in adulthood, is involved
in learning and memory. Although female and male
rodents do not seem to differ in overall basal lev-
els of hippocampal neurogenesis, sex differences do
emerge in response to stimulation including hor-
mones and behavior [55, 127, 133]. For example,
adult male rats show increases in hippocampal neu-
rogenesis in response to spatial water maze training,
a task with a male-advantage in performance, but
females do not [134]. On the other hand, compared
to males, females show greater increases in hip-
pocampal neurogenesis after training on a task with
a female-advantage in performance [135]. Further,
exposure to stress in adolescence leads to sex-specific
effects on hippocampal neurogenesis in adulthood,
with female rats showing decreased and male rats
showing increased levels of new neurons [136].
Another example of sex differences in neuroplasticity
is seen in the response to chronic estradiol treat-
ment of hippocampal neurogenesis, which was seen
only in female rats and not male rats [137]. Sex dif-
ferences extend to the molecular level, as signalling
pathways subserving synaptic plasticity also differ
between the sexes, including the calcium/calmodulin
kinase kinase (CaMKK) pathway [for review see
126].

Sex differences in BDNF

BDNF is vital for neuronal health, survival and
plasticity and, importantly, sex differences exist in its
functioning [120-124]. The promoter region of the
BDNF gene contains an estradiol-response-like ele-
ment [138] and BDNF protein levels fluctuate across
the estrus (in rodents) and menstrual (in humans)
cycles with increases in estradiol associated with
greater BDNF expression [139]. Within the mossy
fiber pathway of the hippocampus BDNF expres-
sion is sex-dependent, with estradiol upregulating and
testosterone suppressing BDNF levels [140]. Interest-
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ingly, BDNF levels decline with age and functionally,
this decline is related to impaired cognitive function
in older females but not males [141]. Further evi-
dence of sex differences in BDNF function are seen
in studies of the BDNF Val66Met polymorphism; the
Met allele is related to reduced activity-dependent
secretion of the mature form of BDNF from neurons
[142]. There are sex differences in the effects of the
Met allele on hippocampal blood flow, age-related
cognitive and brain volume decline and on AD risk
[143—-146]. Further, in the BDNF Val66Met mouse
model, estradiol interacts with the Met allele to influ-
ence hippocampal memory and hippocampal BDNF
expression across the estrous cycle [147]. Although
not directly examined yet, there is some suggestion
that sex differences exist in the AT-induced increase
in circulating BDNF. In a meta-analysis of 9 stud-
ies, AT effects on BDNF levels were greater in
studies utilizing female rodents compared to stud-
ies with male rodents (effect size for female studies:
2.59; effect size for male studies: 0.46) [109]. Fur-
thermore, in humans, 6 months of AT increased
circulating BDNF levels to a greater extent in
females than males [110]. Therefore, sex differences
in BDNF functioning may extend to AT-induction
of BDNF.

Sex differences in the physiological adaptations
to exercise

Sex differences exist in several key systems
involved in exercise — including the respiratory
system, musculoskeletal system, and cardiovascular
system — as well as in the physiological responses
of these systems to exercise training. Inherent func-
tional and anatomical differences exist between the
sexes in lung size and volume, airway diameter, dif-
fusion surface, and maximal expiratory flow rates
that affect exercise capacity across the lifespan, with
females at a disadvantage [148, 149]. Age-dependent
declines in aerobic capacity as measured by maxi-
mal oxygen uptake (V02 max) are greater in males
than females in later life (60 years and older) [150,
151]. Premenopausal females and age-matched males
differ in whole-body fuel use with females utilizing
more lipids and males utilizing more carbohydrates
and protein, which is related to sex differences in
expression of genes associated with fat and carbo-
hydrate metabolism and the sex hormone estradiol
[152]. Muscle mass, strength and quality decline with
age [153], and strength exercises help maintain and
improve these indices in older adults [154]; how-

ever, the degree of benefit may differ by sex with
males showing greater effects [155], although this is
not consistently found [156]. Interestingly, supple-
mentation with fish-oil in conjunction with RT was
more effective in improving muscle quality in older
females than males [157]. Age-associated changes in
the cardiovascular system differ between the sexes
[158] and influence exercise capacity. For exam-
ple, decreases in maximal cardiac power output and
reserve and maximal oxygen uptake seen in older
males are preserved in older females [150, 159].
Conversely, studies report greater beneficial effect of
exercise on some hemodynamic responses in older
males than females, including lower blood pressure
[160] and increased leg blood flow [161] in response
to AT. Interestingly, these differences between males
and females in the physiological responses to exer-
cise may be related to sex differences in effective
dose of exercise [for review see 161] and future
studies are required to examine this. Further, engag-
ing in chronic exercise attenuates age-associated
endothelial dysfunction in older males [162, 163].
However, in older females the beneficial effects
of exercise on endothelial function are diminished
[162, 163] and may be dependent on the presence
of estrogens [164].

FUTURE STUDIES AND CONCLUDING
REMARKS

Engaging in physical activity is a promising, non-
pharmacological strategy to mitigate the deleterious
effects of aging and disease on cognitive and brain
health. However, to maximize the utility of exer-
cise, interventions should be targeted and tailored
to specific populations and move beyond the ‘one-
size-fits-all’ approach. Specifically, we argue that
biological sex may be an important factor that moder-
ates the relationship between exercise and cognition.
A large gap exists in the current knowledge as few
studies of exercise and brain health have directly
examined this potential sex difference. It is also
currently not known whether the proposed mecha-
nisms underlying exercise effects on the brain differ
between the two sexes. Thus future studies of RT
and AT as well as alternative forms of exercise such
as yoga, should address the potential sex difference
in exercise efficacy if we are to develop effective,
evidence-based exercise interventions to promote
healthy brain aging for all individuals.
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