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FNDC5/Irisin — Their Role in the Nervous
System and as a Mediator for Beneficial
Effects of Exercise on the Brain

Christiane D. Wrann*
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Abstract. Exercise can improve cognitive function and the outcome of neurodegenerative diseases, like Alzheimer’s disease.
This effect has been linked to the increased expression of brain-derived neurotrophic factor (BDNF). However, the underlying
molecular mechanisms driving the elevation of this neurotrophin remain unknown. Recently, we have reported a PGC-1a-
FNDC5/irisin pathway, which is activated by exercise in the hippocampus in mice and induces a neuroprotective gene program,
including Bdnf. This review will focus on FNDCS and its secreted form “irisin”, a newly discovered myokine, and their role in
the nervous system and its therapeutic potential. In addition, we will briefly discuss the role of other exercise-induced myokines

on positive brain effects.
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INTRODUCTION

Exercise, especially endurance exercise, is known
to have beneficial effects on brain health and cognitive
function [11, 32, 53]. This improvement in cogni-
tive function with exercise has been most prominently
observed in the aging population [10]. Exercise has
also been reported to ameliorate outcomes in neu-
rological diseases like depression, epilepsy, stroke,
Alzheimer’s and Parkinson’s Disease [2, 4, 6, 44, 56].
The effects of exercise on the brain are most apparent
in the hippocampus and its dentate gyrus, a part of the
brain involved in learning and memory. Specific bene-
ficial effects of exercise in the brain have been reported
to include increases in the size of and blood flow to the
hippocampus in humans and morphological changes
in dendrites and dendritic spines, increased synapse
plasticity and, importantly, de novo neurogenesis in
the dentate gyrus in various mouse models of exer-
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cise [11, 32]. De novo neurogenesis in the adult brain
occurs is observed in only two areas; the dentate gyrus
of the hippocampus is one of them and exercise is one
of the few known stimuli of this de novo neurogenesis
[26].

One important molecular mediator for these benefi-
cial responses in the brain to exercise is the induction
of neurotrophins/growth factors, most notably brain-
derived neurotrophic factor (BDNF). In animal
models, BDNF is induced in various regions of the
brain with exercise, most robustly in the hippocampus
[44]. BDNF promotes many aspects of brain develop-
ment including neuronal cell survival, differentiation,
migration, dendritic arborization, synaptogenesis and
plasticity [19, 37]. In addition, BDNF is essential for
synaptic plasticity, hippocampal function and learn-
ing [28]. Highlighting the relevance of BDNF in
human, individuals carrying the Val66Met mutation
in the BDNF gene, exhibit decreased secretion of
BDNEF, display a decreased volume of specific brain
regions, deficits in episodic memory function as well
as increased anxiety and depression [14, 20]. Blocking
BDNF signaling with anti-TrkB antibodies attenu-
ates the exercise-induced improvement of acquisition
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Fig. 1. Structure of the murine FNDC% and irisin protein. (A) Scheme of the murine FNDCS5 protein structure (top) and murine irisin protein
structure (bottom). SP=signal peptide, H=hydrophobic domain, C=cytoplasmic domain. (B) Murine FNDCS5 amino acid sequence with

corresponding domains colored. The irisin sequence is underlined.

and retention in a spatial learning task, as well as
the exercise-induced expression of synaptic proteins
[51, 52]. However, the underlying mechanism, by
which BDNF is induced in exercise remains to be
incompletely understood.

We recently described a role for the newly discov-
ered “exercise-hormone” FNDC5 [5] and its secreted
form “irisin” in the protective effects of exercise on
the brain. Fndc5 expression is induced by exercise in
the hippocampus in mice, which in turn, can activate
BDNF and other neuroprotective genes [54]. Impor-
tantly, peripheral delivery of FNDCS5 to the liver via
adenoviral vectors, resulting in elevated blood irisin,
induced expression of Bdnf and other neuroprotective
genes in the hippocampus. These data indicate that
either irisin itself can cross the blood-brain-barrier to
induce these gene expression changes or irisin induces
a factor x that can. This has significant implication
for irisin as a novel therapeutic target. This review
will examine previous literature about FNDC5/irisin
as well as its therapeutic potential for treating neu-
rodegenerative disease.

DISCOVERY OF FNDCS/IRISIN

In 2002, two groups independently cloned a novel
gene that they termed either PeP or alternatively,
Frcp2, and that contained a fibronectin type III (FNIII)
domain, now named FNDCS5 [16, 49]. Recently, our
group identified FNDCS5, as a PGC-la-dependent
myokine, that is secreted from muscle during exercise
and induces some of the major metabolic benefits of
exercise [5].

FNDCS is a glycosylated type I membrane protein.
It contains a N-terminal signal peptide (amino acid
(aa) 1-28), a FNIII domain (aa 33—-124), a transmem-
brane domain (aa 150-170), and a cytoplasmic tail
(aa 171-209) (www.uniporot.org) (Schematic Fig. 1).
The secreted form of FNDCS contains 112 amino
acids (aa 29-140), named irisin. It is generated by
proteolytic cleavage and released into the circulation.
The protease/sheddase responsible for that cleavage
has not been identified, yet. Irisin is 100% conserved
from mouse to human and is highly conserved across
mammals. Irisin has been crystallized and its struc-
ture has been solved [45]. Interestingly, the FNIII-like
domain shows an unusual confirmation with contin-
uous intersubunit beta-sheet dimer, which has not
been previously described for any other FNIII pro-
tein. Subsequent biochemical experiments confirmed
the existence of irisin (bacterial recombinant) as a
homodimer.

TRANSCRIPTIONAL REGULATION
OF FNDC5 EXPRESSION

The FNDCS5 gene is located on human chromosome
1 and mouse chromosome 4, respectively. In silico
analysis by Seifi et al. suggests that the putative core
promoter of the mouse Fndc5 gene ranges from —551
to +101 with respect to the transcriptional start sites
and that it contains exon I and intron I of Fndc5 gene.
This murine Fndc5 core promoter lacks a TATA box
and is GC rich [46].

Fndc5 has been shown to be regulated by the tran-
scriptional co-activator PGC-1a in skeletal muscle
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and neurons in vivo and in vitro [5, 54]. This could
explain the enrichment of Frdc5 expression in highly
oxidative tissues, such as skeletal muscle, heart and
brain, and its induction by endurance exercise, both
states, in which PGC-1a expression is increased. Since
PGC-1a is a transcriptional co-activator and therefore
needs by definition a transcription factor to exert its
biological function. In neurons its regulatory partner
has been suggested to be ERRa, based on bioinfor-
matical analysis of the murine Fndc5 promoter, which
contains ERRa transcription factor binding sites, and
biochemical experiments using an inverse pharmaco-
logical agonist and RNAi-mediated knock-down [54].
One report identifies SMAD3 as negative regulator of
serum Irisin and skeletal muscle FNDC5 and PGC-1a
during exercise [50].

IRISIN IN HUMANS

Irisin is a highly conserved polypeptide across mam-
mals. In fact, it is 100% percent identical in mice
and humans [5]. Such a high degree of conservation
is often the result of evolutionary pressure to con-
serve function. Interestingly, the human FNDCS5 has
an atypical start of translation, ATA in place of ATG,
compared to mouse Fndc5. While it is now known
that a few percent of eukaryotic mRNAs begin trans-
lation with non-ATG start codons [23, 24, 38] and are
often associated with regulation on the translational
level [7, 48] recent reports [3, 42] have argued that
this ATA codon in human FNDC5 was a “null muta-
tion” or a “myth” and therefore human irisin would not
be produced. Furthermore, the many reports of other
groups measuring irisin in human by Western blot or
ELISA have been suggest to be artifacts of poor anti-
body specificity [3, 15, 42] even though an earlier study
had detected irisin circulating in human plasma using
mass spectrometry- an unbiased method independent
of the quality of existing antibodies [30]. (To identify
and quantify irisin in human plasma, we used targeted
mass spectrometry with control peptides enriched with
stable isotopes as internal standards. This precise state-
of-the-art method demonstrated that human irisin is
mainly translated from its non-canonical ATA start
codon [25]. In addition, it shows that in sedentary
individuals irisin circulates at ~3.6 ng/ml and that it
was significantly increased in individuals undergo-
ing aerobic interval training. This study determines
at the atomical level that human irisin exits, circu-
lates, and is regulated by certain forms of aerobic
exercise.

FNDCS/IRISIN IN EXERCISE

FNDC5/irisin were first described as an exercise-
induced myokine by Bostrom et al. in 2012 [5], who
observed upregulation of Fndc5 gene expression in
skeletal muscle and increases in serum irisin lev-
els after prolonged endurance exercise in mice and
humans. Increasing the circulating levels of irisin by
overexpressing FNDCS5 from adenoviral vectors in the
liver, led to increased of “browning” of the white
inguinal adipose tissue, i.e. the upregulation of mito-
chondrial gene expression, especially of Ucpl, and
to increased glucose tolerance in mice — two of the
major metabolic benefits of endurance exercise. By
now, there are have been around 50 papers published
that investigate FNDCS and/or irisin in exercise in
rodent studies and clinical trials in humans. Induc-
tion of Fndc5 mRNA in skeletal by endurance exercise
has been confirmed in several studies in mice [41,
50, 54] and humans [3, 29, 34] using QPCR or RNA
sequencing. As with all clinical studies, there are a
lot of variables to consider, such as retrospective stud-
ies vs. intervention trials, age and fitness level of the
subjects and, most importantly, the type of exercise
protocol used and time point of sampling. However,
there is a consensus building that studies that reported
positive associations between irisin plasma level and
exercise, performed early sampling and high intensity
training protocols levels [12, 22,27, 34]. The brief rise
in circulating irisin levels after exercise is suggestive
of an acute shedding event of irisin during exercise.
There is little or no evidence so far that FNDCS5 or
irisin is upregulated by resistance exercise in mice
or human; which is not unexpected since endurance
exercise activates PGC-1al, which has been shown
to be the upstream regulator of Fndc5 gene expres-
sion, whereas resistance exercise activates a different
isoform of PGC-1a, PGC-1a4 [43].

FNDCS/IRISIN IN METABOLISM

Initially, irisin was described as acting preferen-
tially on the subcutaneous ‘beige’ fat and to cause
‘browning’ by increasing the expression of UCP-1
and other thermogenic genes [5, 55]. The result is
increased thermogenesis and energy expenditure, with
improved whole body glucose metabolism in obese
mice [5]. A recent study in myostatin mutant mice sug-
gests that the leaner body composition and reduced fat
mass in those mice maybe caused by browning of the
white adipose driven by higher levels of irisin (Fndc5)
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secreted from the skeletal muscle [47]. Many studies
have described the relationship of FNDC5/irisin and
various metabolic parameters, such as BMI, obesity,
type 2 diabetes, age, or pregnancy etc. Recent reviews
from Chen J.Q. et al. and Chen N. et al. nicely sum-
marize the results of those studies [8, 9].

FNDCS/IRISIN IN NEURONAL
DEVELOPMENT

Fndc5 is highly expressed in the brain, including
the Purkinje cells of the cerebellum [13, 16, 49].
Irisin, the shed form of FNDCS5 was identified in
human cerebrospinal fluid by WB [40]. In addition,
immunoreactivity against the extracellular domain of
FNDC5/irisin was detected inhumanhypothalamic sec-
tions, especially paraventricular neurons [40]. Other
tissues with high FNDCS levels include skeletal muscle
and the heart. Fndc5 gene expression increases dur-
ing differentiation of rat pheochromocytoma-derived
PC12 cells into neuron-like cells [35]. FNDCS5 levels
are enhanced after differentiation of human embryonic
stem cell-derived neural cells into neurons [18] as well
as during the maturation of primary cortical neurons in
culture and during brain development in vivo [54].

Knockdown of FNDCS in neuronal precursors
impaired their development into mature neurons (and
astrocyte), suggesting a developmental role of FNDC5
in neurons [21]. On the other hand, forced expres-
sion of FNDCS5 during neuronal precursor formation
from mouse embryonic stem cells increased mature
neuronal markers (Map2, b-tubulinlll and Neurocan)
and astrocyte marker (GFAP) and BDNF. However,
overexpression of FNDCS in undifferentiated mouse
embryonic stem cells did not have these effects, indicat-
ing that FNDCS supports neural differentiation rather
than lineage commitment [17]. Pharmacological doses
of recombinant irisin increased cell proliferation in the
mouse H19-7 hippocampal cell line [33]. Furthermore,
forced expression of FNDCS5 in primary cortical
neurons increased cell survival in culture, whereas
knockdown of FNDCS5 had the opposite effect [54].

FNDCS/IRISIN — OTHER EFFECTS IN THE
CNS

The group of Dr. Mulholland had taken in interest in
the central nervous effects of irisin. In a first study, they
injected irisin either into 3rd ventricle of rats or intra-
venously and measured the effects on blood pressure
and cardiac contractibility [57]. Central administration

of irisin activated neurons in the paraventricular nuclei
of the hypothalamus as indicated by increased c-fos
immunoreactivity. Central irisin administration also
increased blood pressure and cardiac contractibility. In
contrast, i.v. injection of irisin reduced blood pressure
in both, control and spontaneously hypertensive rats. In
a second study, Zhang et al. showed that central treat-
ment of rats with irisin-Fc led to an increase in physical
activity compared to control animals receiving IgG Fc
peptide [58]. In addition, the centrally applied irisin
also induced significant increases in oxygen consump-
tion, carbon dioxide production and heat production,
indicating an increase in metabolic activity- possibly
through SNS activation.

EXERCISE INDUCES HIPPOCAMPAL
BDNF THROUGH A PGC-1a/FNDCS
PATHWAY

In a recent study, we have shown that FNDCS is
also elevated in the hippocampus of mice undergoing
an endurance exercise regimen of 30-days free-wheel
running. Neuronal Fndc5 gene expression is regu-
lated by PGC-1a and Pgcla™/~ mice show reduced
Fndc5 expression in the brain. Forced expression of
FNDCS in primary cortical neurons increases Bdnf
expression, whereas RNAi-mediated knockdown of
FNDCS5 reduces Bdnf. Importantly, peripheral delivery
of FNDCS to the liver via adenoviral vectors, result-
ing in elevated blood irisin, induces expression of Bdnf
and other neuroprotective genes in the hippocampus.
Interestingly, a recent study investigating the effects
of the flavonoid querceptin and hypobaric hypoxia,
reported that quercetin administration to hyperbraric
hypoxicrats increased expression of PGC-1a, FNDCS,
and BDNF in the hippocampus [31].

Taken together, our findings link endurance exercise
and the important metabolic mediators, PGC-1a and
FNDCS5, with BDNF expression in the brain. While
more research will be required to determine whether
the FNDC5/irisin protein actually improves cognitive
function in animals, this study suggest that a natural
substance given in the bloodstream might mimic some
of the effects of endurance exercise on the brain.

FUTURE DIRECTIONS FOR FNDCS/IRISIN
IN EXERCISE AND THE BRAIN

However, this first study opens up important
questions that need to be addressed in the future.
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1) Can irisin itself cross the blood brain barrier?
Molecules can cross the blood brain barrier either
through free discussion if the molecular weight is
<400 Da and it forms <8 hydrogen bonds. How-
ever, recent studies suggest that other molecules
can use either carrier- or receptor-mediated trans-
port (RMT) through the blood brain barrier; a
concept that is currently being explored by the
pharmaceutical industry for drug delivery [36].

2) Does a prolonged elevation of peripheral irisin
confer neuroprotective effects and can this be
achieved by peripheral administration of recom-
binant protein? So far there have been only two
studies that injected recombinant irisin either
into 3rd ventricle of rats or intravenously and
monitored acute effects on blood pressure or
activity within minutes [57, 58]. But no chronic
long-term studies using a genetic model or
repeated injections have been reported. Longer
term administration of irisin will also allow to
evaluate the effects on synaptic plasticity and
cognition.

3) FNDCS5 is expressed in at highest levels in oxida-
tive muscle, like skeletal muscle and heart, as
well as the nervous tissue. Endurance exercise
induces FNDCS5 in skeletal muscle as well as in
the hippocampus in mice [54]. Which tissue con-
tributes to what extend to the beneficial effects of
exercise on the brain? Tissue-specific deletion of
Fndc5 in the skeletal muscle and the hippocam-
pus will help to delineate the effects of skeletal
muscle- vs. hippocampal-induced Frdc5 on cen-
tral BDNF expression as well as on improvement
of learning and memory by endurance exercise.

4) What is the identity of the irisin receptor and
intracellular signaling pathways used by irisin?
Finding the irisin receptor will help to identify
all possible target tissues of irisin effects and
therefore targeted drug development.

OTHER CIRCULATING FACTORS FROM
THE MUSCLE

While FNDCJ5/irisin is a very interesting molecule
with therapeutic promise, this is not to say that we think
that FNDC5/irisin captures all the benefits of exer-
cise on the brain or that is the only important secreted
molecule from muscle in exercise. In fact, other such
molecules have been described, including BDNF, IGF-
1, and VEGEF, kyrurenic acid, and a variety of cytokines
and chemokines, to name a few [1, 39, 53]. We expect

that in the future additional molecules will be discov-
ered and that some of those will fulfill their therapeutic
potential.
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