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Abstract.

Background: The muscle representations in non-primary motor area (NPMA) are located in the dorsal premotor area (PMd)
and in the border region between the premotor area and the supplementary motor area (SMA).

Objective: We characterized the plasticity of intracortical inhibitory and excitatory circuits in muscle representations in
primary motor cortex (M1) and in NPMA related to acquired fine motor skills. We compared local cortical inhibition and
facilitation balance in M1 and in NPMA between control subjects (n=6) and right-handed string-instrument players (n=15).
Methods: Navigated transcranial magnetic stimulation (TMS) was used to compare motor thresholds (MTs), motor evoked
potentials (MEPs), short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in non-dominant hand
muscle representations in M1 and NPMA.

Results: String-instrument players showed reduced SICI in M1 in the actively used left hand abductor digiti minimi (ADM)
muscle representation at 3 ms inter-stimulus interval (ISI) with a conditioning stimulus (CS) intensity of 80% of MT and
increased SICI in NPMA in ADM representation at 2 ms ISI and CS intensity of 50% of MT in comparison with controls. No
differences between string-instrument players and controls were found for the SICI in the left hand opponens pollicis (OP)
muscle representation, which is a muscle not intensively trained in string-instrument players.

Conclusions: These preliminary results indicate that the stronger inhibition in motor representations outside M1 in string-
instrument players may be crucial when accurate movements of single muscles must be performed. In contrast, weaker
inhibition in M1 in string-instrument players may benefit the performance of fast finger movements.
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INTRODUCTION

The non-primary motor areas (NPMAs) anterior to
primary motor cortex (M1) have representations of
the upper limb muscles in both non-human primates
and humans [1-6], but the role of these representa-
tions outside M1 is unclear. It has been claimed that an
assessment of the integrity of corticospinal tract fibers
originating from dorsolateral premotor cortex (PMd)
may have some predictive value in the assessment of
stroke recovery [7]. Even though the degree of motor
recovery in stroke patients is most strongly correlated
to the integrity of corticospinal tract fibers originat-
ing from M1, a higher integrity of corticospinal tract
fibers from PMd also predicts a better recovery (7).
Furthermore, it has been reported that motoneurons in
NPMAss are recruited when individuals are learning
skills requiring fine motor control [8].

Navigated TMS is a technique that enables explo-
ration of the motor representations in M1 and NPMA
separately. Previously, we have stimulated M1 and
NPMAs in healthy subjects and mapped cortical mus-
cle representations [3, 9]. In addition to M1, muscle
responses could be evoked by stimulations of the PMd
and border region between the PMd and the supple-
mentary motor area (SMA) without any simultaneous
activation of M1 [3, 9].

Intracortical inhibition and facilitation in the motor
representations can be studied by paired-pulse TMS
with different inter-stimulus intervals (ISIs) [10, 11].
In paired-pulse TMS, a subthreshold conditioning
stimulus (CS) precedes the suprathreshold test stim-
ulus (TS). Inter-stimulus intervals shorter than 6 ms
produce short-interval intracortical inhibition (SICI),
which can be seen as a decrease in MEP amplitudes
when compared to single-pulse stimulation alone.
Intracortical facilitation (ICF) is most pronounced
with ISI values longer than 7 ms and can be detected
as an increase in the MEP amplitude [10-12]. In our
previous study, SICI and ICF were observed in motor
representations in M1 and in NPMA. We noted that
SICI at 2 ms ISI measured in the NPMA representa-
tion of opponens pollicis (OP) muscle was slightly
weaker than in M1 [9].

The aim of the current study was to compare SICI
and ICF in the intrinsic hand muscle representations
in M1 and in NPMA (corresponding mainly to PMd)
in a cohort of 5 string-instrument players with a con-
trol group of participants not actively playing any
musical instrument. In our previous study, the over-
all size of the cortical representation of the actively

used hand muscle was smaller in string-instrument
players than in controls and also in comparison to the
representation area of less actively used hand in the
contralateral hemisphere [13]. We also hoped to clar-
ify the role of NPMA motor representations in the
control of skilled finger movements in subjects with
long training histories.

MATERIAL AND METHODS

Subjects

We tested 5 string-instrument players (4 female
violin players, 1 male guitar player, age 23.8 2.2
years) and 6 control subjects (3 female, 3 male,
age 24.3 £ 3.7 years) who had all participated also
in our former studies [3, 9, 13]. The control group
was a mixed group of figure skaters and non-trained
healthy subjects. Handedness and footedness were
determined according to the revised and reduced form
of the Waterloo questionnaire [14]. One control sub-
ject was left-handed, all of the other participants
were right-handed. In the string-instrument play-
ers, the duration of active practice varied between
14-21 years (mean 16.6 2.1 years). Four of the
string-instrument players (subjects 1, 2, 4, 5) had
completed national basic level examinations (levels
1/3—3/3). Three of them had also passed higher exam-
inations: subject 2 - the music institute level (level
D), subject 1 - the second level in music conser-
vatory (level B) and subject 4 - the highest level
in music conservatory (level A) (examination crite-
ria: www.musicedu.fi; www.siba.fi). Subject 3 played
regularly but had not completed any national exami-
nations. None of the instrument players had practiced
on the day of examination. The control subjects did
not play any instrument but four of them had a
long training history as figure skaters. In the figure
skaters, the duration of practice had varied between
14-18 years (mean 16 % 1.8 years). All of the figure
skaters had ended regular practicing by the time of the
study. The time between active practicing and the cur-
rent study varied between 3-8 years (mean 4.5 2.4
years). All of the figure skaters had competed at the
national junior level and one also at the national senior
level. All had demonstrated the skill requirements
for competing in international junior competitions
as described in the rules of the International Skating
Union (www.ISU.org). Figure skaters were accepted
as a control group since in figure skating, skillful
motor sequences are not performed with intrinsic
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hand muscles, instead the upper limb movements
consist of alignment of arms, extension/flexion move-
ments of arms, wrist and fingers when performing
jumps and choreographed arm and hand movements
to the accompaniment of music [15].

All subjects were informed about the experiments
and written consents were collected. The study was
conducted in compliance with the Declaration of
Helsinki and approved by the Ethics Committee of the
Hospital District of Northern Savo (Kuopio, Finland).

Transcranial magnetic stimulation

We used navigated TMS (eXimia NBS, Nexs-
tim Plc., Helsinki, Finland) for the stimulations.
Navigated TMS combines traditional TMS and neu-
ronavigation [16] and makes it possible to achieve an
accurate stimulation of separate brain regions while
having a continuous electric field display [17]. The
most probable stimulation area in the cortex is that
area where the induced electric field is strongest
[18-20]. The computational electric field is calcu-
lated using the spherical model which is matched to
individual MRIs [21, 22]. The computed electric field
does account for the head and brain anatomy, stim-
ulation intensity and coil parameters (3D position
and orientation of the coil, shape of copper wiring
in the coil) in each stimulated position but does not
take into consideration differences in material con-
ductivity [23]. After the determination of the resting
motor threshold (RMT) and the corresponding elec-
tric field value (V/m) in the target motor region, the
remote cortical regions can be stimulated at an inten-
sity which is adjusted so that the induced electric field
in the target region remains below a pre-determined
RMT value [3, 9, 23]. Individual three-dimensional
T1-weighted MR images (Siemens Avanto 1.5 T,
Erlangen, Germany) were used for navigational pur-
poses. A 3D surface MRI, peeled to 25 mm of depth
from the scalp was used as the cortical mapping sur-
face. At this depth, both sulci and gyri are easily
identified [24]. Single and paired monophasic TMS
pulses were delivered with a Magstim BiStim stimu-
lator (Magstim Company Ltd., Whitland, Wales, UK)
via a figure-of-eight-shaped 70-mm coil.

Optimal cortical representations of OP muscle
were mapped and RMT values determined from the
non-dominant M1 and NPMA in each subject. The
non-dominant hemisphere was selected because in
our previous study, right-handed string-instrument
players displayed a significantly smaller representa-

tion area for the actively used left hand muscle in
the non-dominant right hemisphere when compared
to controls [13]. Suprathreshold MEPs, SICI and ICF
were measured from OP and abductor digiti minimi
muscles (ADM). These two muscles were selected
because the non-dominant ADM is one of the most
actively used muscles by string-instrument players
whereas the OP muscle is less extensively used [25].
In the thenar musculature, the OP and abductor polli-
cis brevis (APB) muscles are imbricated which means
that the MEP is a mixture of activation of these adja-
cent muscles. Although, it is a mixed response from
these two muscles which is recorded, we will use the
name OP because the position of the active electrode
was medial to the first metacarpal bone above the
OP muscle [9]. Since the cortical representations of
the intrinsic hand muscles overlap widely [26], and
MT values should not be affected by the magnitude
of practice [27], the optimal target and MT for OP
were determined and used also in the ADM single-
and paired-pulse -measurements. Furthermore, SICI
and ICF are very similar in different hand muscle
representations [28]. Disposable surface electrodes
(circular, diameter 9 mm, Ag-AgCl) were placed on
the skin above the bellies of the OP and ADM mus-
cles with the reference electrode positioned on the
skin above the 1st metacarpophalangeal joint (OP)
and above the Sth metacarpophalangeal joint (ADM).
Muscle activity was monitored on-line and recorded
by continuous electromyography (ME 6000, Mega
Electronics Ltd., Kuopio, Finland). MEPs without
preceding muscle activity (no motor unit potentials
in the 50 ms preceding stimulations) were included in
the analyses, peak-to-peak amplitudes were measured
for all detected MEPs and latencies for single-pulse
MEPs.

The location of the optimal representation of OP
was sought from precentral gyrus corresponding
anatomically to M1. Stimulations were delivered to
the posterior part of the precentral gyrus with the coil
being positioned perpendicular to the central sulcus
and to the posterior-anterior direction of induced cur-
rent (distance between adjacent stimulations 2 mm,
time between stimulations 5 s). The stimulation loca-
tion producing the highest MEP was selected to be the
optimal target. The optimal coil orientation was deter-
mined by rotating the coil at 45° intervals around the
optimal target. The coil orientation evoking the high-
est MEPs was selected and employed during these
experiments. RMT was measured for the final tar-
get and defined as the minimum stimulation intensity
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(per cent of maximal stimulator output) and the cor-
responding electric field value (V/m) producing at
least 5 MEPs (>50 V) out of 10 stimulations [29].
After determining the RMT, 10 suprathreshold (120%
RMT) single-pulse MEPs were recorded.

In the determination of the optimal OP target
in NPMAs, the cortical areas anterior to M1 were
stimulated. The mapped areas included superior and
middle frontal gyrus corresponding functionally to
PMd and SMA [5, 30, 31]. Based on probability
maps of cytoarchitectural subdivisions, the mapped
areas corresponded to Brodmann areas (BA) 6 and
8 [30, 32]. Stimulations were delivered to precen-
tral sulcus, superior frontal gyrus and sulci between
superior and middle frontal gyrus with the coil orien-
tation perpendicular to sulci. The location producing
the highest MEP without simultaneous activation of
M1 (electric field value in M1 below the RMT in
M1) was selected as the optimal target. MT was mea-
sured and 10 single-pulse MEPs (120% RMT) were
recorded as in M1.

SICI and ICF were measured in the optimal tar-
gets separately in both M1 and in NPMA. In the first
paired-pulse TMS examination, four different ISIs
were used (2, 3, 10 and 15ms) while the CS and
test-pulse intensities were kept constant (CS 80% and
test-pulse 120% of local RMT intensity).Thereafter,
the CS intensity was varied (30%, 50%, 70% and 90%
of the local RMT intensity) but the ISI and test-pulse
intensity were maintained at 2 ms (ISI) and 120% of
RMT (test-pulse). Ten trials were performed for each
ISI and CS intensity pair (inter-trial interval >55).
In order keep stimulation sessions short, we did not
examine the effect of CS intensity on the ICF.

Analyses

In the analyses, the highest and the lowest MEP
values were excluded from each of the 10 stimulation
trials and the mean MEP amplitudes were calculated
from the remaining eight MEPs. Mean MEP laten-
cies were calculated similarly from eight single-pulse
MEPs. All of the MEPs which could be distinguished
from the baseline were included in the analyses,
even in cases when the peak-to-peak amplitude was
lower than 50 V. In the case of very low (typically
<20 wV) responses, the amplitude was set to O V.
The amplitudes of paired-pulse MEP were normal-
ized to single-pulse MEP amplitudes. The distances
between coil locations and locations of maximal elec-
tric fields of optimal targets in M1 and in NPMA were
measured as Euclidean distances.

Statistical analyses

Electrophysiological properties (RMT, amplitudes
of single-pulse and paired-pulse MEPs, latencies of
single-pulse MEPs) of M1 and NPMA were com-
pared with each other in both groups and we also
performed a between-group comparison. In addition,
we compared mean single-pulse MEP amplitudes and
latencies recorded from OP and ADM muscles.

Nonparametric statistical tests were used because
the data was not normally distributed. The results are
presented as mean + S.D. RMTs, single- and paired-
pulse MEP amplitudes were compared between M1
and NPMA by using the Wilcoxon signed ranks test.
Mann-Whitney U test was used for the comparison
between the groups. All the statistical tests were per-
formed with SPSS 19 (SPSS Inc., Chicago, IL).

RESULTS

Locations of M1 and NPMA muscle
representation areas

The TMS image data of one string-instrument
player was lost because of a technical failure and
it could not be recovered for these analyses. Opti-
mal OP targets in M1 were located in the vicinity
of the hand knob in the posterior part of the pre-
central gyrus and the optimal targets in NPMA in
the vicinity of sulcus between middle and superior
frontal gyri as described in our previous study [9].
The locations of optimal targets in NPMA corre-
spond to BA 6 and to the border region of BA 6
and BA 8 and in functional terms to PMd and bor-
der region between PMd and SMA. MEPs could not
be evoked by the stimulations of most medial part
of superior frontal gyrus which belongs function-
ally to SMA. However, since the direction of current
was towards the interhemispheric fissure, the activa-
tion of neurons in SMAs cannot be totally excluded
[4, 5, 30, 33-37] The correspondence to functional
areas cannot be exactly defined because the func-
tional areas are not strictly bound by the anatomical
landmarks. The distance between optimal targets in
M1 and in NPMA was 26.6+2.6mm in string-
instrument players (4 subjects) and 32.5 £ 7.5 mm in
control subjects when this was defined as distances
between coil locations. When estimated as distances
between locations of maximal electric fields, the
distances were 32.2+3.7mm in string-instrument
players (4 subjects) and 33.3+4.8 mm in control
subjects (Fig. 1).
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String-instrument players

Image data missing
for one subject

Fig. 1. Optimal OP muscle representation areas in non-dominant M1 and in NPMA. The four pictures in the upper panel display the
representations from the string-instrument players (the image data of one string-instrument player was lost because of a technical failure) and
the six pictures in the lower panel show the representations from the control subjects. Electric field values induced with 120% MT intensity

are shown in NPMAs and in M1.

Resting motor threshold

The RMT was higher in NPMA than in M1 in
string-instrument players (49 + 6 % versus 39 =5 %,
p=0.042) as well as in control subjects (44 £ 6 % ver-
sus 36 £5 %, p=0.027). There were no statistically
significant differences detected between the groups.

Single-pulse MEPs

Mean single-pulse MEP amplitudes of OP and
ADM muscles did not differ between the groups or
within the groups in either area. In the control group,
OP MEP amplitudes were higher in NPMA than in
M1 (1167 £867 wV vs. 951 £956 WV, p=0.046).
The ADM MEP amplitudes did not differ between
the representation areas (322 = 200 .V in NPMA vs.
397 £ 252 wV in M1, p>0.05). In string-instrument
players, MEP amplitudes did not differ between
the representation areas (OP MEP amplitudes:
1241 £ 682 WV in NPMA vs. 891 £ 648 wV in M1,
p>0.05; ADM MEP amplitudes: 692 4852wV in
NPMA vs. 905 + 980 wV in M1, p > 0.05). The mean
single-pulse MEP latencies of OP and ADM muscles
after stimulations of M1 were 22.3441.53 ms
(OP) and 22.26+1.33ms (ADM) in control
group; and respectively 22.39 £ 1.11 ms (OP) and
22.32 + 0.87 ms (ADM) in string-instrument players.
The corresponding latencies after stimulations of

NPMA were 21.58 £1.66 (OP) and 21.82+1.40
(ADM) in control group; and 21.98 &+ 1.10 (OP) and
22.08+1.43 (ADM) in string-instrument players.
There were no significant differences between the
groups in MEP latencies in either area (p > 0.792), but
in the control group, the MEP latencies stimulated
from NPMA were significantly shorter than those
of the M1 in OP muscle (0=0.028). In the string-
instrument player group, no significant differences
were observed in MEP latencies.

Short-interval intracortical inhibition and
Intracortical facilitation

The normalized paired-pulse MEP amplitudes are
presented in Tables 1 and 2.

Differences between the string-instrument
players and the control group

In string-instrument players, SICI was weaker in
M1 with 3 ms ISI producing a less marked decrease in
ADM amplitudes when these were compared to the
corresponding values in control subjects (p =0.028)
(Fig. 2). In contrast, in NPMA, string-instrument
players displayed increased SICI with 50% of RMT
CS intensity (ISI 2 ms) producing a greater decrease
in ADM amplitudes (p =0.045) (Fig. 2). No other
significant differences were observed between the
groups in SICI and ICF.



228 S. Vaalto et al. / Plasticity in Intracortical Circuits in NPMA

Table 1
Normalized paired-pulse MEP amplitudes (% of single-pulse MEP amplitudes): stimulation of primary motor area and non-primary motor
area with constant CS intensity of 80% MT and variable ISIs, and measured from opponens pollicis (OP) and abductor digiti minimi (ADM)
muscles in string-instrument players and control subjects. Presented as mean (SD). Bold values indicate statistically significant SICI or ICF

effect
ISI (ms) 2 3 10 15
Muscle (0)3 ADM (0)3 ADM (0)3 ADM (0)3 ADM
Stimulation of Primary motor area, M1
Players 28(20) 45(22) 19(8) 58(33)* 151(62) 238 (101)* 144 (69) 251 (209)
Controls 41(39) 26(19) 26(20) 19 (8)* 131(58) 146 (68) 140 (57) 209 (103)*&
Stimulation of Non-primary motor area, NPMA
Players 54 (41) 63(40) 27(25) 29(227) 102(62) 113 (85) 106 (60) 118 (106)
Controls 41 (31) 45(25) 40(26) 27(12) 162(163) 118(87) 113(50) 135 (82)

* =significant difference between the groups, # =significant difference between the stimulated areas, & = significant difference between the
recorded muscles.

Table 2
Normalized paired-pulse MEP amplitudes (% of single-pulse MEP amplitudes): stimulation of primary motor area and non-primary motor
area with constant ISI 2 ms and variable CS intensity, and measured from opponens pollicis (OP) and abductor digiti minimi (ADM) muscles
in string-instrument players and control subjects. Presented as mean (SD). Bold values indicate a statistically significant SICI or ICF effect

CS (%) 30 50 70 90
Muscle OP ADM OP ADM OoP ADM OP ADM
Stimulation of Primary motor area, M1

Players 79 (57) 110(79) 83 (84) 93(57) 31(21) 61(59) 37(59) 37(30)
Controls 145(202) 90 (50) 111 (101) 92(59) 42(54) 50(55) 36(34) 38(37)
Stimulation of Non-primary motor area, NPMA

Players 77(33) 53(35% 68(36) 46(12* 39(27) 40(26) 60(55) 49(23)
Controls 88 (76) 73 (50) 80 (73) 95(68) 24(9) 26(13) 65(57) 53(30)

* =significant difference between the groups, * =significant difference between the stimulated areas.

Differences within the groups

When SICI and ICF were compared between M1
and NPMA within the groups, string-instrument play-
ers showed stronger ICF of ADM responses in M1,
inducing a greater increase in ADM amplitudes,
with 10ms ISI (p=0.043), and the stronger SICI
of ADM responses in NPMA with 30% CS inten-
sity (p=0.043). In the control subjects, the ICF was
stronger in ADM responses, in M1 with 15 ms ISI
(p=0.046) and SICI in ADM responses was weaker
in NPMA with 3ms ISI (p=0.046). When SICI
and ICF were compared between the ADM and OP
muscles within the groups, control subjects showed
stronger ICF of ADM responses in M1 with 15 ms
ISI (p=0.046).

DISCUSSION

We found that local inhibition (SICI) was increased
in the non-primary motor area (NPMA) cortical
representation of left ADM muscle in the string-
instrument players which is a muscle actively used

by right-handed string-instrument players. In M1,
the effect was opposite, SICI was reduced in the
string-instrument players. These results may indicate
that cortical control of an actively used muscle is
more effectively focused on the primary motor rep-
resentation in M1 in fine motor skill specialists. The
weaker inhibition in M1 in actively used hand mus-
cle representation in string-instrument players may
be interpreted as an increased readiness to recruit a
local motoneuron population.

TMS studies have shown that during the ini-
tial phase of learning a new fine motor skill, SICI
decreases, MEP amplitudes increase and motor rep-
resentations enlarge, i.e. phenomena which represent
increased activation of synapses and deactivation of
silent synapses [38—41]. Continuing practice leads to
the formation of new synapses [42, 43] and axonal
sprouting [44]. In musicians, the synaptic plasticity
is enhanced and cortical excitability is regulated more
stringently than in non-musicians [45]. This more
effective regulation of cortical excitability is seen as a
steeper input-output curve of MEP amplitudes and a
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Fig. 2. In the string-instrument players, SICI was decreased with 3 ms ISIin M1 ADM muscle representation (upper left) and increased with
50% CS intensity in NPMA ADM muscle representation (upper right) when compared with control subjects. These kinds of differences

were not observed in OP muscle (lower panel).

steeper SICI curve [45]. These findings can be inter-
preted as a higher capability to recruit fast volitional
movements and a greater capability to prevent the
unwanted spread of activation, both of which lead to
more focused cortical activation.

In our previous report, more focused functional
ADM muscle representations were also demonstrated
in string-instrument players than in controls [13]
even though earlier studies have reported also con-
trasting results [27, 46, 47]. Structural evaluations
have demonstrated both decreased and increased grey
matter density in highly active sensorimotor cortices
in musicians [48, 49]. The conflicting results may
reflect the different roles of the studied muscles in
the trained skill as well as differences in the degree of
co-activation with adjacent muscles. Spatially wider
motor representations and the greater overlap of prox-
imal and distal muscles are both related to skills
demanding synchronous activation of different mus-
cles [50-52] and more focused cortical activation
may be associated with skills demanding accurate
single-muscle movements. A more focused cortical
activation in musicians has also been reported in

fMRI studies [53, 54]. Even though increased activ-
ity in SMA and especially in caudal PMd, has been
related to the learning phase of a fine motor skill,
no evidence has been found for any higher activity
of these areas in well-learned skill performance [53].
This may be because there is less need for prepa-
ration of movement sequences, error detection and
correction; it is especially these types of activities
which are processed in PMA and SMA [31, 55, 56].
In fMRI studies, the increased activity of any neu-
rons is seen as an increase in the BOLD signal and it
cannot separate activity of motoneurons from other
cortical neurons. The SMA proper and posterior parts
of PMA are connected strongly to M1 and the major-
ity of neurons in these areas are responsible for the
preparation and correction of movement sequences
via M1 motoneurons [5]. Thus, more focused cortical
activation in fMRI studies and the shift of activa-
tion towards M1 in learned skill performance cannot
be unequivocally interpreted as more focused mus-
cle representations i.e. activation of more focused
motoneuron population but may be evidence of a
reduction of PMA and SMA activation because of
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a diminished need to concentrate on preparation and
timing of the movements. In the present study, the
stronger SICI in the representation of the actively
used hand muscle in NPMA of string-instrument
players suggests that also the direct cortical control of
voluntary movements has been shifted towards M1.

The sensory input (vibration) to the actively used
hand muscle has been demonstrated to decrease
SICI in multiple intrinsic hand muscles in musicians
whereas in non-musicians this reduction in SICI was
seen only in the vibrated muscle [57]. The representa-
tions in NPMAs have projections from somatosensory
associative cortices (BA 5) but do not possess direct
connections from S1 [58, 59]. The strong connections
between S1 and M1 and the importance of sensori-
motor organization in professional musicians could
potentially explain the importance of motor control
from M1 representations.

Based on stroke studies, the representation areas
in NPMAs anterior to M1 may be relevant in the
recovery from an M1 lesion, even though the best
motor recovery is related to increased activation of
MI. Previous studies have revealed a shift in the
motor representations anterior to M1 in the affected
hemisphere of stroke patients [60]. A positive correla-
tion has been observed in stroke patients between the
integrity of corticospinal tract fibers originating from
M1 and PMd and grip strength pointing to an impor-
tant role of PMd representations in stroke recovery
[7]. In particular, those patients with poor recov-
ery displayed increased activation in NPMAs when
performing paretic hand movements [61-63]. These
studies indicate that in severe M1 damage and intense
motor impairment, the recruitment of motoneurons
from NPMAs might be beneficial even if recovery
will not be as complete as in patients in whom activa-
tion is being restored towards M 1. Therefore, the role
of NPMA representations is more likely to be com-
pensatory for M1 in making rough limb movements
while M1 representations are necessary in performing
fine motor movements.

There were no significant differences in SICI
and ICF between OP and ADM muscles in string-
instrument players although ADM is more actively
used. We could have expected a similar difference in
inhibition between the muscles than between the inhi-
bition in ADM representations in string-instrument
players and controls. Although RMT should not be
affected by long-term practice of fine motor skills
[27], OP and ADM muscles may have a slightly dif-
ferent threshold which could have some effect on
results. We determined RMT only for OP muscle and

used CS and TS intensities proportional to OP RMT
intensity.

Because of the small sample size, the results should
be viewed as preliminary and interpretations dis-
cussed with caution. The results will need to be
confirmed in future studies. The cortical excitability
should also be studied between the hemispheres to
confirm that the active use of left hand muscles in
right-handed string-instrument players is related to
altered cortical excitability. One confounding factor
is the heterogeneity of subjects in the control group.
One of the subjects was left-handed, all other subjects
right-handed. Previous studies have shown hetero-
geneous results when cortical excitability has been
compared between left- and right-handed subjects.
Differences in SICI and ICF were found in the study
of Civardi et al. showing stronger SICI and weaker
ICF in both hemispheres in right- handed subjects
when compared to their left-handed counterparts [64].
However, Bidumer et al. did not detect any differences
in the values of SICI and ICF between left- and right-
handed subjects [65]. Furthermore, no differences
were observed between left- and right-handed sub-
jects in SICI between dominant- and non-dominant
hemispheres with classical paired-pulse protocol in
the study of Ilic et al. [66]. Since there is no clear evi-
dence about the dependency of handedness in SICI
and ICF and the non-dominant hemisphere was stim-
ulated in all subjects, it is unlikely that the single
left-handed subject in a group of six controls would
skew the results substantially, however the effect of
handedness may not be totally ruled out. In addi-
tion, four of the subjects in the control group had
a long practice history as figure skaters. Although a
figure skater does not perform any complex motor
sequences with the small hand muscles, the learning-
related plasticity in other motor representations may
exert some effect on SICI and ICF in the primary and
secondary hand motor representations.

One further limitation in interpreting the results is
the separation of muscle representations in NPMA
and in M1. The electric field value remained below
RMT in M1 when the optimal target in NPMA was
stimulated with local RMT intensity. When the opti-
mal target in NPMA was stimulated at 120% of local
RMT intensity, the electric field value exceeded the
MT value in M1 in some subjects. Since the opti-
mal direction of the current differed between M1 and
NPMA (from the lateral to the medial direction in
NPMA and from the posterior to the anterior direc-
tion in M1), it seems improbable that there was any
considerable activation of motoneurons in M1 when
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NPMA was stimulated. However, we cannot totally
exclude the possibility of activation of motoneurons
in M1 or in cortical area between the optimal tar-
gets in M1 and NPMA, especially when NPMA was
stimulated with 120% RMT intensity. The only way
to exclude the activation of M1 would have been to
stimulate the optimal target in M1 with an identical
electric field value as used in the induction of M1
when NPMA was stimulated with 120% RMT inten-
sity and with the same direction of current that was
used in NPMA. Therefore, it is possible that in our
results, the MEPs, SICI and ICF have been affected by
mild activation of M1 motoneurons when stimulating
NPMA with 120% RMT intensity.

It is not possible to define the exact functional area
in the NPMAs producing muscle responses because
there are not any anatomical landmarks which would
separate PMd from SMA. The PMd and SMA are
functionally distinct motor areas anterior to M1 [5,
67]. Both areas are located in BA 6. Pre-SMA (the
more frontal part of SMA) is located in BA 8. There
are no clear anatomical landmarks with which these
functionally distinct areas, PMd and SMA, can be
separated. Based on the probabilistic maps of Geyer
et al., the cytoarchitectural border between BA 6 and
BA 8 is frontally in the level of anterior commissure
[30]. SMA is located more medially (near to the inter-
hemispheric fissure) than PMd. It is most probable
that the MEPs evoked by the stimulations of sul-
cus between middle and superior frontal gyrus were
produced from PMd. Since the current was directed
towards the superior frontal gyrus, we cannot rule out
the possibility of motoneuron activation in SMA. If
TMS pulses activated motor representations in PMd
and SMA, then the results may be affected by dif-
ferences in the cortical excitability balances between
these areas.

It appears unlikely that M1 motoneurons had
been activated polysynaptically via connections from
NPMA to M1 because the latencies were similar
after stimulations of M1 and NPMA to ADM mus-
cles in both groups and to the OP muscle in the
string-instrument players. Even though the stimu-
lus locations in NPMAs most probably are inde-
pendent muscle representations, the possibility for
separate clusters of primary representations cannot be
excluded. This would mean that the primary muscle
representations would extend anterior to the precentral
gyrus. Inmonkeys, novel neural connections and func-
tionally active synapses were observed from higher
visual centers to the intraparietal cortex after tool-use
training which demanded visual and somatosensory

information processing [44]. Thus, one could specu-
late that the motoneurons in NPMAs are part of the
primary representation and can be activated by TMS,
even if recruited to use only after damage to the M1
representations. According to both the cytoarchitec-
tural and functional classifications of the cortex, the
primary motor cortex with giant pyramidal cells in
cortical layer V is located in the posterior part of
the precentral gyrus and areas anterior to this region
with their own distinctive cytoarchitectural structures
and characteristic functions are considered to be the
premotor and supplementary motor areas (BA 6 and
BA 8). Therefore it is perhaps more accurate to pre-
sume that the motoneurons/muscle representations
originating in PMA and SMA are distinct from the
primary representation in M1. The study of Schulz
et al. also demonstrated that corticospinal tract fibers
originating from different parts of NPMA exerted dif-
ferenteffects on stroke recovery. The integrity of fibers
originating from SMA did not exhibit any positive cor-
relation with stroke recovery similar to those fibers
originating from M1 and PMd, indicating that they
have differing activities or functions [7].

The latencies were even faster to the OP muscle and
OP MEP amplitudes were higher after stimulations
of NPMA than to M1 in the control group. Since
the MT was higher in NPMA, the higher amplitudes
and faster MEP latencies most probably reflect the
activation of a sparse but widely spread motoneuron
population in NPMA. This finding is in line with our
previous study [9].

Since the threshold to activate cortical interneurons
may differ from the RMT, itis possible that the higher
absolute stimulation intensities in NPMAs may have
activated local inhibitory interneurons more effec-
tively, thus producing stronger SICI in NPMA [68,
69]. This may explain, at least in part, the differ-
ences in SICI between M1 and NPMA within the
groups at low CS intensities. Nevertheless this would
not account for the differences in SICI between the
groups.

In conclusion, the current study provides pre-
liminary evidence for the need for more effective
inhibition of motor representations of actively used
hand muscles in NPMAs in string-instrument play-
ers. This may be beneficial in the prevention of
any unnecessary spread of cortical activation when
finely-controlled single muscle movements must be
performed rapidly. Weaker SICI in string-instrument
players in M1 in the actively used hand muscle
representation may enable fast recruitment of M1
motoneurons when needed.
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