Reduced Dose Intravesical Bacillus Calmette-Guérin: Why It Might Not Matter

Ashish M. Kamat, Niyati Lob, Seth P. Lerner, Roger Li, Justin T. Matulay, Joan Palou, J. Alfred Witjes, Morgan Roupret, Angela B. Smith, Sam S. Chang, Neal D. Shore, Gary D. Steinberg, Colin P. Dinney, Robert S. Svatok, and Donald L. Lamm

Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
Scott Department of Urology, Baylor College of Medicine, Houston, TX, USA
Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
Department of Urology, Levine Cancer Institute/Atrium Health, Charlotte, NC, USA
Department of Urology, Fundacio Puigvert, Universidad Autonoma de Barcelona, Barcelona, Spain
Department of Urology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
Urology, GRC n° 5, Predictive ONCO-URO, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
Department of Urology, University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
Department of Urology, Carolina Urologic Research Center, Myrtle Beach, SC, USA
Department of Urology, NYU Langone Health, New York, NY, USA
Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
Department of Surgery, University of Arizona and BCG Oncology, Phoenix, AZ, USA

Received 8 December 2021
Accepted 19 January 2022
Pre-press 10 February 2022

Abstract. When it comes to the treatment of patients with non-muscle-invasive bladder cancer (NMIBC) with intravesical bacillus Calmette-Guérin (BCG), two questions must be considered: 1) what dose to give, and 2) for how long? The issue of optimal dose and duration has been the subject of several randomized trials and is especially pertinent in the context of a global BCG shortage. Despite this, there appears to be uncertainty as to whether BCG dose or duration may be compromised in the event of shortage. As such, we wish to summarize the available evidence as an aid to the practicing urologist.

BACKGROUND

One of the earliest randomized trials to address the question of BCG dose was conducted by the CUETO group who compared full dose BCG (81mg) with one-third dose (27mg) in intermediate- and high-risk patients with NMIBC [1]. Both dose cohorts received a total of 12 instillations – a 6-week induction course followed by a further six instillations given fortnightly – and found similar recurrence rates (29.4% in the full dose arm vs. 30.7% in the reduced dose arm) with no significant difference in time to first recurrence ($p = 0.586$). Similarly, both cohorts had similar rates of progression to
muscle-invasive disease (11.5% vs. 13.3%). When looking for clues as to subgroup analysis, they observed a trend towards increased efficacy with full dose BCG against progression in patients with multifocal disease ($p = 0.048$). In a later study, the CUETO group addressed the same question in patients with high-risk NMIBC (G3/T1/Tis), and once again demonstrated that one-third dose BCG was as effective as full dose [2]. Subsequently, the EORTC 30962 study examined the use of full- and one-third dose OncoTICE® BCG given as either a 1- or 3-year maintenance course in 1355 patients with intermediate- and high-risk NMIBC [3]. At a median follow-up of 7.1 years, the authors reported that full dose BCG was not superior to one-third dose BCG (5-year disease-free rate: 61.7% vs. 58.5%, $p = 0.092$). When looking at subgroups, in high-risk patients, full dose BCG given for 3-years reduced recurrences compared with full dose for 1-year; however, there were no differences in progression or survival. Additionally, our recent retrospective analysis of 563 patients with intermediate- and high-risk NMIBC treated with either reduced or full dose adequate BCG during the BCG shortage provided real-world experience that the use of one-third dose BCG was not associated with adverse oncological outcomes (Lobo 2021): time to recurrence ($p = 0.449$), time to progression (0.716) and cancer-specific survival ($p = 0.320$) was similar in both groups.

The results of these clinical trials are not unexpected. Each trial evaluated full and reduced dose BCG with regards to the clinically used supply, which is by weight of the lyophilized powder. What is not widely known is that the number of viable BCG organisms contained in clinical supply BCG is expressed as a range with an almost ten fold variation in amount of organisms in each vial. For example, using the data from TICE® BCG (Merck, USA), the main strain in North America and many other parts of the world, we know that one vial of TICE® BCG contains between 1 to 8×10^8 colony forming units (CFU) [4]. Put in other terms, each milligram of lyophilized BCG contains 2 million to 16 million CFUs of actual BCG organisms. Given this wide variation in CFUs, using one-third dose will not necessarily result in suboptimal dosing.

In a hypothetical situation, patient X receives full dose BCG from a vial containing 2 million CFUs of BCG per milligram. Thus s/he received $50 \times 2 = 100$ million CFUs per instillation (Fig. 1). Patient Y on the other hand, receives ‘reduced dose’ BCG from a vial containing 16 million CFUs of BCG. Thus s/he received $16.6 \times 16 = 256$ million CFUs per instillation, which is greater than the ‘full dose’ received by patient X. Of course, each manufacturer of BCG might have their own range of CFU variation (e.g. Onco-BCG® from the Serum Institute of India has an even greater variation of 1–19.2 $\times 10^8$ CFUs per
vial) so we urge readers to read up on the specifics of this variation for the strain of BCG used in their centers (eg from manufacturer data sheets).

IMPLICATIONS

It is important to clarify that this letter serves to provide an explanation as to why patients treated with reduced dose BCG may not actually receive fewer CFUs than patients receiving full dose BCG. With this in mind, what are the implications for our patients? Firstly, patients may be reassured that if they do receive reduced dose BCG, based on data from RCTs, this likely has no major impact on their disease-related outcomes. Indeed, recent American Urological Association/Society of Urologic Oncology guidelines for the treatment of NMIBC recommend the use of reduced dose BCG for maintenance treatment [5]. Secondly, during these times of BCG shortage, splitting a vial of BCG amongst three patients allows more patients to receive BCG. Since the preponderance of data suggests that receipt of maintenance BCG is an important component of the durability of response – especially with regards to decreasing progression rates – it is preferable that patients receive a reduced dose (either one-half or one-third dose) with the standard 6 + 3 schedule rather than full dose BCG given over a shorter duration. We acknowledge that some institutions may be hesitant to employ split-vial dosing given that manufacturers stipulate BCG should be administered within 2 hours of reconstitution. However, it has been shown that BCG remains viable for at least 8 hours and, in some cases, up to 72 hours after reconstitution [6]. Furthermore, whilst the 3 weekly maintenance schedule is important, this timing is an approximation rather than a rigid prescription. As such, providers have some flexibility around the scheduling of maintenance treatments and may split the dose based on when maximal patients are available. With that said, one-third dose appears to be the minimum required for clinical effectiveness as demonstrated by the CUETO group who showed that one-sixth dose BCG was inferior to one-third dose [7]. Finally, this carries practical implications for the conduct of clinical trials for BCG unresponsive disease. While the United States Food and Drug Administration does not specify that patients must receive full dose BCG in order to qualify for trials of agents in the BCG-unresponsive setting, many sponsors are hesitant to include patients who have received one-third dose BCG for induction and/or maintenance during these times of shortage. We believe, as previously stated [8], that these patients should be allowed to enroll in trials for the aforementioned reasons.

ACKNOWLEDGMENTS

This letter was supported by the Wayne B. Dudlesen Professorship in Cancer Research and the Raymond and Maria Floyd Bladder Cancer Research Foundation to Ashish M. Kamat and The Urology Foundation-Fulbright Scholar Award to Niyati Lobo.

FUNDING

The authors report no funding.

AUTHOR CONTRIBUTIONS

Conception: A.M.K.

Performance of work: A.M.K., N.L.

CONFLICTS OF INTEREST

Ashish M. Kamat, MD

Consultant/Advisory Board

Arquer Diagnostics, Asieris, Biological Dynamics, Bristol Myers Squibb, CG Oncology, H3 Biomedicine/Eisai, Engene, FerGene, Imagin Medical, Janssen, Medac, Merck, Photocure, ProTara, Seattle Genetics, Sessen Bio, Theralase, US Biotest, Urogen Inc, Roche, TMC Innovation

Grants/Research Support

Adolor, BMS, FKD Industries, FerGene, Heat Biologics, Merck, Photocure, SWOG, NIH/GU SPORE, AIBCCR, Janssen (+Taris), Seattle Genetics

Patent

CyPRIT (Cytokine Predictors of Response to Intravesical Therapy)

Board Member

International Bladder Cancer Group (IBCG)

Dr Kamat is an Editorial Board Member of this journal, but was not involved in the peer-review process nor had access to any information regarding its peer-review.

Colin P. Dinney, MD

Consultant

STIMIT Corp., UroGen Pharma
Dr Dinney is an Editorial Board Member of this journal, but was not involved in the peer-review process nor had access to any information regarding its peer-review.

Seth P. Lerner, MD
Consultant/Advisory Board
Aura Bioscience, BMS, C2iGenomics, FerGene, Genentech, Merck, Pfizer/EMD Serono, Stimit, UroGen, Vaxion, Verity
Honoraria
A nnenberg, Clinical Care Options, Grand Rounds
Urology, Ology, UroToday
Clinical trials
Endo, FKD, JBL (SWOG), Genentech (SWOG), QED Therapeutics, UroGen, Vaxiion, Viventia
Patent
TCGA classifier
Dr Lerner is an Editorial Board Member of this journal, but was not involved in the peer-review process nor had access to any information regarding its peer-review.

Gary D. Steinberg, MD
Clinical Trial
Merck, BMS, Janssen, CG Oncology, Pfizer, Photocure, Fidia, Seagen, Protara
Scientific advisor/consultant within the past 5 years for the following companies: Heat Biologics; CG Oncology; PhotoCure; Merck; Roche/Genentech; Ciclomed; Taris Biomedical (Now Janssen); MDxHealth; Fidia Farmaceuticals; Urogen, Ferring; Aduro; Boston Scientific; Bristol Myers Squibb; Astra Zeneca; Pfizer, Janssen; Epivax Therapeutics; Natera; FKD; EnGene Bio; SesenBio; BioCanCell (Now Archiano); Nucleix; Ipsen; Combat Medical; Astellas; Fergene; Dendreon; Abbvie; Seattle Genetics; Verity Pharmaceuticals, Regeneron, STIMIT, Vyriad
Equity stock/options: Epivax Therapeutics, Urogen
Dr Steinberg is an Editorial Board Member of this journal, but was not involved in the peer-review process nor had access to any information regarding its peer-review.

Angela B. Smith, MD
Funding: AHRQ, Genentech, PCORI, BCAN
Consultant/Advisor: Merck, Urogen, Ambu, Fer gene
Dr Smith is an Editorial Board Member of this journal, but was not involved in the peer-review process nor had access to any information regarding its peer-review.

Donald Lamm, MD
Ongoing Research Trials: Nanology, CG Oncology
Dr Lamm is an Editorial Board Member of this journal, but was not involved in the peer-review process nor had access to any information regarding its peer-review.

Roger Li, MD
Research support: Predicine; Decipher Biosciences.
Clinical trial protocol committee: CG Oncology
Scientific advisor/consultant: BMS, Ferring, Fer gene, Arquer Diagnostics, Urogen Pharma.

Morgan Roupert, MD
Consultant/Advisory Board
Arquer diagnostic, Ferring, Roche, BMS, Astellas

Neal D. Shore, MD
Consulting
AbbVie, Amgen, Astellas, Astra Zeneca, Bayer, BMS, Boston Scientific, Clovis Oncology, Cold Genesys, Dendreon, Exact Imaging, Exact Sciences, FerGene, Foundation Medicine, Genesis Care, Invitae, Janssen, MDxHealth, Merck, Myovant, Myriad, Nymox, Pacific Edge, Pfizer, Phosphorous, Propella, Sanofi Genzyme, Senes Bio, Tolmar, Urogen, Guardant Health

Sam S. Chang, MD
Consultant
Pacific Edge, Lantheus, Prokarium, KDx Diagnostics, CG Oncology, Merck, Pfizer, UroGen, UroToday, Urovant, Virtuoso Surgical, Janssen

J Alfred Witjes, MD
Advisor/Lecturer
Sanofi, Ipsen, Astra Zeneca, Ferring, Beijene, Janssen, Nucleix, Merck, Astellas, BMS.

Neal D. Shore, MD
Consulting
AbbVie, Amgen, Astellas, Astra Zeneca, Bayer, BMS, Boston Scientific, Clovis Oncology, Cold Genesys, Dendreon, Exact Imaging, Exact Sciences, FerGene, Foundation Medicine, Genesis Care, Invitae, Janssen, MDx Health, Merck, Myovant, Myriad, Nymox, Pacific Edge, Pfizer, Phosphorous, Propella, Sanofi Genzyme, Senes Bio, Tolmar, Urogen, Guardant Health

Sam S. Chang, MD
Consultant
Pacific Edge, Lantheus, Prokarium, KDx Diagnostics, CG Oncology, Merck, Pfizer, UroGen, UroToday, Urovant, Virtuoso Surgical, Janssen

J Alfred Witjes, MD
Advisor/Lecturer
Sanofi, Ipsen, Astra Zeneca, Ferring, Beijene, Janssen, Nucleix, Merck, Astellas, BMS.
Dr. Palou is an Editorial Board Member of this journal, but was not involved in the peer-review process nor had access to any information regarding its peer-review.

Robert S. Svatek, MD, MSCI

Dr. Svatek is an Editorial Board Member of this journal, but was not involved in the peer-review process nor had access to any information regarding its peer-review.

Niyati Lobo and Justin T. Matulay declare no conflicts of interest.

REFERENCES

