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Abstract.
PURPOSE: To systematically review the current literature and discuss the applications and limitations of radiomics and
machine-learning augmented radiomics in the management of bladder cancer.
METHODS: Pubmed ®, Scopus ®, and Web of Science ® databases were searched systematically for all full-text English-
language articles assessing the impact of Artificial Intelligence OR Radiomics OR Machine Learning AND Bladder Cancer
AND (staging OR grading OR prognosis) published up to January 2020.
RESULTS: Of the 686 articles that were identified, 13 studies met the criteria for quantitative analysis. Staging, Grading
and Tumor Classification, Prognosis, and Therapy Response were discussed in 7, 3, 2 and 7 studies, respectively. Data on
cost of implementation were not reported. CT and MRI were the most common imaging approaches.
CONCLUSION: Radiomics shows potential in bladder cancer detection, staging, grading, and response to therapy, thereby
supporting the physician in personalizing patient management. Extension and validation of this promising technology in
large multisite prospective trials is warranted to pave the way for its clinical translation.

INTRODUCTION

Bladder cancer is a potentially fatal disease asso-
ciated with high rates of annual morbidity and
mortality [1–3]. The current strategy of clinical
decision-making and follow-up management of blad-
der cancer is based on the reliable assessment of
muscle invasion status, grade of malignancy, and
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pathology [4]. However, the observance of a high
recurrence rate of 50–80%, in the literature, in
patients over the age of 65, highlights some of the
limitations in these strategies, such as poor sensitivity
(61%) for low-grade tumors, tumor heterogeneity-
based sampling bias, and a complex interplay of
molecular, histological and immune underpinnings
in these tumors [3, 5–7]. In addition to the difficul-
ties in reliably detecting and characterizing tumor
clinically, the prediction of treatment response is
also a hurdle in the management of bladder cancer
[8]. While new treatments are being administered
to bladder cancer patients, a reliable method to
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predict the patient specific post-treatment response
and thereby, decide between treatments is lacking.
This conundrum creates a scenario where some
patients receive ineffective therapies, with some treat-
ments causing adverse reactions without an option to
adjust treatment during the early stages of the dis-
ease.

Radiomics is an emerging field of quantitative
imaging with a variety of applications in clinical
practice and research, particularly oncology. For
oncologic applications, the technique potentially pro-
vides a comprehensive noninvasive characterization
of the whole tumor, using a panel of quantifi-
able tumor metrics called the radiomics signature,
extracted from multimodality medical images includ-
ing computed tomography (CT), positron emission
tomography (PET), magnetic resonance imaging
(MRI), and ultrasonography (US) [9–11]. While
promising, radiomics is still novel to many radi-
ologists and clinicians, and its clinical application
is hampered by the limited availability of efficient
and standardized systems of feature extraction and
data sharing [12–16]. Currently, the majority of the
radiomics studies are retrospective, single institution
studies with a relatively small sample size and thus
statistically weak with poor generalization across dif-
ferent institutions. Larger studies conducted across
multiple institutions are needed to validate these pre-
liminary results [12].

Machine learning (ML) methods are designed to
process large amounts of high-dimensional data,
without a guiding (biomedical) hypothesis, to directly
discover potentially actionable knowledge. Con-
sequently, ML methods are increasingly being
incorporated into radiomics studies, particularly
for augmenting classification. While ML-augmented
radiomics studies have demonstrated their utility for
various purposes such as diagnosis, prognosis, and
treatment response, the exploration has been lim-
ited and lacks rigor [17, 18]. For example, current
ML-augmented radiomic approaches include the uti-
lization of only a small number of classification
methods, often of the same type (e.g. Support Vector
Machine, Random Forest), the performance evalua-
tion using the AUC score only, and the assessment of
all possible combinations of radiomics and classifi-
cation methods to identify the best possible classifier
is non-systematic [19]. In this paper, we scope the
current literature to systematically review promising
applications and limitations of radiomics and ML-
augmented radiomics in the management of bladder
cancer.

EVIDENCE ACQUISITION

Search strategy

For the present systematic review, Pubmed ®, Sco-
pus ®, and Web of Science ® databases were searched
systematically for all full-text English-language arti-
cles assessing the impact of Artificial Intelligence
OR Radiomics AND Bladder Cancer AND (staging
OR grading OR prognosis) and published up to Jan-
uary 2020. References were manually reviewed to
identify supplementary studies of interest. To ensure
a transparent and thorough reporting of our find-
ings, we followed the Preferred Reporting Items for
Systematic Review and Meta-Analyses (PRISMA)
statement.

Selection of eligible studies and data extraction

Two investigators (G.E.C and N.N.) independently
screened all articles to identify studies that meet
the inclusion criteria (Fig. 1). Any disagreements
about eligibility were resolved by discussion between
the two investigators until a consensus was reached.
When an Institution published multiple papers with
entirely overlapping surgical periods, only the latest
published paper was considered. However, studies
from the same institution with entirely or partially
overlapping surgical periods but evaluating different
study populations were included in the analysis.

All data retrieved from the systematically reviewed
studies were recorded in an electronic database and
the following outcomes were recorded: Number of
Cases, Image Acquisition, Image Segmentation, Fea-
ture Extraction, Validation, and Outcomes of Interest
(Staging, Grading, Tumor Classification, Prognosis
and Therapy Response).

EVIDENCE SYNTHESIS

Of the 686 articles that were identified, 13 met
the criteria for quantitative analysis (Fig. 1). Table 1
provides key details of these shortlisted studies,
including year of publication, study design, number
of patients evaluated, and imaging details. Data on
cost were not reported. CT and MRI were the most
common imaging approaches reported.

Radiomics workflow

A typical radiomics workflow comprises 4 stages:
image acquisition, image segmentation, feature
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Fig. 1. Prisma Flowchart.

extraction, and statistical analysis (Fig. 2, Table 1)
[11]. Additional modules such as image registration,
data formatting, de-noising etc. are used, however,
they are modality- and application-specific. The reli-
able execution of each stage is critical to the success
of the radiomics analysis, as each of these stages can
be implemented distinctively across different stud-
ies (Table 1). Prior to undertaking any radiomics
study, it is important to consider the quality and dis-
tribution of the data. Several guidelines have been
reported in many studies [20–22] to successfully
design radiomic studies to overcome these pitfalls
e.g. the radiomics quality score [23] and the TRIPOD
(Transparent Reporting of a Multivariable Predic-
tion Model for Individual Prognosis or Diagnosis)
guidelines [24].

Multiple studies have shown that radiomic feature
values are sensitive to the acquisition and reconstruc-
tion parameters, thus hindering the pooling of data
and comparing the results acquired using different
scanners or protocols [13]. Physical phantoms have
been used in quantitative imaging to explore and
quantify sources of bias and variance for e.g. initia-
tives by the Radiological Society of North America
(RSNA) Quantitative Imaging Biomarker Alliance
(QIBA) [25], the Credence Cartridge Radiomics
phantom [16] etc. In some cases, virtual phantoms,
or digital reference objects (DROs) have also been
useful for evaluation of software packages that are
used to derive quantitative imaging biomarkers. By
providing a dataset and a set of metric evaluation that
can be accessed by all, radiomics can be rigorously
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Fig. 2. Workflow of radiomics (ROI = region of interest; GLCM = gray level co-occurrence matrix; FFT = fast Fourier transform).

tested in large multi-institution studies to aid its clin-
ical translation. One such major effort is the Image
Biomarker Standardization Initiative (IBSI) that aims
to standardize radiomics imaging biomarkers [26].

While in some case these calibration objects
have been used for standardization of imaging data
acquired using diverse scanner, scanning and post
processing protocols [15, 27], others use the same
approach to identify radiomic metrics that are reli-
able [14] (robust, repeatable and reproducible) to
facilitate big data radiomics using data pooled from
reliable radiomic metrics acquired from multiple
institutions.

Image acquisition

This is the first step of the radiomics workflow,
and the end-product of this step is an image vol-
ume (if 3D) or image cross-section (if 2D) stored in
the Picture Archiving and Communication System
(PACS), typically in a Digital Imaging and Com-
munication in Medicine (DICOM) format. Currently,
different imaging centers follow distinct image acqui-
sition protocols to ensure the quality of imaging set
up by their respective institutions [12, 14, 16]. The
lack of consensus or guidelines on image acquisition
across institutions leads to imaging data heterogene-

ity among different radiomics studies. This issue is
further compounded by a lack of thorough and consis-
tent labeling, annotation, segmentation, and quality
assurance within the routine clinical workflow. Even
in centers that do the additional steps, there is no
consensus on the process. In general, considering the
hardware and software variables that can vary across
the different imaging modalities (CT, MRI, PET, and
US), overcoming the issue of data heterogeneity is
a complex task. One path adopted to overcome the
effects of data heterogeneity on radiomics is data
preprocessing to ensure consistency and compara-
bility [15, 27]. Data preprocessing steps include but
not limited to steps for standardizing imaging pro-
tocols preacquisition [15] or harmonizing data post
acquisition [20]. While the solution is promising, it
is not readily scalable, as newer and better imag-
ing technologies are always evolving, preventing a
comprehensive assessment of the heterogeneity. The
second approach to overcome the effects of data het-
erogeneity on radiomics is to conduct comprehensive
imaging experiments using phantoms (standardiza-
tion objects) to identify radiomic metrics that are
reliable [14, 16, 28–31]. Reliable radiomic metrics
are reproducible, robust, and repeatable across mul-
ticenter studies [14]. While the performance of the
latter approach is dependent on the reliability and
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suitability of the phantom to the clinical question,
the approach can conceivably find reliable radiomics
signatures for use in multicenter studies without the
need for an additional pre-processing step.

Image segmentation

This is the second step of the radiomics workflow,
and the end-product of this step is the isolation of a
region of interest (ROI), which can be either a volume
(if 3D) or an area (if 2D). While it is intuitive to expect
3D radiomics to outperform 2D radiomics, this is not
always the case [32]. As in the case of image acquisi-
tion, there are no established guidelines or consensus
across centers with regards to image segmentation.
While some centers perform manual segmentation
to gain accuracy in lieu of efficiency, others per-
form automated segmentation (e.g. seed growing
method). While automated segmentation promotes
consistency and workflow optimization, it is diffi-
cult to establish a segmentation criteria for bladder
cancers, considering the sometimes indistinct borders
of tumors, marked variability of bladder distensi-
bility, and inconsistent tumor imaging appearances
[33]. Moreover, while manual segmentation is easy to
implement, it is tedious, time consuming and subject
to intra- and inter-observer measurement variability
[34] leading to difficulties in radiomic feature repro-
ducibility. Semi-automation has been investigated,
and may provide a middle ground regarding the issue
of segmentation [35]. Tumor microenvironment may
provide valuable information [36], however, there is
no consensus about what should be included in the
segmented ROI.

Feature extraction

This is the third step of the radiomics work-
flow, and the end-product of this step is a feature
map comprising of a number of metrics extracted
from the segmented ROI, using a variety of feature
extraction techniques implemented using a sophisti-
cated suite of data characterization algorithms. The
commonly used features within a radiomics frame-
work include texture, shape, and size metrics [9–11].
Texture features can be classified into first-order sta-
tistical features, second-order statistical features, and
higher-order statistical features, depending on if the
intensity values are used only, or if both the intensity
values and their orientation within the ROI are used
together [37, 38]. Higher-order statistical features are
the products of mathematical transformations such

as wavelets, Minkowski function etc., which have
the capability of decomposing the images into multi-
ple levels of information (scales) to conduct a more
in-depth analysis.

While the fundamental mathematical principles
behind the texture techniques and metrics are the
same, the implementation is different across differ-
ent centers [39, 40]. Even the number of texture
metrics used within a radiomics panel varies dras-
tically across different studies. These variabilities
in conducting radiomic studies, in the absence of
established guidelines or consensus, have led to sce-
narios where the results are non-reproducible and
non-comparable.

Radiomics and bladder cancer tumor staging

Seven radiomic studies in our list evaluated tumor
stage as a clinical characteristic in bladder cancer. Xu
et al. [41] evaluated patients with both non-muscle
invasive disease (NMIBC) (T1 or lower) or muscle
invasive bladder cancer (MIBC) (T2 or higher) who
underwent either transurethral resection of bladder
tumor or radical cystectomy. Muscle invasive status
was associated with a 2.2-fold increased risk of dis-
ease recurrence on multivariable analysis. Wang et al.
[42] used pre-operative radiomic analysis to estimate
pathological grade in patients with Tis-T3 disease.
24.3% and 16.7% of patients had MIBC in train-
ing and validation sets. The remainder had NMIBC.
Lin et al. [43] used a combination of clinicopatho-
logic data, gene expression profiles, and CT-based
radiomic studies to evaluate survival in 62 patients
with bladder cancer. 67.7% of their patients had
NMIBC compared to 32.3% with muscle-invasive
disease. They were the only study to comment on
the observance of lymphatic involvement. 30.6% of
patients had clinical N1-3 disease. Xu et al. [44]
reported on the incorporation of diffusion weighted
magnetic resonance imaging alongside traditional
clinical staging in order to more accurately iden-
tify muscle invasive disease status. 60% of patients
had NMIBC and the remaining 40% had MIBC.
Garapati et al. [45] utilized computed tomographic
delayed phase imaging to predict muscle invasive
disease status in 84 tumors from 76 patients. 52%
had non-muscle invasive disease (</=T1) versus 48%
with muscle invasion (>/=T2). Zhang et al. [46] also
evaluated NMIBC vs. MIBC as a baseline clinical
characteristic in 61 patients. NMIBC was reported
in 28 patients, and MIBC in 27 patients; the remain-
der had missing stage status. Lastly, Zheng et al. [47]
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pre-operatively evaluated muscle invasiveness using
an MRI-based radiomic signature. MRI-determined
clinical staging demonstrated MIBC in 63.1% and
60.9% of training and validation sets. Pathological
staging demonstrated MIBC in 43.1 and 44.9% of
training and validation sets.

Radiomics and bladder cancer tumor grading

Tumor grade was reported in three radiomics stud-
ies in bladder cancer [41, 42, 46]. Xu et al. had
36.6% of patients with low-grade disease and 63.4%
with high-grade disease [41]. Tumor grade was not
a significant predictor of recurrence in multivariable
analysis. Wang et al. had 56 patients with low-grade
and 44 patients with high-grade disease [42]. Zhang
et al. had 32 patients with low-grade disease and 29
patients with high-grade bladder cancer [46].

Prognosis and response to therapy
Twelve papers reported therapeutic responses

in bladder cancer based on radiomics predictions
(Table 1). Xu et al. created a nomogram to predict
tumor recurrence within two years of TURBT or
RC based on both radiomic and clinical factors [41].
Radiomics features were gathered from MRI images
using T2W, DW, and DCE image sequences [41]. The
authors used SVM-RFE and LASSO algorithms to
extract the most predictive image features. Thirty-
two image features were found to generate the highest
area under the curve value for the “radiomics score”
in predicting bladder cancer recurrence [41]. Xu et al.
reported that the radiomics score had a 8.2 odds ratio
effect on prognosis with a 2.4–27.8 95% confidence
interval [41]. Radiomics had a significant effect on
prognosis with a p-value «0.05 [33]. In the valida-
tion cohort, the sensitivity of the radiomics features
based on the SVM-RFE and Lasso algorithms was
77.8% and 55.6%, respectively [41]. The specificity
of the radiomics features based on the SVM-RFE and
Lasso algorithms was 73.8% and 75%, respectively
[41]. The accuracy of the radiomics features based on
the SVM-RFE and Lasso algorithms was 75.5% and
66.7%, respectively, and adjusted to 80.1% after risk
stratification [41]. Similarly, the area under the curve
for SVM-RFE selected features was 0.82 and 0.72
for Lasso with a correction to 0.84 after risk strati-
fication [41]. MRI image features derived from both
SVM-RFE and Lasso algorithms predicted bladder
cancer recurrence within two years in the validation
cohort with a p-value «0.01 for SVM-RFE and <0.05
for LASSO [41].

Wang et al. developed a radiomics model based on
MRI images to predict pathological grade of bladder
tumors [42]. They did not evaluate prognostic fac-
tors, such as overall survival or time to recurrence
[42]. Their radiomics models were derived from the
following imaging modalities: T2-weighted imaging
(T2WI; diffusion-weighted imaging (DWI); appar-
ent diffusion coefficient maps (ADC), and modeling
modalities: Max-out Model and Joint Model [42].
Regarding sensitivity, T2WI was 76.9%, DWI was
76.9%, ADC was 84.6%, Max-out was 76.9%, and
joint was 76.9% [42]. The specificity for T2WI was
76.4%, DWI was 76.4%, ADC was 76.4%, Max-out
was 88.2%, and joint was 83.3% [42]. Accuracy for
T2WI was 76.7%, DWI was 76.7%, ADC was 80%,
Max-out was 83.3%, and joint was 83.3% [42]. Area
under the curve testing the ability of the models to
predict pathologic grade for T2WI was 0.782, DWI
was 0.769, ADC was 0.805, Max-out was 0.919 and
joint was 0.928 [42].

Lin et al. created a nomogram based on radiomics
features derived from contrast-enhanced CT images,
transcriptomics, and clinical features to sort patients
into low or high risk groups for progression-free inter-
val [43]. In multivariate analysis, Lin et al. reported
a hazard ratio of 1.99 (1.015–3.912) in predicting
progression-free interval based on radiomics alone
and 2.588 (1.317–5.085) based on transcriptomics
[43]. In their multivariate analysis, they reported an
area under the curve for radiomics of 0.956 versus
0.948 for transcriptomics [43]. These findings were
significant with a p value of 0.045 for radiomics and
0.006 for transcriptomics [43].

Xu et al. investigated the ability of their Ran-
dom Forest (RF) radiomics algorithm based on DWI
sequence MRI image features to predict the muscle-
invasive status of bladder tumors [44]. Xu et al.
reported that their radiomics model was more sen-
sitive than TUR and qualitative MRI analysis for
discriminating muscle-invasive disease [44]. They
reported a sensitivity of 87.3% for their RF model vs.
65.5% for TUR alone and 76.4% for qualitative MRI
alone [44]. RF and TUR combined led to a sensitivity
of 96.4% [44]. The specificity of RF was reported at
78.1% and the accuracy of RF alone was 83.9% [44].
The accuracy of the combined RF radiomics model
and TUR data was 89.7%. The area under the curve
for RF alone in predicting muscle invasion was 0.907
[44].

Suarez-Ibarrola et al. is a literature review that
reported prognostic predictions, including recurrence
and survival, from several studies [48]. Details can
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be found in Table 2. Cha et al. 2016 tested the ability
of their radiomics model to accurately measure the
change in gross tumor volume in preoperative and
postoperative CT scans [33]. They reported an area
under the curve of 0.73 ± 0.6 for the deep-learning
convolution neural network (DL-CNN) model and
0.70 ± 0.07 for the auto-initialized cascaded level sets
model [33]. Both of these models out-performed the
radiologists (Table 2) [33].

Cha et al. 2017 created a radiomics model based
on pretreatment and post-treatment CT scans to
identify complete vs. incomplete tumor response to
chemotherapy [49]. They compared the following
models: deep-learning convolution neural network
(DL-CNN); radiomics feature based approach (RF-
SL), and radiomics features from image patterns
(RF-ROI) [49]. DL-CNN achieved a sensitivity of
50% and a specificity of 81%, RF-SL achieved a sen-
sitivity of 50% and specificity of 78.6%, and ROI
achieved a sensitivity of 66.7% and specificity of
54.8% [49]. The radiologists compared against had
higher sensitivities and lower specificities (Table 2).
The area under the curve for predicting chemother-
apy treatment response for DL-CNN was 0.73 ± 0.08,
RF-SL was 0.77 ± 0.08, and ROI was 0.69 ± 0.08
[49]. These were similar to the area under the curve
scores from the radiologist reads (Table 2).

Garapati et al. reported the area under the curve
showing the ability of several algorithms based on
radiomics features to stage tumors as greater than
or less than T2 based on CT urography [45]. They
included linear discriminant analysis (LDA), neural
network (NN), support vector machine (SVM), and
Radom Forest (RAF) models in their analysis with
various sub analyses based on texture features (text),
morphology features (morph), and combined features
(comb) [45]. The area under the curve for all the mod-
els in the validation cohort ranged from 0.81–0.97
[45]. A detailed breakdown can be found in Table 2.

Zhang et al. created a radiomics model based on
texture features from DWI sequence MRI images to
predict grade of bladder tumor [46]. They reported
a sensitivity of 78.4%, specificity of 87.1%, and
accuracy of 82.9% based on their model [46]. They
found an area under the curve for the ability of their
radiomics model to predict tumor grade of 0.861
[46]. Their findings were significant with a confi-
dence interval of 0.851–0.870 and a p-value of <0.01
[46].

Zheng et al. also created a nomogram to pre-
dict muscle invasive vs. non-muscle invasive tumors
based on combined radiomics and clinical data [47].

Radiomics features were extracted from T2-weighted
MRI images and the LASSO algorithm was used
to select the most predictive features [47]. Zheng
et al. compared the accuracy of their nomogram to
TURBT and found the accuracy of the model was
91.9% (88.2–95.6%) while the accuracy of TURBT
was 80.3% (75.0–85.8%) [47]. The area under the
curve for the nomogram was 0.921. The area under
the curve for the radiomics model alone in predicting
muscle-invasion was 0.874 (0.791–0.958) [47].

Fan et al. reported on the ability of CT based texture
analysis to distinguish between urothelial carcinomas
of the bladder and micropapillary carcinomas of the
badder [50]. They found that 28/58 texture metrics
were significantly different between urothelial and
micropapillary tumors and 27/58 texture metrics were
significantly different in the peritumoral fat surround-
ing urothelial vs. micropapillary tumors [50]. Further
details can be found in Table 2. Lim et al. used texture
features from T2-weighted and ADC MRI images to
extract entropy values in tumor and extravesical fat to
predict ≤T2 vs. ≥T3 and T1 vs. ≥T2 disease in tumor
and fat, respectively [51]. In the ≤T2 vs. ≥T3 tumor
group, T2 entropy was reported to have an odds ratio
of 4.56 and ADC entropy an odds ratio of 2.24. In
the ≤T2 vs. ≥T3 extravesical fat group, T2 entropy
was associated with an odds ratio of 17.50 and ADC
entropy with an odds ratio of 6.54 [51]. In the T1
vs. ≥T2 group, ADC entropy in the tumor region
resulted in an odds ratio of 2.11 and in the extravesi-
cal fat bed, an odds ratio of 3.8 [51]. These findings
were significant (Table 2). The area under the curve
for the ≤T2 vs. ≥T3 tumor region with T2 entropy
was 0.85 and with ADC entropy was 0.80 [51]. In the
extravesical, T2 entropy resulted in an under the curve
of 0.84 and ADC entropy in an area under the curve
of 0.82 [51]. In the T1 vs. ≥T2 tumor group, area
under the curve for ADC entropy was 0.76 [51]. In the
extravesical fat group, T2 entropy resulted in an area
under the curve of 0.78 and ADC entropy resulted
in 0.74 [51].

Alessandrino et al. studied the ability of their
radiomics model, based on mean and entropy of tex-
ture features from follow-up CT scans, to predict
progression-free survival in patients with metastatic
urothelial carcinoma treated with programmed death-
ligand 1 inhibitors [52]. The mean alone resulted in
an odds ratio of 1.09 while the entropy resulted in
an odds ratio of 45.49 [52]. These findings were sig-
nificant (Table 2). The sensitivity of the combined
entropy and mean model was 95%, specificity was
80%, and 90% accuracy [52].
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Our paper systematically reviews the current
evidences regarding the impact of radiomics and
ML-augmented radiomics on bladder cancer stag-
ing, grading, therapy response and prognosis. The
main limitation of our study is the paucity of signifi-
cant literature on this subject. Since the application of
radiomics is non-standardized across different stud-
ies, and the metrics used to report their respective
performances are also different we cannot summarize
them in a meta-analytic fashion.

CONCLUSION

Radiomics shows great potential in bladder cancer
detection, staging, grading, and response to therapy,
thereby supporting the physician in personalizing
patient management. While promising, the applica-
tion of radiomic approaches in clinical practice is
hampered by the lack of familiarity among radiolo-
gists and the physician community, and by the limited
availability of efficient and standardized systems of
feature extraction and data sharing. In addition, the
majority of radiomics studies are retrospective, single
institution studies with a relatively small sample size,
and larger studies conducted across multiple institu-
tions are needed to validate these preliminary results.
As this is a relatively new field, and the technology is
still evolving, we expect to see similar retrospective
studies being published in the near future. However,
the application of radiomic evaluation in a multicen-
ter prospective trial should help in the evolution of this
method to a more consistent methodology. In addi-
tion, the lack of significant studies where radiomic
metrics are correlated with molecular, immune, or
proteomic data has led to the published literature
being essentially limited to morphological analysis
(staging and grading). The development of VIRADs
(Vesical Imaging -Reporting and Data system) using
standardized MR protocols which are more sensitive
and specific to grading and staging of bladder cancer
would also lead to a large number of studies where
MR-based radiomic studies would be a natural next
step [53]. Extension and validation of this promis-
ing technology in large multisite prospective trials is
warranted to pave the way for its clinical translation.
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