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Abstract. Cyanobacterial photosystem I (PSI) and photosystem II (PSII) complexes were assembled on a gold nanoparticle
(GNP) to generate a biohybrid photocatalyst. Optical absorption and fluorescence measurements of the generated GNP conju-
gates showed signals from both PSI and PSII. Moreover, single-particle fluorescence analysis using a cryogenic microscopy
provided definitive evidence that both PSI and PSII complexes are bound together to a single GNP. This PSI-GNP-PSII con-
jugate will be a useful platform for further development of a water-splitting nanodevice for hydrogen production using solar
energy.
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1. Introduction

Usage of solar energy is an ultimate solution for the energy and environmental crisis that we face
today. For this purpose, the development of efficient artificial photosynthetic systems, which convert
solar energy to fuels as chemical energy, is urgent [4,13,25]. One of the most attractive systems is a
water-splitting photocatalyst that produces hydrogen from water using solar energy [1,21,25]. Here, two
photocatalysts for oxygen and hydrogen production are often combined to utilize visible light [1,12],
in analogy with the Z-scheme in natural photosynthesis, in which photosystem II (PSII) and photosys-
tem I (PSI) function as an anode for water oxidation and a cathode for NADP™ reduction, respectively.
In the development of such artificial photosynthetic systems, the bottleneck has been that of efficient
photocatalysts of water oxidation [9,33]. An intriguing approach is utilizing PSII, which has a high
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quantum efficiency (>0.9 [24]) in water oxidation, in combination with synthetic materials to construct
semi-artificial photosynthetic systems [2,10,15,22,27,30,34,35].

In this context, we previously developed a biohybrid nanodevice, in which PSII core complexes from
a thermophilic cyanobacterium were assembled on a gold nanoparticle (GNP) with a 20 nm diameter, as
a water-oxidation anode in semi-artificial photosynthesis [19]. Dimeric PSII complexes were bound to
a GNP through a (His)e-tag attached to the electron-acceptor side and Ni-nitrilotriacetic acid (Ni-NTA)
assembled on the GNP surface. It was shown that four to five PSII dimers were attached to a single
GNP retaining oxygen evolution activity [19]. The optical property of this PSII-GNP conjugate was
further analyzed using time-resolved fluorescence measurement, showing that the decays of picosecond
components in PSII were accelerated and a nanosecond-decay component was lost upon binding to GNP
[26].

Meanwhile, as a cathode in semi-artificial photosynthesis, PSI complexes have been utilized for light-
driven hydrogen production by combining with platinum nanoparticles (PtNPs) [3,6,14,16,17,29,31,
36]. In these systems, however, electrons are needed to be donated from sacrificial reagents. Thus, to
complete a biohybrid water-splitting system that produces hydrogen from water using light energy, it is
necessary to combine the anode and cathode devices using PSII and PSI, respectively.

In this study, we assembled cyanobacterial PSI and PSII complexes together on a GNP to generate
a PSI-GNP-PSII conjugate, aiming at the development of such a water-splitting nanosystem. The gen-
erated PSI-GNP-PSII conjugates were analyzed by single-particle fluorescence measurement using a
cryogenic microscope as well as conventional visible absorption and fluorescence measurements.

2. Materials and methods
2.1. Preparation of photosystem Il and photosystem I complexes

PSII core complexes from Thermosynechococcus elongatus, in which the C-terminus of the CP47
subunit was (His)s-tagged [5], were isolated using Ni’* affinity column chromatography as reported
previously [18].

In PSI of Synechocystis sp. PCC 6803, a (His)q tag was genetically introduced to the C-terminus of the
PsaL subunit with the following method. A plasmid construct carrying a Km" cartridge [20] was created
by fusing four DNA fragments (Fragments 1-4) using In-Fusion (Takara). Fragment 1 (659 bp), which
involves the genetic region of psal with an additional (His)s sequence, and Fragment 2 (630 bp) with a
downstream region of the psal gene were cloned from the Synechocystis sp. PCC 6803 genome using
two pairs of PCR primers, P1/P2 and P3/P4, respectively.

P1: 5-CCGCCATGGCCGCGGGGAGGTCAATAAAACTTAATG-3

P2: 5-ACAACGTGGCTTTCCTTAgtggtgatggtgatggteGTTAAATAGACCCCGGAAAATC-3’
(sequence of the (His)e tag is shown in lowercase)

P3: 5-GCAGACCTCAGCGCCTAAATAACCTTATAACCTTTAAAC-3

P4: 5-ACGCGTTGGGAGCTCAAGCTGGGCCGTCCCTGG-3'.

For cloning of Fragment 3 (1216 bp) containing the Km" cartridge from pUK4k (Amersham Pharmacia
Biotech) and Fragment 4 (2959 bp) from pGEM-5Zf(+) (Promega), PCR primers, P5/P6 and P7/P8,
respectively, were used.

P5: 5-GGAAAGCCACGTTGTGTCTCAAAATCTCTG-3'
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P6: 5-GGCGCTGAGGTCTGCCTCGTGAAGAAGGTG-3
P7: 5-CCGCGGCCATGGCGGCCGGGAGCATGCGAC-3
P8: 5-GAGCTCCCAACGCGTTGGATGCATAGCTTG-3'.

Fragments 1, 3, and 2 were inserted into Fragment 4 in this order. The accuracy of PCR products was
checked by sequencing. Transformation of Synechocystis sp. PCC 6803 was performed by a common
procedure [32] and complete segregation of the mutations was confirmed by PCR.

(His)s-tagged PSI complexes from this Synechocystis mutant were isolated using Ni>* affinity column
chromatography with a similar method to the preparation of the (His)¢-tagged PSII complexes.

2.2. Generation of a PSI-GNP-PSII conjugate

PSI and PSII complexes were assembled on the surface of a GNP by modifying the method
of preparation of a PSII-GNP conjugate [19,26]. An aqueous solution (final 1.16 nM) of GNP
with a 20-nm diameter (British Biocell International) was mixed with 3,3’-dithiobis[ N-(5-amino-5-
carboxypentyl)propionamide-N’, N'-diacetic acid] dihydrochloride (dithiobis(C,-NTA)) (final 0.1 mM)
and 0.06% n-dodecyl-g-D-maltoside (DM), and the obtained C,-NTA-GNP was washed twice with
10 mM NaH,PO,/NaOH buffer (pH 7.0) containing 0.06% DM (buffer A) by centrifugation (11,900x g,
30 min, 4°C). The C,-NTA-GNP was then suspended in buffer A in the presence of 30 uM NiCl, to
obtain Ni-NTA-GNP, which was washed with buffer A by centrifugation (6,000x g, 60 min, 4°C). A 1:1
mixture of the (His)e-tagged PSI and PSII complexes was added to the Ni-NTA-GNP solution (PSI/II:
GNP = 50: 1). The obtained PSI-GNP-PSII conjugates were washed twice with buffer A by centrifuga-
tion (6,000x g, 60 min, 4°C).

2.3. Absorption and fluorescence measurements

Visible absorption spectra were measured at room temperature using a Shimadzu UV-3100PC spec-
trophotometer at a 2 nm resolution. Fluorescence spectra were measured at 77 K using a JASCO FP-6500
fluorescence spectrophotometer with 430-nm excitation (5 nm resolution) at a fluorescence resolution
of 1 nm. The sample for fluorescence measurement was mixed with glycerol (50% V/V) and placed in a
glass tube with a diameter of 4 mm in a liquid-nitrogen dewar.

2.4. Single-particle fluorescence measurement

The fluorescence spectrum of a single PSI-GNP-PSII complex was measured with a laboratory-built
cryogenic microscope as reported previously [7,23]. A PSI-GNP-PSII suspension (3.5 pg Chl/mL) was
diluted with a mixture of buffer A and glycerol (1:2) by a factor of 8000 (final concentration: 0.31 ng
Chl/mL), and frozen at 90 K in a cryostat. A laser beam from a He-Ne laser (1137P, JDS Uniphase)
passed through a filter (NT65-753, Edmund Optics) was reflected by a dichroic mirror and focused on the
sample with a vacuum-compatible objective lens (Plan Apo HR100x NAO.9, Mitutoyo). Fluorescence
from the sample was collected with the same objective lens and focused on the slit of a polychromator
(MS20041i, SOL Instruments). A liquid N,-cooled charge-coupled device (CCD) camera (PyLoN:100BR
eXcelon, Princeton Instruments) was used as a detector.
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Fig. 1. Schematic view of a PSI-GNP-PSII conjugate designed in this study. The electron acceptor and donor sides of PSII and
PSI complexes, respectively, are attached to a GNP through (His)e tags and Ni-NTA, and thus electrons abstracted from H,O
in PSII are expected to be transferred to PSI upon illumination.

3. Results and discussion

We designed a PSI-GNP-PSII conjugate so that upon light irradiation, electrons abstracted from water
at the MnyCaOs cluster in PSII are transferred to its quinone electron acceptors and then to P700 of PSI,
ideally, via GNP, further to the Fe-S centers on its electron acceptor side (Fig. 1). Thus, the (His)s tags
were introduced to the C-terminus of the CP47 subunit on the electron acceptor side of PSII and that
of the Psal. subunit on the electron donor side of PSI. PSI and PSII complexes were then immobilized
on a GNP via the binding of the (His)¢ tags with Ni-NTA attached to the GNP surface. PSI and PSII
complexes of cyanobacteria usually exist in a trimer [8] and a dimer [28], respectively, and hence they
are considered to be bound to a GNP in such multimeric forms.

The absorption spectrum of the obtained PSI-GNP-PSII conjugates (Fig. 2A, red line) showed a large
band at 530 nm due to the surface plasmon absorption of GNP and small bands at 678 nm and 438 nm
arising from the Qy and Soret transitions of chlorophyll (Chl) a. This GNP band at 530 nm was slightly
red-shifted compared with the corresponding band of Ni-NTA-GNP at 528 nm (Fig. 2A, black line),
which has also been observed in our previous study of the generation of PSII-GNP conjugates that
showed a GNP band at 533 nm [19,26]. This observation thus supports the binding of proteins on the
surface of a GNP. In addition, the Qy and Soret bands in the PSI-GNP-PSII conjugates (678 and 438 nm)
were found between those of free PSII (674 and 436 nm) and PSI (680 and 439 nm) complexes in
solution (Fig. 2A, B, blue and green lines). Because the PSII-GNP conjugates previously showed the
same Qy and Soret positions as those of free PSII [19,26], the above observation suggests that both PSI
and PSII complexes are bound to GNPs.

The fluorescence spectrum of the PSI-GNP-PSII conjugates at 77 K (Fig. 3, red line) showed two
bands at 686 and 718 nm. The former and latter bands correspond to the fluorescence bands of free
PSII and PSI at 685 and 720 nm, respectively (Fig. 3, blue and green lines, respectively). Although
free PSII showed distinct two peaks at 685 and 693 nm, the longer-wavelength peak was lost in the
PSI-GNP-PSII conjugates. This observation is in agreement with the previous observation of the PSII-
GNP conjugates, in which the 693-nm peak was lost and only a single peak at 683 nm was detected
in its fluorescence spectrum at 77 K [26]. The 693-nm component was also absent in time-resolved
fluorescence measurement of PSII-GNP, and hence this phenomenon was attributed to the structural
perturbation of the ‘red Chl’ by the interaction with GNP rather than faster quenching of fluorescence
[26]. The same observation in the PSI-GNP-PSII conjugates indicates that the interaction of PSII with
the GNP surface was not affected by further binding of PSI, which probably replaced some of the PSII
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Fig. 2. (A) Absorption spectrum of PSI-GNP-PSII conjugates (red line) in comparison with the spectra of Ni-NTA-GNP (black
line), and free PSI (green line) and PSII (blue line) complexes. (B) Expanded view of the Chl Qy band of the PSI-GNP-PSII
conjugates after baseline correction (red line) in comparison with the Qy bands of free PSI (green line) and PSII (blue line)
complexes. The three spectra were normalized by the intensities of the Qy bands.
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Fig. 3. Fluorescence spectrum of PSI-GNP-PSII conjugates (red line) in comparison with the spectra of free PSI (green line)
and PSII (blue line) complexes measured at 77 K. The spectra of free PSI and PSII were normalized to the spectrum of

PSI-GNP-PSII at the corresponding maximum peaks.
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complexes in a PSII-GNP conjugate. In contrast to PSII, the fluorescence band of PSI at 718 nm in PSI-
GNP-PSII showed no significant change from the fluorescence band of free PSI at 720 nm except for a
slight blue shift with a broader width (Fig. 3). This observation indicates that the interaction of PSI with
GNP little affects its fluorescence property, although there is some heterogeneity in the PSI complexes
bound to GNP.

The fluorescence spectrum of the PSI-GNP-PSII conjugates shown in Fig. 3 (red line) originates from
the ensemble of a large number of nanoparticles in solution. Thus, the possibility cannot be excluded
that the sample solution is actually the mixture of the PSII-GNP and PSI-GNP conjugates. We therefore
further detected fluorescence from a single nanoparticle by single-particle fluorescence measurement
using a cryogenic microscope, which has lateral and axial resolutions of 0.39 and 1.3 um, respectively
[23]. The sample was diluted enough (0.31 ng Chl/mL) and frozen at 90 K. Our previous study showed
that a PSII-GNP conjugate attached ~4.7 PSII dimers on average on one GNP [19]. Assuming that
three PSII dimers and two PSI trimers are attached in a PSI-GNP-PSII conjugate, this concentration
corresponds to 0.62 pM GNP and hence to about 14-um separation between particles, which is large
enough to separately detect each GNP conjugate with the above spatial resolution. The fluorescence
microscope images of two particles are selected and shown in Fig. 4A(a, b). The size of each image
is similar to the spatial resolution of the microscope, confirming that we indeed detected a single GNP
complex in each fluorescence image.

The fluorescence spectra of the images a and b (Fig. 4Ba, b) showed prominent two peaks corre-
sponding to the PSII and PSI bands at 686 and 718 nm, respectively, in the fluorescence spectrum of
the ensemble of the PSI-GNP-PSII conjugates (Fig. 4Bc). The peak positions were slightly different
between the two PSI-GNP-PSII conjugates, reflecting some differences in the interactions of ‘red Chls’
that emit fluorescence in the PSI and PSII proteins frozen at a cryogenic temperature. In addition, the
relative intensities of the PSII and PSI bands were different between the two particles. This may simply
indicate that there is some variation in the numbers of the PSI and PSII complexes attached to a GNP.
Alternatively, time-dependent fluctuation of the fluorescence intensity, so-called ‘blinking’ [7,11], could
also contribute to this change in the relative intensity of the PSI and PSII bands. The presence of both the
PSI and PSII bands in the microscopic fluorescence spectra of separate particles of the PSI-GNP-PSII
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Fig. 4. (A) Fluorescence microscope image of a single PSI-GNP-PSII conjugate at 90 K. The images of two particles (a, b)
are shown. (B) Microscopic fluorescence spectra (a, b) corresponding to the two images in panel Aa, b in comparison with the
macroscopic fluorescence spectrum of PSI-GNP-PSII conjugates at 77 K (c; identical to Fig. 3, red line).
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conjugate (Fig. 4B), along with the PSI and PSII signals in the macroscopic absorption (Fig. 2, red line)
and fluorescence (Fig. 3, red line) spectra, provided definitive evidence that the PSI and PSII complexes
are bound together to the same GNP and the designed PSI-GNP-PSII conjugate (Fig. 1) was successfully
generated.

4. Conclusions

We have assembled cyanobacterial PSI and PSII complexes on a GNP, aiming at the development of
an efficient semi-artificial photosynthesis system. The generated GNP conjugate was analyzed by single-
particle fluorescence measurement at a cryogenic temperature as well as conventional optical absorption
and fluorescence measurements, providing definitive evidence that both the PSI and PSII complexes
are bound together on a single GNP. We previously showed that PSII core complexes retained the O,
evolving activity in PSII-GNP conjugates, in which the PSII complexes are bound to GNPs on the
electron-acceptor side [19]. Also, it has been reported that PSI complexes can evolve hydrogen upon
irradiation using electrons from sacrificial electron donors when they are coupled to PtNPs [3,6,14,16,
17,29,31,36]. Thus, the PSI-GNP-PSII conjugate that we generated in the present study can be a useful
platform for further development of a light-driven water-splitting nanodevice for production of hydrogen
from water using solar energy.
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