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Abstract.
BACKGROUND: Lung cancer is the leading cause of death for male and female cancer patients alike. Early diagnosis improves
prognosis. A blood test would be a valuable support.
OBJECTIVE: Infrared spectroscopy provides a label-free biochemical fingerprint of a sample. A study was conducted on 161
patients with initial cancer suspicion to identify and verify spectral biomarker candidate patterns to detect non-small cell lung
carcinoma (NSCLC).
METHODS: Blood serum and plasma samples were analysed with an automated FTIR spectroscopic system. Two pattern
recognition algorithms and two classifiers were applied. Monte Carlo cross validation was performed with linear discriminant
analysis and random forest classification.
RESULTS: Marker patterns for the discrimination of cancer from clinically relevant disease control patients were identified
in FTIR spectra of blood samples. An accuracy of up to 79% was achieved. Squamous cell and adenocarcinoma patients were
separable with an accuracy of 80%.
CONCLUSIONS: The study demonstrates the applicability of FTIR spectroscopic blood testing for lung cancer detection.
Evidence for cancer subtype discrimination is given. With an improved performance, the method could be developed as a
routine diagnostic tool for blood testing detecting NSCLC.
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Abbreviations

AC adenocarcinoma
airPLS adaptive iteratively penalized least squares
CTC circulating tumour cells
cfDNA cell-free DNA
DC disease control
DGUV German Social Accident Insurance
DPR disease pattern recognition
EDTA ethylenediaminetetraacetic acid
FTIR Fourier-transform infrared
KSCN potassium iso-thiocyanate
LDA linear discriminant analysis
MCCV Monte Carlo cross validation
MRMR maximum relevance minimum redundancy feature selection
NSCLC non-small-cell lung cancer
PCA principal component analysis
SCC squamous cell carcinoma
SOP standard operation procedure

1. Introduction

In industrial countries lung cancer is the leading cause of death, independent of gender [16]. Prog-
nosis improves upon early detection and treatment. A range of early diagnosis and screening tools are
established including bronchoscopy, chest X-ray, and computerized tomography [26]. Improvement is
still necessary, as a low sensitivity and a high false-positive rate of >90% was reported for low-dose
computerized tomography [1]. A simplification of the diagnostic procedures by a supplementary blood
test could spare the patient exposure to radiation in a screening setting. Furthermore, such a test would be
implementable into a routine health check-up, especially in high-risk persons as smokers with asbestos
exposure. Thereby, the chance of an earlier detection of less advanced stages could increase, leading to
an improved prognosis of the patient.

Diagnostic approaches targeting potential blood borne biomarkers have been described [7,12,24,29].
Thus, it is meaningful to expect a biochemical difference between blood samples of lung carcinoma and
control patients. This is important for the presented approach. In contrast to the quantification of selected
biomarker molecules, an FTIR spectroscopic analysis provides a cumulative fingerprinting signal of
the biochemical sample status. Thereby, all infrared active molecules within a sample are detected,
thereby represented quantitatively. Absorbance signals of lipids, sugars and nucleic acids are recorded
along with protein signals. Thus, an integral signal of the lipidome, the metabolome, and the proteome
is recorded. Using appropriate machine learning techniques, the sample can be classified into distinct
groups. This has extensively been done on lung tissue samples [2,5,20], down to the sub-classification
of adenocarcinoma subtypes [9].

In contrast to infrared tissue imaging, the analysis of body fluid samples is limited by internal statistics:
whereas a tissue sample easily provides millions of spectra of discriminable regions within a single slice,
one body fluid sample provides one single spectrum, representative of the patient status at the time of



J. Ollesch et al. / An infrared spectroscopic blood test for NSCLC and subtyping into pulmonary SCC or AC 131

blood draw. Therefore, a dedicated statistical analysis of a larger participant number is required. Thereby,
meaningful and disease associated band patterns are separated from those representing biological and
technical variability. This process has been termed disease pattern recognition (DPR) [19], and is part
of an emerging field of photonic biofluid diagnostics [3]. The technology may be ultimately useful to
improve cancer detection by personalized analysis and minimally invasive sampling [11].

Although FTIR spectroscopic DPR analysis of body fluids could present an attractive auxiliary di-
agnostic method due to the minimally invasive sample acquisition, literature about the application for
bronchial carcinoma detection is scarce. Lewis et al. report a possible spectral separability of lung can-
cer patients from healthy controls based on average absorbance spectra of cells isolated from sputum
[14], but could not quantify the sensitivity and specificity. Wang et al. documented spectral differences
of cells extracted from pleural fluid of lung cancer, control and tuberculosis patients [27], again without
quantification. One study on blood serum of 24 lung cancer patients and 22 healthy controls reports a
sensitivity of 83% and a specificity of 100% deduced from a test of 5 vs. 5 subjects [28].

Here, we report the application of a widely automated high-throughput FTIR-spectroscopic instru-
mentation, which has performed well in the detection of urinary bladder cancer from blood samples
[21,22]. Now, the system was applied to the blood-based prediction of primary NSCLC from serum,
EDTA- and citrate-stabilized blood plasma. The samples were collected from 161 suspected lung can-
cer patients. The samples are robotically prepared as dried thin films and analyzed with an automated
FTIR spectrometer (Fig. 1). Using two feature selection algorithms, characteristic and discriminating
band patterns were identified, which were then evaluated in repeat and randomized Monte Carlo cross
validation (MCCV) schemes with two different classifiers. Disease control and squamous cell carcinoma
(SCC) patients were separable with an accuracy of 73%, a sensitivity of 71%, and a specificity of 75%,
whereas adenocarcinoma (AC) patients were separable from disease controls with an accuracy of 79%,
a sensitivity of 77%, and a specificity of 80%. Surprisingly, spectral blood analysis is particularly ca-
pable of subtyping NSCLC: an accuracy of 80%, a sensitivity of 82%, and a specificity of 77% for the
separation of SCC and adenocarcinoma AC patients was determined. Thereby, we demonstrate label-
free FTIR DPR as a useful tool for lung cancer detection. The feasibility of the technique for at least
coarse subtyping is shown.

2. Material and methods

2.1. Patient collective

In close collaboration between the Ruhrlandklinik, the Institute of Pathology, and the PURE institutes,
strictly defined standard operating procedures (SOP) for tissue and blood sampling according to the
rules of Good Epidemiological Practice were developed. Following these protocols, patients were fully
informed about the study and gave their written consent. Epidemiologic data were collected along with
blood samples among patients of the Ruhrlandklinik Essen from August 2013 to February 2015. Blood
was processed to serum, EDTA-, and tri-sodium citrate stabilized plasma with clinical routine equipment
(Sarstedt AG&Co., Nümbrecht, Germany) obeying strict SOPs. The samples were frozen within less
than 60 min after sampling. All samples were stored at 80°C until experimental use. The established
diagnosis of bronchoscopy and histopathology served as gold standard. This study complies with the
applicable ethical guidelines and was approved by the Ethics Committee of the Ruhr-Universität Bochum
(Ethics vote 13-5420-BO) and the Ethics Committee of the University Duisburg-Essen, Essen, Germany.
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Fig. 1. Workflow of sample analysis (adapted from [21]). With each biofluid sample, four wells of a 384 well MTP were
robotically coated with a thin film. The four absorbance spectra were corrected for spectral artefacts, outlier removed, averaged
and normalized without user interaction. One representative absorbance spectrum of each sample was differentiated. Data were
combined to synthetic sequentially arranged vectors of absorbance, 1st and 2nd derivative spectrum of serum, EDTA and citrate
plasma. Classification relevant variables were identified and Monte Carlo cross validated based on the medical diagnosis.

Table 1

Class-wise patient age and gender distribution. Given are patient numbers, average age and standard deviation

Class Male Female Total
Disease control 30/66±12 23/59±13 53/63±13
SCC 40/67±8 14/69±9 54/68±8
AC 31/65±8 22/63±9 54/64±8

NSCLC was the most abundant class of malignant diseases of the entire study (81%). Squamous-cell
carcinoma (SCC) and adenocarcinoma (AC) patients represented the most abundant subtypes of NSCLC
(together 79%). Consequently, three most populated, most homogeneous patient classes were assem-
bled: (i) a cancer-free disease control group without confirmed initial cancer suspicion (53 patients),
(ii) 54 primary SCC patients and (iii) 54 patients suffering from primary AC (Table 1).

The first recruited 19 SCC patients and the first 34 AC patients were assembled to a general ‘lung
carcinoma’ class (LC). The ratio equals the abundance of these NSCLC tumor subtypes in the performed
study.

Patients were recruited successively upon admission into the hospital. Thus, the selection of the first
patients of a group equals a random selection among the participants. A selection of equally powered
groups was necessary to prevent classifier distortion [21,22].
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The group of control patients reflects the collectives of patients with non malignant diseases of the tho-
racic cavity presenting to the Ruhrlandklinik Essen during recruitment. The group consisted of patients
with pneumonia, pleuritis and other inflammatory changes (n = 34), interstitial lung diseases (n = 7)
and benign tumors or lesions (n = 6). Multiple pathologies were observed in several patients. In six
patients, malignancies were excluded, but a definitive diagnosis could not yet be obtained.

Generally, patients with lipemic or hemolytic blood samples were excluded from the current analysis,
as well as those with lung metastases of other tumors. Gender and age distributions were similar among
the patient classes (Table 1). Tumor grading was matching well among the groups. Spectral differences
of tobacco consumption within the patient groups (smoker/non-smoker/never smoker) were researched
with the same pattern detection algorithms as described in 2.3–2.5, but not detected in the infrared spec-
tra of blood samples. Therefore, confounding contributions of gender, age, tumor grading and tobacco
consumption to the data are not expected. All patients were recruited before obtaining the diagnosis.
Therefore, it is unlikely that confounding dietary habits were unique to one patient class.

2.2. Spectroscopic analysis

For quantitative normalization, 3 µl of 500 mM aqueous KSCN solution were added to each 47 µl
serum, EDTA and citrate plasma before analysis in technical quadruplicates. The automated HT-FTIR-
measurements (Vertex 70v FTIR spectrometer, HTS-XT extension, Twister robotic plate feeder, Bruker
Optics GmbH, Ettlingen, Germany) of robotically spotted samples (50 nl per well) (instrumentTwo, M2
Automation GmbH, Berlin, Germany) on 384 well silicon MTPs (Bruker) were performed as described
with 4 cm−1 resolution [21,22].

2.3. Data processing

The automated, self-parameterizing or pre-parameterized procedures for scaled subtraction of atmo-
spheric water vapour, smoothing, adaptive iteratively penalized least squares (airPLS) baseline correc-
tion, outlier removal, averaging normalization, differentiation and combination of spectra were described
in detail [21].

To obtain a representative spectral vector for each patient, the absorbance, 1st and 2nd derivative
absorbance spectra of all three blood preparations were concatenated. Hence, we obtained vectors of
5751 features with 2 cm−1 spacing for each patient.

2.4. Feature selection

Crucial to such an analysis is the reduction of classification problem dimensionality by removal of re-
dundant and uncorrelated information. With the most discriminative data, a best possible class separation
should be achievable, with a reduced chance of overfitting the data. Two entirely different algorithms
were applied. One computationally efficient algorithm with low requirements for processing power
is termed maximum relevance, minimum redundancy (MRMR). It is based on data discretization and
z-testing [23] and was successfully applied to nonlinear multivariate classification problems [6,21–23].
The basic algorithm can be downloaded from http://www.mathworks.com/matlabcentral/fileexchange/
14,916 (October 16, 2015). The 100 most discriminative features were determined for each dataset,
and ranked by the algorithm. A consecutive step-down selection for highest accuracy in 1000 inde-
pendent leave-one-third-out MCCV with linear discriminant analysis (LDA) classifiers was performed.
Supplementing the single top ranked feature, the lesser ranked up to 100 features were included into

http://www.mathworks.com/matlabcentral/fileexchange/
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Table 2

Average accuracy, sensitivity and specificity and standard deviations of the differentiation of control, SCC, AC patient classes
after MRMR or RF feature selection in 1000 LDA and 50 RF leave-1/3rd-out Monte Carlo cross validations

Feature
selection*

X-Val Accuracy Sensitivity Specificity
% ± % ± % ±

control:lung cancer MRMR LDA 71 7 67 12 75 10
control:lung cancer MRMR RF 72 7 71 10 73 10
control:lung cancer RF(125/130) LDA 71 6 70 6 72 12
control:lung cancer RF(125/130) RF 72 6 75 12 69 10
control:SCC MRMR LDA 68 7 66 11 69 10
control:SCC MRMR RF 66 6 68 10 64 10
control:SCC MRMR** LDA 66 7 64 11 69 11
control:SCC MRMR** RF 68 7 69 10 67 12
control:SCC RF(119/155) LDA 73 7 71 11 75 10
control:SCC RF(119/155) RF 73 6 74 12 71 12
control:AC MRMR LDA 69 7 68 12 70 11
control:AC MRMR RF 77 7 77 11 78 9
control:AC RF(111/132) LDA 75 6 72 11 77 9
control:AC RF(111/132) RF 79 8 77 14 80 10
SCC:AC MRMR LDA 73 6 75 10 71 10
SCC:AC MRMR RF 75 8 74 11 76 13
SCC:AC RF(97/126) LDA 80 6 82 10 77 10
SCC:AC RF(97/126) RF 79 7 80 11 79 11
*For RF selected features, the minimum retrieval rate per total iteration number is given.
**MRMR selected features without 1 redundant feature, see text.

the calculation. The highest-ranked feature set performing with highest average accuracy in 1000 fold
leave-1/3rd-out MCCV was identified as the MRMR selection result.

An alternative wrapping approach with iterative random forest classification was performed, demand-
ing high processing power. It was successfully applied before and described in detail [21,22]. Briefly,
random forests were used to determine the Gini-importance of single spectral features for correct clas-
sification [8,10,17,18]. After repeat selection from MC derived data subsets comprising 90% of the
total dataset, the selection frequency of each identified feature was mapped. Based on the average ac-
curacy, the best predicting feature sets were registered into a pool of selected features. This pool was
analyzed by stepping down in search of a minimum selection frequency threshold. For each thresh-
old, the identified feature sets were individually validated for optimum average accuracy in a 1000 fold
LDA leave-one-third-out MCCV. The best performing feature set determined the minimum selection
frequency threshold, which is given in Table 2.

The identified classification-characteristic features were checked for agreement with spectral contri-
butions of the silicon substrate in absorbance, 1st and 2nd derivative spectra. Only one identified feature
(1293 cm−1 in the 2nd derivative serum component) coincided with a broader substrate absorbance band
at 1296 cm−1. MCCV indicates this feature as redundant. This is discussed in the result section.

2.5. Classification

A dual cross validation concept with two routines of proven performance [22] was followed. As a
compromise to the limited set of patients in the study, a strict leave-one-third-out MCCV scheme was
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applied to all validation procedures. Classifiers were trained on a randomly selected 2/3 patients of the
dataset to predict the left-out 1/3 subjects.

An algorithm with low time complexity is the classifying linear discriminant analysis (LDA). The
Matlab provided routine ‘classify’, with à priori class membership estimation and a linear discriminant
function was used. For robust results, a 1000 fold MCCV scheme was maintained with LDA classifiers.

A complex ensemble random forest classifier was applied as the demanding alternative in regard to
processing power and classifier complexity [21]. In a random forest, prediction is achieved by majority
vote of the included decision trees. Here, the prediction was deduced from the majority vote of an
ensemble of 1001 random forests.

Following standard nomenclature, the percentage of correct classifications was defined as accuracy,
whereas the percentage of true positive predictions among all positives reflected the sensitivity. Speci-
ficity is given as the percentage of true negative among all negative predictions.

2.6. Bioinformatics environment

Random forest routine calculations were performed within the Matlab environment, version 2012a
with the R-project based [15] Matlab port (downloadable from http://code.google.com/p/
randomforest-matlab/, October 21, 2015) on a High-Performance Computing Server Supermicro SYS-
5086B with 8x Intel® Xeon® Westmere EX (E7-8837, 2.66 GHz, 8-Core), 512 GB RAM. MCCV and
MRMR feature selection were performed on a standard office PC equipped with Intel Core2Quad CPU
Q9650@3.0 GHz, 8 GB RAM running Matlab 2012a.

3. Results and discussion

3.1. The spectral dataset

Infrared absorbance spectra were obtained from 483 blood samples. 1932 spectra of the quadruplicate
analysis were condensed and concatenated to representative spectral vectors of 161 patients, of citrate
plasma, EDTA plasma, and serum (Fig. 2(A), (B), (C)). This resulted in 5751 features per patient. Spectra
were normalized with the C–N triple bond absorbance band between 2150–2000 cm−1 of KSCN spiked
to the sample. This maintained the absorbance band intensities as qualitative markers for the concentra-
tion of included substances, as e.g. total protein, total lipids, phosphates and glucose (Fig. 2, regions (i),
(ii)). Due to the natural variation of concentrations, a clear assignment by visual inspection of marker
bands is futile in the absorbance, 1st (regions (iii), (iv)) and 2nd derivative (regions (iii), (iv)). Sharp
difference bands at 1245 cm−1 and 1182 cm−1 indicate spectral contributions of the silicon substrate to
some spectra. This was likely caused by alteration of the substrate surface between sample-free refer-
ence measurement and the analysis of the deposited sample spot. Although not yet clearly evaluated,
a repeated plasma treatment may have sensibilized the silicon surface for reactivity with atmospheric
water. These bands are not expected to provide classification relevant information. However, the se-
lected features were thoroughly checked to not coincide with these bands and the respective side lobes
after derivatization. Some presented features appear close (Table 3), but are positioned next to bands
or close to neutral turning points between sidelobes. One feature (serum 2nd derivative, Fig. 2(C) (vi),
1293 cm−1) close to one such band at 1296 cm−1 was selected by the MRMR algorithm. This feature is
nevertheless redundant for classification, as will be shown later.

http://code.google.com/p/randomforest-matlab/
http://code.google.com/p/randomforest-matlab/
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Fig. 2. Absorbance spectra, (i, ii), 1st derivative (iii, iv), and 2nd derivative spectra (v, vi) of citrate plasma (A), EDTA
plasma (B), and serum samples (C) as recorded and calculated from disease control (black), SCC (blue) and adenocarcinoma
patients (red). The analysis was constrained to the respective C–H-stretching ((i), (iii), (v): 2800–3200 cm−1) and the fingerprint
regions ((ii), (iv), (vi): 1750–875 cm−1).

An approximate assignment of vibrational bands to functional groups, and to abundant blood sub-
stances featuring those groups is given in Table 4. These assignments are not unique, because FTIR
absorbance bands are not unique to single substances contained in blood. For example, along with pro-
teins, urea as well features strong absorbance bands in the 1700–1500 cm−1 region, due to the contained
C=O and NH2 groups. Therefore, a unique scheme of increased and diminished substances in cancer-
patient blood cannot be developed based on the identified infrared spectral feature patterns.

3.2. NSCLC versus disease control patients

First, to demonstrate the basic separability of NSCLC patients from the disease control group based
on blood samples. Common spectral features of squamous cell carcinoma and adenocarcinoma were
identified and verified in MCCV.
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Table 3

List of identified discriminative features, wavenumber position given as cm−1

Spectral region Control vs. cancer Control vs. SCC Control vs. AC SCC vs. AC
MRMR RF MRMR RF MRMR RF MRMR RF

Citrate plasma Absorbance 1095 1463 881
1613

1st derivative 2842 1563
1747

2nd derivative 933 1097 1099 931 957 1019 875
1741 1121 959 1175 3096 1017

971 3098 1029
1741 1175
2814 2814
2900 3098
3098 3162
3144

EDTA plasma Absorbance 1209 1261 1211 1593 985
1613 1595

1605

1st derivative 1541 1541
2902 1597

1685
1723
2910

2nd derivative 875 1699 985 875 875 3082 985
1103 3046 1635 933 3108 3194 987
3126 1637 969 1583

1699 983 1667
1743 1103 3192
2938 1133 3194
3106 3082
3108 3108

3150
3194

Serum Absorbance 2918 2822 2832 2806
2874

1st derivative 1159 1281 1239 885
1563

2nd derivative 945 941 1293 943 943 989 887
3014 1385 1257 1693 943

3082 989
1077
1079
1097
1099
1439
1693
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Table 4

Assignment of the vibrational frequencies to functional groups, and approximate assignment
to the most abundant blood components with the respective groups as described in [4,13]

Frequency/cm−1 Functional group Major substance
∼3300 N–H Proteins, amide A
3090–2840 C–H Lipids
∼1740 C=O Fatty acids
1700–1600 C=O Proteins, amide I
1600–1500 N–H Proteins, amide II
∼1400 COO− Amino acids
∼1240 P=O Nucleic acids
1170–1120 C–O Carbohydrates

The lung cancer class, consisting of 19 SCC and 34 AC randomly selected patient samples, was sepa-
rable from the disease controls with both feature sets. The projection of an LDA classifier into the score
space of the first components of a principal component analysis (PCA) indicates a correct separation of
more than 50% of patients (Fig. 3(A)). This is confirmed with MCCV with both LDA and RF classifiers
on the dataset, indicating 71% and 72% accuracy, respectively (Fig. 3(B), Table 2). Respective sensitiv-
ities of 67% and 71%, and specificities of 75% and 73% were achieved. The RF based selection offers a
visibly better class separation in the PCA projection (Fig. 3(C)). Although both MCCVs indicate similar
accuracies of 71% and 72%, they also indicate improved sensitivities of 70% and 75% with specificities
of 72 and 69%, respectively (Fig. 3(D), Table 2). The MRMR algorithm identified 12 relevant spectral
features, whereas only two passed the rigorous RF based algorithm (Table 3). Although this appears
as a rigorous feature reduction, both the PCA analysis (Fig. 3(C)) and the MCCV results (Fig. 3(D))
justify the feature selection. In this special case, the PCA-score plot illustrates the LDA separation of
both classes by the intensities of the EDTA plasma absorbance feature at 1261 cm−1 (abscissa) and at
941 cm−1 of the 2nd derivative of the serum absorbance spectra (ordinate).

The disease control group represents a typical variety of cases as expectable in a clinical setting. There-
fore, it is an inhomogeneous group dominated by inflammatory lung diseases, and some less abundant
non-inflammatory cases. Thereby, our classification system was tested with realistic control patients.
It is likely attributable to the inhomogeneity of the current patient groups, that the accuracy of cancer
detection is decreased in comparison with our earlier study on bladder cancer [22]. That study achieved
an average accuracy of up to 92%, but was performed with the less inhomogeneous patient groups of
urothelial carcinoma versus (severe) urinary tract inflammation.

3.3. Identification of squamous cell carcinoma

To pursue subtyping of NSCLC, spectral indicators of 54 primary SCC patient blood samples were
identified and verified against 53 cancer-free control patients.

Both feature selection algorithms identified indicative spectral features, which all cross-validated with
a significantly higher average accuracy than 50%. Four MRMR selected features indicated a class sep-
aration in the score plot of the first two PCAs (Fig. 4(A)). MCCV resulted in respective accuracies of
68 and 66%, sensitivities of 66 and 68%, and specificities of 69 and 64%, with LDA and RF classifier
MCCV (Fig. 4(B), Table 2). Although spectral contributions of the silicon substrate (Si–H, Si–O, Si–
O–H, C–Si–O and local surface defects) are usually avoided by referencing a sample position with the
identical substrate before sample application, one MRMR selected feature at 1293 cm−1 coincided with
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Fig. 3. Performance of lung carcinoma spectral features extracted with the MRMR (A, B) and the RF method (C, D) versus
control patients, determined with LDA and RF classifiers. The PCA score plots (A, C) visualize a qualitative separability,
whereas the quotient ratios (B, D) quantify average MCCV results with accuracies above 70%.

an identified artefact at 1296 cm−1 on background noise level intensity. MCCV were repeated without
this feature. LDA MCCV resulted in 66 ± 7% accuracy, with a sensitivity of 64 ± 11% and a specificity
of 69 ± 11%. RF MCCV resulted in 68 ± 7% accuracy, with a sensitivity of 69 ± 10% and a specificity
of 67 ± 12%. That means, the LDA MCCV accuracy was reduced by 2% units, whereas the RF MCCV
determined accuracy gained 2% units by not considering the 1293 cm−1 feature (Tables 2 and 3). It
appears not essential to the classification and could therefore represent a borderline redundant feature.

A significantly better classifier performance was obtained with 11 RF selected features. The two di-
mensional projection of the PCA score plot indicates a specific, but not necessarily sensitive class sep-
aration (Fig. 4(C)). Quantitative numbers of the MCCV analysis do not confirm this impression: LDA
and RF indicate an average accuracy of 73%, sensitivities of 71% and 74%, and specificities of 75%
and 71%. Thus, very similar results were obtained using these entirely different classifiers (Fig. 4(D),
Table 2).
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Fig. 4. Performance of squamous cell carcinoma spectral features extracted with the MRMR (A, B) and the RF method (C, D)
versus control patients, determined with LDA and RF classifiers. The PCA score plots (A, C) visualize a qualitative separability,
whereas the quotient ratios (B, D) quantify average MCCV results.

3.4. Identification of adenocarcinoma

Consequently, the spectral discrimination of disease control patients from those suffering from pri-
mary adenocarcinoma was researched. To maintain balanced class sizes, 53 patients of each DC and AC
were compared.

The PCA score plot of 34 MRMR selected features indicates an essential class separability with ap-
proximately equal numbers of false positive and false negative assignments (Fig. 5(A)). MCCV confirms
the qualitative impression: repeated LDA MCCV resulted in an average accuracy of 69%, a sensitivity
of 68% and a specificity of 70%. With RF MCCV, significantly higher values were obtained: 77%, 77%
and 78% (Fig. 5(B), Table 2). The seven RF selected features, on the other hand, indicated a good sepa-
rability in the PCA analysis (Fig. 5(C)). Both LDA and RF MCCV resulted in higher average numbers.
With LDA, an average accuracy of 75%, sensitivity of 72% and specificity of 77% was achieved. The
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Fig. 5. Performance of adenocarcinoma spectral features extracted with the MRMR (A, B) and the RF method (C, D) versus
control patients, determined with LDA and RF classifiers. The PCA score plots (A, C) visualize a qualitative separability,
whereas the quotient ratios (B, D) quantify average MCCV results.

RF MCCV resulted in an accuracy of 79%, with a sensitivity of 77% and a specificity of 80%. Thus, AC
patients are clearly separable from DC patients based on the infrared spectral blood analysis.

3.5. NSCLC subtype differentiation

Finally, the separability of SCC from AC patients in regard to NSCLC subtyping was analyzed. Thus,
54 patients of each class were analyzed.

Again, both MRMR and RF algorithms identified differentiating feature sets. Ten MRMR selected
features roughly discriminated the two disease classes in the PCA score projection (Fig. 6(A)). Repeated
MCCV indicates a relatively high separation quality. Average accuracies of 73% and 75%, sensitivities
of 75% and 74%, and specificities of 71% and 76% were achieved, with respective LDA and RF MCCV
(Fig. 6(B), Table 2). Contrastingly, the RF algorithm selected 29 features (Table 3). Using those, the
PCA analysis indicated an improved class separability (Fig. 6(C)). Further, the highest cross validation
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Fig. 6. Performance of spectral features extracted with the MRMR (A, B) and the RF method (C, D) to differentiate SCC
from adenocarcinoma patients, determined with LDA and RF classifiers. The PCA score plots (A, C) visualize a qualitative
separability, whereas the quotient ratios (B, D) quantify average MCCV results.

results were achieved. The LDA and RF MCCVs resulted in respective average accuracies of 80% and
79%, sensitivities of 82% and 80%, and specificities of 77% and 79% (Fig. 6(D), Table 2).

Summing up, the presented FTIR spectroscopic DPR approach performed similarly well as a recently
reported multi-marker panel approach for screening of oncologic diseases [29]. In a 12 year study on
41,516 patients, Wen et al. achieved a sensitivity of 75% for lung cancer: 27 of 36 lung cancer patients
were correctly identified with an eight molecule marker-panel. Another very applicable strategy for
cancer detection by blood analysis was termed liquid biopsy, meaning the identification and characteri-
zation of cell-free DNA (cfDNA) [25] or circulating tumour cells (CTC) [30]. Sensitivities ranging from
24–100% were reported [30]. As a 73–79% accuracy is clearly insufficient for screening, we propose
to evaluate the combination of multi marker panels and a liquid biopsy assay with the DPR approach.
Such a testing scheme is likely to yield improved results. Further, the scheme could be shaped for either
optimum sensitivity or optimum specificity, exploiting the strength of each single technique.
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4. Conclusions

This work shows and quantifies the given potential of FTIR spectroscopic blood analysis for the de-
tection of the two most abundant subtypes of non-small cell lung carcinoma within a 161 patient risk
collective. Furthermore, the applicability for cancer subtyping into squamous cell carcinoma and adeno-
carcinoma is shown. The results originate from two entirely different feature selection algorithms and
were achieved with two different classifiers in patient-wise leave-1/3rd-out Monte Carlo cross valida-
tions. Although this proofs the general ability for label-free, minimally invasive patient group distinction,
the performance is yet insufficient for screening purposes. The actual performance in a real-life clinical
setting remains to be evaluated with independent patient sets in further studies.
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