
Analysis of nervous fiber, muscle, and blood 
vessels using their ulraviolet near infrared 
reflectance characteristics 
Kadir Tufana,* and Ahmet Korkut Bellib 

a
 Computer Engineering Department, Fatih University, Istanbul, Turkey 

b
 Department of General Surgery, Mugla Sitki Kocman Medical School, Mugla, Turkey 

Abstract. Injury to the nervous system can lead to irreversible problems as nervous tissues have limited regenerative 
capability. Therefore it is imperative to find an objective, reliable, cheap, and easy-to-apply method that separates nervous 
fibers from muscles and blood vessels. The aim of this study is to determine structural differences that can aid in easy and 
reliable identification of nervous fibers. We analyzed light reflectance from these tissues from 230 nm to 1000 nm and found 
that in the range of 400 nm-600 nm nervous fibers have higher reflectance in comparison to others. Therefore, we generated 
distinct features in this range and utilized support vector machine to automatically classify samples. Classification 
performance demonstrated that light reflectance is a good candidate feature that can help to classify nervous tissue. 
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1. Introduction 

The nervous system (NS) is the signal carrier in human and animals [1], which coordinates the 
actions of different parts of the body by transmitting signals. These actions can be classified as 
voluntary or involuntary [2]. The central nervous system (CNS) and peripheral nervous system (PNS) 
are the two components of the NS. The brain and spinal cord make up the CNS [3], whereas the PNS 
includes the motor (voluntary) or autonomic (involuntary) actions of the body. PNS fibers carry 
sensory signals like pressure, temperature, and pain to the CNS and also send commands (motor 
actions) from the CNS to the target organs [4].  

Injury to the NS is different from any other injury because the NS does not have regenerative 
capability [5, 6]. Due to this limitation, any damage to the NS is permanent and lasts for the rest of a 
person’s life [7, 8]. Surgery carries the risk of damaging nervous fibers. Iatrogenic trauma is defined 
as the injuries caused by a healthcare provider during a surgical procedure. Therefore, it is very 
important during surgery to differentiate nervous fibers from similar tissues, such as blood vessels and 
muscle fibers etc. Unfortunately, there are limited solutions suggested in the literature for this critical 
issue [7-9].  
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Table 1 

Numbers and place of sample collection 

Sample Name Number of Samples Place of collection 
Nervous Fiber 40 Main nerve of the hind leg 
Muscle 40 Hind leg muscle 
Blood Vessel 40 Main vein of the hind leg 

 
The surgeon’s anatomic knowledge during an operation is his/her primary aid for correctly 

distinguishing nervous fibers. The stiffer and tenser form of the nervous fiber can also be used as a 
guide during open surgery. However, the surgeon’s sense of touch cannot be utilized during a closed 
operation. Radiological imaging methods are also useful but the practical application of radiologic 
imaging is very weak during surgery [10]. A more practical suggestion called electrophysiological 
nerve monitoring (EPNM) is suggested and available for thyroid surgery or some otologic procedures, 
despite the fact that it has to include the presence of an electrophysiological expert during each surgery 
[11-13]. The need for an objective, easy-to-apply, and reliable tool for the differentiation of nervous 
fibers during surgery has not been accomplished.  

Methods that utilize the structural characteristics of nervous fibers can be extremely useful. In this 
study, the ultraviolet near infrared (UV-NIR) light reflectance of nervous fibers, blood vessels, and 
muscle tissues acquired from cows are investigated. Here, we have analyzed the samples by using a 
UV-NIR spectrophotometer (UV-NIR-SPM). A support vector machine (SVM) is then used to classify 
the created feature set. The classification performance reveals that the UV characteristics of these 
tissues are promising for correct identification of nervous fibers. 

This article is organized as follows. In Chapter 2, materials used in this study are explained, and the 
SVM classifier is briefly explained in Chapter 3. Chapter 4 comprises the application and results of the 
study, and Chapter 5 concludes the paper.  

2. Materials  

In this study, nervous fibers, blood vessels, and muscles of two -year-old male cows were obtained 
from a meat supplier. From each animal, one piece of nervous fiber, blood vessel, and muscle tissue 
were taken and veterinarian of the butcher oversaw this process. Samples were placed on ice after 
recovery to avoid deterioration during transit to the laboratory. The number and type of each sample, 
along with the location from where they were obtained, is given in Table 1. 

Light reflectance measurements of samples were carried out using a UV-NIR-SPM unit in the Bio-
Nano Research Center of Fatih University. A snapshot from the unit is given in Figure 1(a). The UV-
NIR-SPM unit can measure absorption, transmission, and reflectance spectra of light. Samples are first 
prepared for analysis by adjusting the size of each to fit the UV-NIR-SPM unit. All samples are 
prepared in similar shape and almost equal dimensions to minimize the effect of the geometry of 
samples on the measurement. These samples are prepared in the shape of a rectangular prism. The 
length of each sample is about 10 mm. the width and the thicknesses are 5 mm and 4 mm, respectively. 
Sample does not cover the whole sample stage window. The lamella used in the study is 45 mm long 
and 15 mm wide. Figure 1(b) shows a snapshot from some prepared samples for analysis.  

3. Support vector machine  
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Fig. 1. UV-NIR-SPM unit (a) and some samples ready for analysis (b). 

 
The SVM is a supervised classification method widely used in different fields [14-16], including in 

classification problems that are linear and non-linear. It can be used for both two-class as well as 
multi-class classification problems [17, 18]. The classes used during classification are differently 
labeled. SVM draws an N-dimensional hyper plane, called a decision boundary [19], between classes. 
Supervised classifiers have two steps: training and testing. The feature set is divided into training and 
testing groups, and in the training phase the classifier learns the problem. This training set is fed into 
the classifier with known class labels, and the classifier arranges the weights of internal bounds that 
link features to the given label. The iterative learning process finishes with different criteria [20, 21]. 
The aim of the training phase is to calculate the decision boundary in an optimal way that lies midway 
between the adjacent classes. The functional margins must be maximized here to minimize the so-
called generalization error [22]. At the end of the training step, the decision boundary is calculated and 
fixed. In the testing step, testing dataset is fed into the classifier without class labels. Then the system 
is asked to classify these datasets with the decision boundary obtained in the previous step. The 
classification performance is calculated according to the ratio of correct and incorrect classified 
samples. 

4. Application and results 

Samples of three kinds of tissues are taken from the butcher and each of them is analyzed with the 
UV-NIR-SPM unit. The light reflectance characteristics of each wavelength from 230 nm to 1000 nm 
are measured and tabulated. In the third step, the vulnerable wavelengths that can help to identify 
nervous fibers are determined. Then, the features are created in these wavelengths. These features are 
classified by using SVM classifiers. Finally, the classification performance is evaluated. 

The UV-NIR-SPM unit has three basic components: a 500 watt Xenon Arc Lamp housing (Model 
XS 433, Acton Research Cooperation, 15 Discovery Way, Acton, MA), a monochromator (Princeton 
Instruments Acton Advanced SP 2300A), and a photomultiplier tube (PMT) (Hamamatsu H8259-01). 
The reflection measurement procedure is described below: 

(1) White light from the Xenon lamp is sent to the sample that is to be measured. 
(2) Reflected light is directed from the monochromator to the PMT to decide the wavelength of the 

light.  
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Fig. 2. Average value of tissues for 230 nm – 1000 nm (a) and focus on the vulnerable wavelength range (400 nm – 600 nm) 
(b). 

 
(3) The reflectance of the given wavelength is measured. 
(4) This procedure is repeated for each wavelength from 230 nm to 1000 nm.  
A calibration process was carried out before actual samples are analyzed. For this purpose, a quartz 

mirror was used instead of the sample to provide full reflection. Thus, the full reflectance of the 
desired range (230 nm -1000 nm here) was measured (I0). Then, each sample was placed and 
measured to obtain their spectrum (I). Finally, the process was normalized by taking the ratio of I/I0. 

In Figure 2(a), average values of each tissue type according to wavelength are given. The following 
can be summarized from this plot: 

(1) For wavelengths lower than 300 nm, both blood vessels and nervous fibers show almost the 
same characteristics.  The reflectance of muscle fibers is clearly higher than those of the other 
two for this wavelength range.  

(2) After 300 nm, the reflectance of nervous fibers is different from the blood vessels, and it starts 
to increase with a higher slope.  

(3) Around 380 nm, the reflectance of the nervous fibers reaches that of the muscle. Until 600 nm, 
the reflectance of the nervous fibers is the highest among the three. 

(4) After 600 nm, the muscle has the highest reflectance. The reflectance of nervous fibers is still 
higher than that of blood vessels but the difference diminishes with the increasing wavelength. 

(5) From this plot, the 400-600 nm interval seems to be the most vulnerable wavelength range for 
the correct classification of nervous fibers. In Figure 2(b), a zoomed view of the plot to the 400-
600 nm range is given. 

As explained in the previous section, the most vulnerable range of wavelength is 400-600 nm. Thus 
the classification features are extracted from this wavelength interval. In order to have robust features, 
four parameters are calculated for each of the 50 nm range. These parameters are minimum value, 
maximum value, average value, and the standard deviation. These values are calculated for 401-450, 
451-500, 501-550, and 551-600 nm intervals. In other words, 16 features in total are calculated and the 
feature set is created. 

In the previous literature, the k-fold cross-validation technique is frequently used to evaluate the 
performance of a classifier [23]. Here, the whole feature set is divided into k subsets. One subset is 
chosen as a testing feature set and the remaining k-1 subsets are used to construct the training feature 
set. The classifier is then allowed to run and the performance is recorded. In the next iteration, another 
subset is chosen as a testing feature set and the remaining k-1 feature sets are used to construct the 
training feature set. The performance of this iteration is also recorded. This procedure is repeated k 
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times. Then, the average performance of these iterations is calculated as the performance of the 
classifier. In this study, 10-fold cross-validation is chosen as it is widely used [24].  

The feature set has two classes: nervous fibers and others. In other words, muscle and blood vessel 
samples are labeled in one class as our objective is to design a classifier that can distinguish nervous 
fibers. Then, 10-fold cross-validation is applied to a two-class classification problem. For each such 
iteration, performances are recorded and the overall performance is calculated by taking the average of 
10 iterations.  

The performance of a classifier can be defined by using sensitivity, specificity, and accuracy values. 
These parameters are calculated by the following formulae [25]: 

- Accuracy 
 

100(%)
TP + TN

Accuracy =
N

�                                                    (1) 

 
- Sensitivity 

 

100(%)
TP

Sensitivity =
TP + FN

�                                                 (2) 

 
- Specificity 

 

100(%)
TN

Specificity =
TN + FP

�                                                 (3) 

 
where, 
- TP (True Positive): A nervous fiber is classified correctly. 
- TN (True Negative): A non-nervous tissue is classified correctly. 
- FP (False Positive): A non-nervous tissue is classified incorrectly as a nervous fiber. 
- FN (False Negative): A nervous fiber is incorrectly classified as a non-nervous tissue. 
 

Table 2 

Classification results using SVM for 10-folds 

Fold # Support vector C Training Accuracy (%) Test Accuracy (%) Test Sensitivity (%) Test Specificity 
(%) 

1 13 0.5 100 100 100 100 
2 15 0.5 100 100 100 100 
3 13 0.5 100 100 100 100 
4 14 0.5 100 100 100 100 
5 14 0.5 100 100 100 100 
6 11 0.5 100 100 100 100 
7 14 0.5 100 100 100 100 
8 13 0.5 100 100 100 100 
9 12 0.5 100 100 100 100 
10 14 0.5 100 100 100 100 
Average 100 100 100 100 
 

K. Tufan and A.K. Belli / Analysis of nervous fiber, muscle, and blood vessels S2183



In Table 2, the performance of the 10-fold SVM classification is given. All folds give the highest 
accuracy, sensitivity, and specificity. Here, we can see that nervous fibers are classified from muscles 
and blood vessels with a high accuracy. 

The nervous fiber, blood vessel and muscle tissue have different histologic structures. For example a 
nerve fiber is surrounded by a special kind of protein to enhance transmission of electrical impulse to 
its target organ, called mylein. A blood vessel is a tube shaped elastic structure to deliver blood to the 
end organs. A muscle tissue is comprised of actin and myosin to give strength. Therefore, all these 
tissues have different structures and densities that leads to difference reflectance of these tissues. 
However, the actual reason of the different reflactances are complicated to explain with a few causes. 

5. Conclusion 

This article is part of a research project to find structural properties that distinguish nervous fiber 
from blood vessels and muscles during surgery. Here, some structural properties of these tissues with 
different characteristics are investigated. 

Three types of tissues were obtained from slaughtered cows. Their reflectance with respect to 
wavelengths of light was examined by using a UV-NIR-SPM unit. The reflectance of each sample was 
measured in a large range (230 – 1000 nm). Graphical investigation revealed that the 400-600 nm 
range is very vulnerable when differentiating nervous fibers from the other two types. Then, 
classification features were created for this range and the SVM classifier was utilized to make an 
automatic classification. The output of the classifier was significant. 

The light reflectance of these tissues for the 400-600 nm wavelength range can be used to establish 
a real life instrument that can be used in surgery.  
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