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Abstract.We present a new genetic filter to identify a predictive gene subset for cancer-type classification on gene expression
profiles. This approach pursues to not only maximize correlation between selected genes and cancer types but also minimize
inter-correlation among selected genes. The proposed genetic filter was tested on well-known leukemia datasets, and significant
improvement over previous work was obtained.
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1. Introduction

As the technology of microarray has grown, researchers have gotten to investigate many gene expres-
sion patterns simultaneously. Microarray has been an experimental tool to extract functional information
from genome [1,2]. The disease-type classification is representative in microarray applications. In recent
years, ones used microarray to profile the gene expression pattern of abnormal or normal cell in tumor,
e.g., leukemia [3]. Such study sheds light on obtaining bio-markers for classifying cancers. Clustering
analysis [4–8] is prevalent for the analysis of microarray data. Some studies on clustering analysis have
focused on biclustering of gene expression data [9–11]. The clustering analysis clusters genes that have
closely related expression patterns which enable us to get some insights into gene function and interaction
between genes.
Microarray has been extensively adopted to profile gene expression data of tumors and applied to

cancer classification, but its success largely depends on the tools of data mining. Because, among too
many gene expression data, only a part give distinct expression levels for different disease types. Hence
it is quite important to use the tools that can identify informative genes from a large number of genes
polluted with noise.
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Microarray data make up of many gene expression data and relatively small samples. To overcome this
unbalance, we select an informative gene subset. Our study is to propose a filter method for the selection
based on a genetic algorithm.
There may exist a number of gene subsets that can differentiate between disease types of samples. The

proposed approach is to get various such subsets for classification and then estimate the gene importance
from correlation between each pair of genes in the subset. In the case that selected gene subset was
used for classification on test data, samples could be well classified. Other methods that identify a gene
subset for classification have also been presented [3,12–15]. We investigate the patterns of identified
genes and examine the classification reliability of the identified genes from test data. We also do the
sensitivity analysis of the test results on selected genes. We divide the dataset into training and test
samples differently. Training and test sets are used to identify and evaluate a subset of predictive genes,
respectively.
In this study, we considerably extend our preliminary work [16]. Using leukemia dataset as a bench-

mark dataset, we give an analysis on the leukemia dataset using a genetic filter to identify a subset of
predictive genes that can distinguish between the two disease types: acute lymphoblastic leukemia (ALL)
and acute myeloid leukemia (AML). We compare the results with those of previous work. The main
difference with our preliminary work [16] lies in that: (i) we improves the genetic parameters including
evaluation function, (ii) we provides the detailed analysis of the proposed genetic filter through consid-
erably extended experiments, which were conducted on varying parameters, and (iii) we reports statis-
tically significant results using bootstrapping, which is a re-sampling technique for estimating summary
statistics.
The remainder of this paper proceeds as follows. We introduce previous work including cancer-type

predictor and leukemia dataset in Section 2. In Section 3, we present a genetic filter for gene identifica-
tion. We provide empirical analysis in Section 4. In Section 5, we draw conclusions.

2. Previous work

Golub et al. [3] presented an effective method to identify a predictive gene subset for cancer classi-
fication. They used a neighborhood analysis in selecting a gene subset that can distinguish between the
two cancer types: AML and ALL, based on a separation measure similar to t-statistic. The subset con-
sisting of fifty genes best discriminating between AML and ALL in training dataset was selected as a
cancer-type predictor. It correctly classified 36 of the 38 training samples. This gene subset was subse-
quently used to predict the cancer type on test dataset. In their experiments, 29 of the 34 test samples
were classified correctly, where 4 of the 5 (= 34 − 29) samples were not classified, i.e., undecided and
the remaining one sample was misclassified, i.e., error.
Golub et al. [3] also proposed a predictor that uses a predictive gene subset with a fixed size and

predicts a test sample with the expression levels of these predictive genes. The pseudo-code of the cancer-
type predictor is given in Figure 1. Each predictive gene takes a vote on the cancer type, with the weight
of each vote depending on the expression levels in the test sample and the correlation between that
gene and the cancer-type distinction. The weights of the votes are summed to decide the winning cancer
type and a real-valued prediction strength ranging between −1 and 1. The test sample is classified into
the winner cancer type when the prediction strength is larger than a given threshold, and it is regarded
undecided in other cases.
The leukemia dataset contains 6,817 gene expression levels in 72 samples, among which 25 samples

were classified as AML and the remaining 47 ones as ALL [3]. Each sample has the gene expression
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CancerTypePredictor(sample x = (x1, x2, . . . , xk))
{

// xi is the i-th gene expression level for sample x, and k is the size of the identified gene subset
Vm ← 0, Vl ← 0;
for each gene i,

(μm(i), μl(i)) ← averages of the i-th gene expression levels for the samples in AML and ALL, respectively;
(σm(i), σl(i)) ← standard deviations of the i-th gene expression levels for the samples in AML and ALL, respectively;
ρ′(i, C) ← (μm(i)− μl(i))/(σm(i) + σl(i));
vi ← ρ′(i, C) · (xi − (μm(i) + μl(i))/2);
if vi > 0 then Vl ← Vm + vi;
else Vl ← Vl − vi;

prediction strength← (Vm − Vl)/(Vm + Vl);
if |prediction strength| < threshold then return undecided;
else if prediction strength ≥ threshold then return AML;
else return ALL; // prediction strength ≤−threshold

}

Note: the threshold of 0.3 is used following [3].

Fig. 1. Pseudo-code of cancer-type predictor [3,16].

levels in microarray data. The dataset has been widely used in other studies [17–22]. We divided the
dataset into 38 training samples and 34 test samples as in [3]. The training samples were used to select a
gene subset that can distinguish between the two cancer types: AML and ALL. The fifty most predictive
genes identified by the training samples were validated, to classify the test samples.

3. A genetic filter

Genetic algorithms (GAs) have been popular for feature selection [23–25]. We propose a new GA to
identify a predictive gene subset. It chooses genes using the training samples. Usually a GA for feature
selection is used as a wrapper method, which maximizes the accuracy on the training dataset. But the
proposed GA is not a wrapper method but a filter method. One of the notable features is that the proposed
GA searches for a predictive gene subset based on correlation-based evaluation. The solution set has
exponentially many elements. When the number of genes to select is given, the best subset of size k can
be obtained by considering all possible cases, i.e.,

(n
k

)
cases. The proposed GA alternatively searches the

solution set to get a good predictive gene subset with a given fixed size.
The dataset is divided into the training and test sets. The proposed GA chooses a given number of

genes by conducting search on the training samples. After the proposed GA chooses a predictive gene
subset, the predictor using the subset runs on the test samples.
We use the general structure of a steady-state GA [26]. An individual is encoded by binary string, in

which a gene has value one when belonging to the predictive gene subset; in the other case, it has value
zero. First, the proposed GA makes P initial subsets randomly. The only constraint on an individual is
that the number of one’s is fixed. The population size P is set to be 100. A fitness computed from ob-
jective value is assigned to each individual in the population. The proportional selection scheme is used.
Crossover operator makes an offspring through recombining parts of both parents. One-point crossover,
which is the most popular, is used. As mutation, swap mutation, which exchanges the values of a pair of
genes chosen randomly, is used. An offspring obtained after crossover and mutation operators may not
be feasible. That is, it may not meet the constraint with the fixed number of genes to be selected. The
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GA then randomly chooses genes on the individual and alters the required number of zero’s to one’s (or
one’s to zero’s). This repair process can also give some effect of mutation. After generating a feasible
offspring, an individual in the population is replaced with the offspring. The replacement of [26] is used.
First, the closer parent with respect to Hamming distance tries to be replaced with the offspring. If the
closer parent is better than the offspring, the remaining parent tries to be replaced with the offspring. This
replacement with parents is done only if one of both parents is worse than the offspring. If both parents
are better than the offspring, the worst individual in the population is replaced with the offspring. As
termination condition, the number of consecutive fails in parent replacement is used. The number was
set to be twenty.
Our evaluation is to obtain a predictive gene subset, highly related to the cancer type and low related

to other genes in the predictive gene subset. The proposed GA minimizes the objective p · |ρ(X,Y )| +

|ρ′(X,C)|−1, in which p is the inter-correlation weight factor, ρ(x, y) means the correlation value be-
tween genes x and y, and ρ′(x,C) is the correlation value between gene x and the cancer-type, which is
explained in [3] and given in Figure 1. Inter-correlation weight factor p is used in the fitness evaluation.
If p is zero, we just finds a gene subset highly related to the cancer-type. When p is larger than zero,
we prefer a gene subset low related to other genes in the subset. It has an effect of making the selected
genes be uniformly distributed in the gene space. In the case that p is less than zero, a gene subset closely
related to other genes in the subset has high fitness. It makes the selected genes be clustered in the gene
space.

4. Experimental results

Let k be the number of predictive genes to select. The predictive gene subset identified by Golub et al.
[3] makes up of the k/2 genes that are the most closely related to the cancer-type AML and the k/2 genes
that are the most closely related to the cancer-type ALL. In other words, at correlation ρ′ in Figure 1,
the topmost k/2 genes and bottommost k/2 ones are selected. “Greedy” selects the topmost k genes at
the absolute value of ρ′. “Random” randomly selects k genes among a given candidate gene set. “GA”
optimally selects k genes among a given candidate gene set using the proposed genetic filter.
It is important to correctly classify as many samples as possible. It is much more crucial to lower

misclassified (error) samples [3], rather than to lower undecided samples, To validate a predictive gene
subset, we conducted experiments with two validation procedures. We go with the validation procedure
of [3]. It proceeds the following two steps. (i) First, the accuracy is validated by leave-one-out-cross-
validation (LOOCV) on the training set. We withhold a sample in the training set, build a predictor
using the remaining training samples, and predict the cancer type of the withheld sample. This process is
performed for each training sample, and we get the cumulative error. (ii) Then we build a final predictor
using all the training samples, and then evaluate its accuracy on the test samples.
The prediction is also repeated for many different bootstrap samples. Bootstrapping introduced by

Efron [27,28] is to estimate the generalization of a predictor based on re-sampling. We draw the (n− v)
samples without repetition for dataset. in which n and v mean the numbers of samples in the universe and
test datasets, respectively. The training and test sets are disjoint for each bootstrap sample. The predictor
is trained on training samples and its accuracy is obtained from the prediction on test samples. Following
a given size of divided samples, we set n and v to be 72 and 34, respectively.
The average sizes of candidate gene sets restricted with correlation ρ′ are given in Table 1. Tables 2-4

show the experimental results with 50, 20, and 100 as the number of genes to select, respectively. Note
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Table 1
Number of genes with constraints w.r.t. correlation ρ′.

#genes
|ρ′| Ave Min Max
Not restricted (i.e., all genes) 6817 6817 6817
Larger than 0.1 5158.35 4584 5739
Larger than 0.3 2105.42 1440 3173
Larger than 0.5 663.94 358 1378
Larger than 0.7 177.85 70 474
Larger than 0.8 91.50 32 255

Table 2
Results with 50 selected genes, averaged over 1,000 bootstrap samples.

Training data Test data
Undecided Error Undecided Error

Method Ave(SD) Ave(SD) Ave(SD) Ave(SD)
Random (all genes) 17.52(3.69) 1.64(1.25) 15.32(3.47) 1.59(1.62)
Random (|ρ′| > 0.1) 15.32(3.94) 1.23(1.17) 15.16(3.61) 1.49(1.64)
Random (|ρ′| > 0.3) 8.64(2.24) 0.52(0.70) 11.88(3.12) 1.20(1.48)
Random (|ρ′| > 0.5) 4.33(1.83) 0.25(0.45) 8.22(2.89) 0.73(1.15)
Random (|ρ′| > 0.7) 2.26(1.31) 0.14(0.35) 5.01(2.60) 0.51(0.84)
Golub et al. [3] 1.82(1.08) 0.05(0.21) 2.95(1.56) 0.47(0.59)
Greedy 1.84(1.12) 0.12(0.32) 3.19(1.69) 0.64(0.76)
GA (all genes) 1.60(1.11) 0.03(0.17) 4.41(2.21) 0.44(0.62)
GA (|ρ′| > 0.1) 1.49(1.09) 0.01(0.12) 4.43(2.05) 0.39(0.59)
GA (|ρ′| > 0.3) 1.16(0.96) 0.00(0.03) 3.95(2.02) 0.39(0.56)
GA (|ρ′| > 0.5) 0.98(0.87) 0.00(0.00) 3.81(1.96) 0.35(0.54)
GA (|ρ′| > 0.7) 1.13(0.93) 0.00(0.00) 3.71(1.96) 0.31(0.52)

Note: the numbers of training and test samples are 38 and 34, respectively.
Inter-correlation weight factor p = 2 in GAs.

that previous work [3,16] used only one number, 50, as the size of gene subset. The results are averaged
over 1,000 bootstrap samples. The more candidate genes were considered (i.e., lower |ρ′|), the more
errors were obtained. The correlation ρ′ is shown to be suitable for assessing the predictivity of genes.
But, Greedy that selects genes only with the topmost |ρ′| dominated by Golub et al. [3] and GA. It hints
that an additional measure is necessary for finding a more predictive gene subset. In the case of GA also
considering inter-correlation as a lowering factor, it performed the best. GA had the best accuracy on
training set, and it showed nearly zero error in LOOCV on the set. Undecided samples in test set were
less in Greedy and Golub et al. [3] than in GA. However GA reported the lowest misclassified (error)
rate on test set.
We used inter-correlation weight factor p = 2 as our default setting. This weight factor largely affected

the performance as shown in Figures 2 and 3, where the number of selected genes is 50. Larger positive
factors led to lower errors but much more undecided samples in test data. In the case of negative inter-
correlation weight factor (p < 0) which selects a subset of genes closely related to other genes in the
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(b) Test data

Fig. 2. Results of GA (|ρ′| > 0.7) according to inter-correlation weight factor p.

Table 3
Results with 20 selected genes, averaged over 1,000 bootstrap samples.

Training data Test data
Undecided Error Undecided Error

Method Ave(SD) Ave(SD) Ave(SD) Ave(SD)
Random (all genes) 18.54(4.15) 5.60(1.92) 15.63(3.86) 4.27(2.31)
Random (|ρ′| > 0.1) 14.26(3.72) 2.50(1.67) 14.06(3.63) 2.95(2.14)
Random (|ρ′| > 0.3) 9.55(2.73) 1.02(1.04) 11.50(3.19) 2.09(1.91)
Random (|ρ′| > 0.5) 5.39(2.04) 0.46(0.67) 8.71(2.92) 1.21(1.48)
Random (|ρ′| > 0.7) 2.90(1.51) 0.24(0.47) 5.68(2.66) 0.83(1.09)
Random (|ρ′| > 0.8) 2.37(1.31) 0.22(0.44) 4.33(2.28) 0.75(0.93)
Golub et al. [3] 1.96(1.15) 0.09(0.29) 2.84(1.50) 0.62(0.65)
Greedy 1.93(1.18) 0.19(0.40) 2.92(1.60) 0.92(0.94)
GA (all genes) 1.75(1.23) 0.04(0.18) 5.15(2.34) 0.56(0.80)
GA (|ρ′| > 0.1) 1.64(1.15) 0.02(0.14) 4.33(2.10) 0.57(0.70)
GA (|ρ′| > 0.3) 1.33(1.07) 0.01(0.11) 4.06(2.08) 0.63(0.76)
GA (|ρ′| > 0.5) 1.23(1.04) 0.00(0.04) 4.19(2.14) 0.56(0.71)
GA (|ρ′| > 0.7) 1.12(0.97) 0.00(0.05) 4.23(2.08) 0.55(0.67)
GA (|ρ′| > 0.8) 1.26(1.01) 0.00(0.05) 3.95(1.96) 0.53(0.66)

Note: the numbers of training and test samples are 38 and 34, respectively.
Inter-correlation weight factor p = 2 in GAs.

subset, because identified genes are highly biased, its error was much higher than that of positive inter-
correlation weight factor (p > 0).
We also examined the performance according to the number of predictive genes to select. Figure 4

shows the results for the four methods: Golub et al. [3], Greedy, Random, and GA. The number varies
from 10 to 300. In this experiment, Random and GA considered the candidate gene set with |ρ′| > 0.5.
When the number is less than 50, more genes showed better performance in test data. But when the
number is greater than 100, larger number led to slightly lower errors but much more undecided samples
in test data.
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(c-1) Train (|ρ′| > 0.3)
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(d-1) Train (|ρ′| > 0.5)
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Fig. 3. Results of GAs according to inter-correlation weight factor p.
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Table 4
Results with 100 selected genes, averaged over 1,000 bootstrap samples.

Training data Test data
Undecided Error Undecided Error

Method Ave(SD) Ave(SD) Ave(SD) Ave(SD)
Random (all genes) 16.28(3.74) 0.92(0.94) 15.04(3.23) 0.95(1.31)
Random (|ρ′| > 0.1) 15.05(3.60) 0.85(0.91) 15.57(3.51) 1.08(1.40)
Random (|ρ′| > 0.3) 8.34(2.21) 0.41(0.61) 12.03(3.14) 0.89(1.38)
Random (|ρ′| > 0.5) 3.82(1.78) 0.20(0.41) 8.16(2.88) 0.57(1.04)
Golub et al. [3] 1.68(1.02) 0.04(0.21) 3.39(1.85) 0.31(0.50)
Greedy 1.76(1.06) 0.09(0.29) 3.78(2.02) 0.43(0.65)
GA (all genes) 2.19(1.29) 0.09(0.29) 5.85(2.45) 0.41(0.61)
GA (|ρ′| > 0.1) 1.84(1.14) 0.04(0.21) 5.46(2.28) 0.31(0.53)
GA (|ρ′| > 0.3) 1.35(0.94) 0.01(0.07) 4.56(2.05) 0.27(0.49)
GA (|ρ′| > 0.5) 1.09(0.93) 0.00(0.00) 4.12(2.04) 0.23(0.47)

Note: the numbers of training and test samples are 38 and 34, respectively.
Inter-correlation weight factor p = 2 in GAs.
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Fig. 4. Results of four methods according to the number of selected genes.
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5. Concluding remarks

Microarray data make up of many gene expression data and relatively small samples. As we include
more genes, misclassification can increase. It means that all gene expression data are not related to the
difference between the two cancer types: ALL and AML. Thus it is necessary to identify predictive
genes. The proposed genetic filter identified a subset of predictive genes and bettered prediction quality
over previous prediction models. Although the proposed genetic filter performed well, there is room
for further improvement. Clustering techniques, e.g., K-means, DBScan, or Herd Clustering [29], may
remove the redundancy of gene expression data before the proposed genetic filter is applied. We will
leave this for future work.
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