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Abstract. The false-positive reduction (FPR) is a crucial step in the computer aided detection system for the breast. The 
issues of imbalanced data distribution and the limitation of labeled samples complicate the classification procedure. To 
overcome these challenges, we propose oversampling and semi-supervised learning methods based on the restricted 
Boltzmann machines (RBMs) to solve the classification of imbalanced data with a few labeled samples. To evaluate the 
proposed method, we conducted a comprehensive performance study and compared its results with the commonly used 
techniques. Experiments on benchmark dataset of DDSM demonstrate the effectiveness of the RBMs based oversampling 
and semi-supervised learning method in terms of geometric mean (G-mean) for false positive reduction in Breast CAD. 
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1. Introduction 

Breast cancer has become one of the major public health issues of women in developed countries 
and an early detection of masses is important for early-stage breast cancer diagnosis [1]. Classification 
of masses from mammograms is a critical step in computer aided detection and diagnosis for breast 
cancer. 

Computer aided detection (CAD) can provide the initial mass detection which may help an expert 
radiologists in their decision-making. A CAD scheme for mass detection in mammography can be 
broadly divided into two major stages: (1) suspicious candidate masses are detected and then (2) the 
false positive masses (FPs) are reduced while retaining the true positives (TPs). Furthermore, there are 
two key challenges to be solved in the false-positive reduction step. 

1) Imbalanced data distribution between TPs and FPs  
For finding the suspicious mass, the initial detection of the CAD requires high sensitivity, so it 

produces a number of false positives. The false-positive reduction (FPR) step is a critical part in the 
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breast mass detection system [2-4]. The major issues in the FPR are that the two classes are skewed 
and have unequal misclassification costs. Typically, the positive class carries a higher cost of 
misclassification, making the common classification methods inappropriate. This is a typical “class 
imbalance problem” [5]. Class imbalanced data has detrimental effects on the performance of 
conventional classifiers. However, in the potential mass classification, this problem has attracted less 
attention.  

2) Limitation of labeled candidate instances  
In order to make the CAD systems perform well, a large number of instances labeled are required 

for constructing classifier model. However, the size of the labelled instances are usually insufficient 
since that the task of making label for each instances is time-consuming [6]. An effective strategy is 
required to develop a model from limited knowledge on a large amount of unlabeled instances to 
enhance the performance of the learned model. 

To address the above-mentioned challenges, we designed two methods based on the RBMs to 
reduce the number of false positives in Breast CAD, named OSRBM and SSRBM respectively. The 
OSRBM algorithm models the actual data distributions and generates new instances based on the 
learned probability for imbalanced data learning. After balancing the distribution, the SSRBM 
algorithm uses the unlabeled instances to improve the performance of the hypothesis trained from the 
labeled instances. 

2. RBMs based probabilistic over-sampling algorithm, OSRBM 

The imbalanced data issue usually occurs in computer-aided detection systems since the healthy 
class (negative class) is more predominant in comparison to the diseased class (positive class), 
including other CAD, such as lung [7] and colon [8]. This imbalanced data has detrimental effects on 
the performance of conventional classifiers. Typically, the classifiers attempt to reduce global error 
without taking the data distribution into consideration. As a consequence, all instances are 
misclassified as negative for high classification accuracy. 

The over-sampling method is the most straightforward method for solving the issue of imbalanced 
data learning. The most popular over-sampling method is called SMOTE, which creates synthetic 
samples between each minority instance and one of its neighbors [9]. SMOTE generates synthetic 
instances throughout the line segments by joining all of the k minority class nearest neighbors of each 
minority class instance. SMOTE can also address the between-class imbalance issue. Furthermore, 
SMOTE can increase the amount and significance of the minority class in the critical region for 
decision and predication. In order to generate more appropriate instances, several SMOTE based 
methods are combined with the ensemble framework are proposed, such as SMOTEBoost [10] and 
RAMOBoost algorithm [11]. However, the SMOTE based algorithm manipulates the instances blindly 
without considering the data distribution on the whole feature space, resulting in creation of wrong 
instances under the complex distribution. Moreover, to generate more accurate instances and 
generalize the decision region for the mass class, probabilistic oversampling can be used by estimated 
probability distributions that model the actual data distributions from the training data. By this 
approach, we can avoid the possibility of the synthetically generated training samples actually 
belonging to any other class in case of class overlapping [12]. However, the prior distribution is 
unknown for the mass class. Therefore, here we propose a RBMs based generative probabilistic 
oversampling method to generate samples without requiring the prior probability function.  

The Restricted Boltzmann Machines (RBMs) have attracted considerable interest in machine 
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learning as they have a strong representation ability in learning useful features from input data in 
recent years [13]. The RBMs are two-layer generative probabilistic models that can atomically learn 
and model a probability distribution from the training data. RBMs consist of a set of hidden units h in 
the second layer, a set of observation units’ v in the input layer, and symmetric connections (weight 
matrix W) between the two. The parameterized RBMs can also model the joint probability 
distributions over visible and hidden vectors through an energy function. Here, we propose a novel 
oversampling based RBMs model, called OSRBM. The procedure of the OSRBM is performed 
according to the distribution probability without jeopardizing structure of data. OSRBM works as 
follows: 

Step 1: Learning the probability distribution 
The generative RBMs can be constructed on the training samples by adjusting the RBMs parameters. 

Therefore the model fits a finite number of training data and estimates the distribution of the 
underlying probability distribution from an unknown target distribution.  

Step 2: Generating the initial samples by SMOTE 
We use SMOTE to increase the amount of the minority class at first, this enhances the significance 

of the minority class in the decision region. The new data generated by the oversampling technique is 
used as the initial sample of Gibbs sampling. This helps in achieving a faster convergence of the 
generated samples with the minority class distribution.  

Step 3: Generating new instances with Gibbs sampling  
After successful learning, Gibbs sampling is used for generating data from the joint probability of 

multiple random variables. During the Gibbs sampling, a Markov chain is constructed by updating 
each variable based on its conditional probability distribution. This Gibbs sampling produces multiple 
Markov chains, each starting with a different minority class sample, instead of one very long chain as 
done in conventional Gibbs sampling. The univariate conditional distribution of each dimension is 
represented by P(Xi|x1

(t+1),…, xi-1
(t+1) ,…, xi-1

(t+1) ,xn
(t+1)) and is used to choose attribute values that form 

a synthetically generated sample, and is further repeated for all the elements. 
The procedure of Gibbs sampling depends on Burn-in and Lag. Burn-in is the number of sample 

generation iterations that are required for the samples to reach a stationary distribution. Lag is the 
number of consecutive samples that are discarded from the Markov chain following each accepted 
sample to avoid autocorrelation between the consecutive samples. This algorithm is described in 
Algorithm 1, and the procedure described above can be visualized in Figure 1. 

3. RBMs based semi-supervised classification algorithm, SSRBM 

Algorithm 1 OSRBM algorithm 
Input: S: minority class Training set; T: Number of iterations; N:minority 

dimensions; bi: burn-in period; D: size of minority ; lag 
Output: new_samples 
Construct RBMs model learnt from S 
for d=1 to D do 
      X(0)=SMOTE(Xd) 
      for t=1 to T do 
            for i=1 to N do 
             xi

(t+1)~P(Xi| x1
(t+1) ,… ,xi-1

(t+1), xi+1
(t),…, xn

(t),) 
       if  t>bi and t mod(lag)=0 
      new_samples= new_samples+X(t) 

P. Cao et al. / Restricted Boltzmann machines based oversampling and semi-supervised learning S1543

http://en.wikipedia.org/wiki/Generative_model


 
Fig. 1. The procedure of OSRBM algorithm. 

 
In the medical domain, it is difficult to obtain a large amount of instances labeled by radiologist, but 

there are abundant unlabeled instances. In supervised learning, sophisticated classifiers require 
sufficient training of labeled data. When the labeled data is not enough, the unlabeled data is exploited 
and combined with the labeled data by semi-supervised learning methods. This improves the 
performance of classifier model. 

We propose a hybrid of supervised and unsupervised training method based on RBMs. Both the 
labeled instances and unlabeled instances are used for the training. The RBMs framework is originally 
a good generative model of the unlabeled data. In order to perform semi-supervised learning, we can 
combine a generative objective function (Lunlabel) with a discriminative objective function (Llabel). 
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In the objective function, Llabel is used to optimize the posterior probability p(y|x) directly, and 
Lunlabel is used to optimize p(x) on the unlabeled data. To optimize this overall objective function, a 
contrastive divergence approximation is used: 
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Where �  are parameters of RBMs. These two terms denote the expectations under the distribution 
specified by P(y,h|x) and P(y,x,h), respectively. 

4. Experiment 

4.1. Potential mass candidates detection 

The suspicious regions in the mammograms used for evaluating the proposed FPR algorithms are 
from the Digital Database for Screening Mammography (DDSM). As the masses of cancers grow 
from the center to surround they have a high concentration value of the gradient vector. Therefore, we 
use iris filter to detect the potential mass. Iris filter is a filter which can adaptively obtain the 
concentration of gradient vectors [14]. The threshold value in our experiment was calculated 
adaptively for each mammogram. This threshold value is estimated as the gray level value at the 95% 
of the cumulative distributive function. Potential masses can be detected and segmented from the 
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background using a threshold value in the enhanced image processed by iris filter. Using these 
parameters, 1792 ROIs (Region of Interest) were recognized and extracted from the DDSM database 
where each true mass region is indicated and delineated by physicians. In each mammogram image, 
false positive class besides the true one labels the other ROIs. In total, 158 were depicted as a true 
mass, while the rest 742 were normal (false positive candidates). The imbalanced data distribution 
occurs as the iris filter has a limited capacity of differentiating masses from normal breast tissues. 
Each ROIs were scaled to 80 pixels by 80 pixels size. 

4.2. Evaluating the SSRBM for few labeled mass candidates 

The experiment was designed to evaluate the effectiveness of SSRBM algorithm. We empirically 
assessed SSRBM learning against the state-of-the art methods for semi-supervised learning, such as 
self-training, co-training and co-forest. In order to simulate different amount of unlabeled data, four 
different unlabeled rates (20%, 40%, 60% and 80%) are studied in our experiments. Moreover, we 
also employ hidden unit activations in order to minimize the dimensionality of output. 

For each data set with each unlabeled rate, the results were averaged by 10-fold cross validation. All 
the semi-supervised learning methods are combined with the OSRBM algorithm for equal comparison. 
The over-sampling ratio is set to 200%. For the other three comparative methods, five types of 
features (a total of 20 features) are extracted for each ROI: iris filter descriptors, gray level descriptors, 
texture descriptors, contour-related descriptors, and morphological descriptors [15].  

The metric for representing the performance of each classifier is chosen by the geometric mean (G-
mean). This was done as the overall accuracy is not an appropriate metric for evaluating imbalanced 
data. Moreover, raising the sensitivity inevitably decreases the specificity; and therefore we need to 
consider the overall performance. G-mean is the geometric mean of specificity and sensitivity, which 
is commonly utilized for evaluating or optimizing for imbalanced data [2]. G-mean is defined as G-
mean=(Sensitivity*Specificity)1/2. 

These experimental results show that each semi-supervised learning method can improve the 
performance of the hypothesis learned on a small amount of labeled ROI instances by exploiting the 
large amount of unlabeled instances. Besides the G-mean, the ROC curves of different semi-
supervised learning methods are shown in Figure 2. This helps to visualize the performance over all 
instances with 20% unleaded rate. From the study of Table 1 and Figure 2, it is apparent that SSRBM 
achieved a higher G-mean and AUC value compared to the other contender methods. As we know, the 
representation of ROI is critical for discrimination between true masses and false masses. However, it 
is difficult to obtain good feature representations by human efforts. These results also demonstrate that 
the feature learned by RBMs is good feature representation of mass ROI. 

 

 
Fig. 2. The true positive rate/false positive rate (ROC) curves on the dataset. 
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Table 1 

Experimental results of semi-supervised learning methods for candidate mass classification under different unlabeled rates 

 
Unlabeled rate 

 
Metric 

Supervised 
Learning 

Semi-supervised Learning 

RBM SSRBM Self-Training Co-Training Co-Forest 
 
80% 

AUC 0.773 0.824 0.817 0.811 0.817 
G-mean 0.722 0.781 0.752 0.738 0.772 
(Sen, Spec) (0.708, 0.736) (0.734,0.831) (0.781,0.724) (0.763,0.714) (0.752,0.793) 

 
60% 

AUC 0.825 0.846 0.835 0.829 0.840 
G-mean 0.739 0.804 0.778 0.756 0.809 
(Sen, Spec) (0.745, 0.733) (0.767,0.843) (0.802,0.755) (0.774,0.738) (0.762,0.858) 

 
40% 

AUC 0.824 0.877 0.856 0.844 0.877 
G-mean 0.748 0.823 0.789 0.762 0.817 
(Sen, Spec) (0.749, 0.748) (0.799,0.848) (0.814,0.764) (0.807,0.719) (0.793,0.841) 

 
20% 

AUC 0.840 0.889 0.872 0.866 0.879 
G-mean 0.762 0.851 0.813 0.782 0.821 
(Sen, Spec) (0.779,0.745) (0.822,0.881) (0.845,0.782) (0.833,0.734) (0.829,0.813) 

4.3. Evaluating the OSRBM for imbalanced mass candidate data 

As is previously known, the optimal over-sampling ratio may be unknown but the parameter of 
over-sampling ratio plays a vital role in the performance of imbalanced data learning. Many over-
sampling methods, over-sample the minority class into a completely balanced training set in the 
literature. However it is not an appropriate method of comparison. It is desirable for an over-sampling 
method to be robust with respect to the different over-sampling ratio. We empirically evaluate the 
OSRBM algorithm against three other over-sampling algorithms including SMOTE, SMOTEBoost 
and RAMOBoost.  

The 10-fold cross validation method is employed for comparison of the different sampling methods. 
In each fold, only the L is used to estimate the distribution and generate new samples. The unlabeled 
rate is 40%. We show that OSRBM performs empirically better than SMOTE, SMOTEBoost and 
RAMOBoost sampling with respect to G-mean based on the SSRSM learning. From the Figure 3, we 
see that OSRBM performs well compared to other common over-sampling methods with different 
over-sampling ratio. OSRBM can be extended to more potential regions rather than being limited to 
the line between the positive instance and it is selected nearest neighbors. Moreover, this result 
demonstrates that OSRBM is more robust to over-sampling ratio compared to the performance of 
other resampling methods. 

 

 
Fig. 3. The performance of four comparative methods while tuning over-sampling ratio in terms of G-mean. 
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5. Conclusion 

This paper proposes two new RBMs based approaches to deal with the issue of constructing a 
classification model from imbalanced data with only few labeled positive examples. This probabilistic 
oversampling strategy based on the RBMs can generate more accurate instances than the state-of-the 
art sampling methods. Moreover, the hybrid of supervised and unsupervised training method based on 
RBMs outperforms the other reported methods. The methods proposed in this paper can be applied 
and evaluated on other potential lesion detection or diagnosis, such as nodule and polyp. In the future, 
we will extend our methods to the classification of the multi-class semi-supervised imbalanced data.  
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