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Abstract. A brain-computer interface (BCI) enables people suffering from affective neurological diseases to communicate 
with the external world. Common spatial pattern (CSP) is an effective algorithm for feature extraction in motor imagery 
based BCI systems. However, many studies have proved that the performance of CSP depends heavily on the frequency band 
of EEG signals used for the construction of covariance matrices. The use of different frequency bands to extract signal 
features may lead to different classification performances, which are determined by the discriminative and complementary 
information they contain. In this study, the broad frequency band (8-30 Hz) is divided into 10 sub-bands of band width 4 Hz 
and overlapping 2 Hz. Binary particle swarm optimization (BPSO) is used to find the best sub-band set to improve the 
performance of CSP and subsequent classification. Experimental results demonstrate that the proposed method achieved an 
average improvement of 6.91% in cross-validation accuracy when compared to broad band CSP. 

Keywords: Brain-computer interface, motor imagery, common spatial pattern, binary particle swarm optimization, frequency 
band selection 

1. Introduction 

Motor imagery (MI) is an important paradigm for the building of a brain-computer interface (BCI) 
[1]. When a subject conducts motor imagery, the power of EEG signals in specific areas of the brain 
decreases, a phenomenon called event related desynchronization (ERD). At the conclusion of motor 
imagery, the power of EEG signals in the same area of the brain increases, called event related 
synchronization (ERS) [2]. ERD and ERS are two physiological phenomena that are closely related to 
two sensory motor rhythms, i.e. mu and beta rhythms, which can be detected by relevant signal 
processing algorithms. It is widely believed that mu and beta rhythms are good signal features for MI 
based communication. Generally, mu and beta rhythms are located in the frequency ranges of 8-12 Hz 
and 18-25 Hz, respectively, but those frequency bands can vary across subjects and with varying 
mental states of the subjects [3, 4]. 

Common spatial pattern (CSP) has been reported as an effective and highly successful algorithm for 
the devising of spatial filters in ERD/ERS detection [5]. While CSP may perform well in extraction of  
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Fig. 1. Flow chart of frequency band selection based on BPSO. 

 
spatial features, its performance is limited by the filtering of signals in the time domain. Classification 
of the CSP features generally yields poor accuracy when the EEG measurements are unfiltered or 
filtered with an inappropriate frequency range [6]. Hence, setting a broad frequency band (8-30 Hz) or 
manually selecting a subject-specific frequency band is common practice when using the CSP 
algorithm [7] because a broad band incorporates both mu and beta rhythms. 

Although it is convenient to filter the EEG signals with a broad band (i.e. 8-30 Hz) filter, the EEG 
signals outside the mu and beta bands are useless for motor imagery recognition. Thus, the inclusion 
of extraneous signals degrades classification performance. Furthermore, the frequency ranges of mu 
and beta rhythms vary among subjects due to their individual distinctions in physiology, anatomy and 
brain state. Traditionally, an exhaustive search is performed with manual adjustments made for each 
subject [8], but the practice is highly time-consuming. Therefore, it is necessary to find a general 
purpose method that is capable of selecting the most responsive frequency bands for specific subjects 
in order to improve classification performance. 

2. BPSO based CSP 

To accurately locate the responsive frequency band of each subject to motor imagery tasks, the 
8-30Hz broad band is divided into 10 sub-bands with widths of 4 Hz, and overlapping by 2 Hz. The 
frequency band selection method consists of four parts: sub-band filtering, sub-band selection with 
BPSO algorithm, spatial filtering and feature extraction in each sub-band based on CSP algorithm, and 
classification of the feature signals by a linear discriminant analysis (LDA) classifier [9]. In each 
sub-band, the classification accuracy of 5×10-fold cross-validation is used as the measure of fitness of 
the BPSO algorithm, which serves as the evaluation criterion of the frequency band selection. Figure 1 
illustrates the flow chart of frequency band selection based on BPSO. 

2.1. Temporal filtering 

Before using the CSP algorithm for feature extraction, the band-pass filtering of the original EEG 
signals is integral; the performance of CSP depends largely on the frequency band responsive to the 
mental tasks of motor imagery. Conventionally, the original EEG signals are filtered in the broad 
frequency band 8-30 Hz because it encompasses both the mu and beta rhythms. However, this is a 
simple and rough method for data preprocessing, which does not suit every subject in order to achieve 
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accurate information extraction. Considering that different people have different active frequency 
bands with different resolutions, we divided the broad band into 10 sub-bands of width 4 Hz and 
overlapping by 2 Hz (i.e. 8 12Hz, 10 14Hz, , 26 30Hz− − −� ). Infinite impulse response (IIR) filters of 
Chebeshev Type I is used as the band-pass filters for frequency band partition. By applying BPSO 
based sub-band selection to each subject, we can more precisely determine the subject-specific 
responsive frequency band. The overlapping frequency band division was employed in order to 
improve adaptability of the algorithm and prevent the occurrence of an optimal frequency range which 
crosses the border of two sub-bands. 

2.2. Common spatial pattern (CSP) 

The common spatial pattern (CSP) algorithm is effective in discriminating between two classes of 
EEG data by maximizing the variance of one class while minimizing the variance of the other class [5]. 
The multichannel EEG evoked by two mental tasks, A and B, can be denoted as spatio-temporal signal 
matrices AX  and BX  with dimensions ( ) ( )N channels T samples× . Then, the normalized spatial 
covariance matrices of the EEG signals for these two tasks can be estimated by 

,
( ) ( )
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where superscript T denotes the transpose operator and ( )trace M  is the sum of diagonal elements of 
matrix M . The terms AX  and BX  are recorded for different mental tasks under the same 
conditions, and as such can be modeled by source components as follows: 
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where AS  and BS  represent the source components specific to tasks A and B, respectively; AC  and 

BC  represent their corresponding spatial patterns, respectively; and CS  and CC  are the source 
component and its corresponding spatial pattern related to the common condition, respectively. 

The purpose of the CSP algorithm is to design two spatial filters so that the source components AS  
and BS  can be extracted by the following formula: 

 
A A A B B B,= =S F X S F X               (3) 

 
where AF  and BF  are the respective spatial filters corresponding to tasks A and B. AS  and BS  
contain important information for discrimination between the two tasks. CSP is based on the 
simultaneous diagonalization of the two spatial covariance matrices AX  and BX . Principal 
component analysis (PCA) [10] and spatial subspace analysis are applied to these two diagonalized 
covariance matrices using training data to estimate the two spatial filters. The two spatial filters are 
optimal in that they extract task-related components and eliminate common components. Concrete 
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calculation steps and a detailed description of the CSP algorithm can be found in previous research 
[5]. 

2.3. Binary particle swarm optimization (BPSO) 

Particle swarm optimization (PSO) is a population based search algorithm simulated from the social 
behavior of birds within a flock [11]. PSO is an evolutionary optimization algorithm that has been 
applied in many scientific and engineering fields in recent years [12, 13]. PSO is initialized with a 
group of particles placed randomly on the search space, and seeks an optimal solution by updating 
particle generations. For every generation, each particle’s velocity and position are updated according 
to its previous best position and the best position of all particles. This evolutional process can be 
described by Eq. (4). 

1 1 1
1 1 2 2( ) ( ),+ + += ⋅ + ⋅ ⋅ − + ⋅ ⋅ − = +n n n n n n n n n

i i i i g i i i iv w v c r p x c r p x x x v         (4) 

where n
ix , n

iv , and n
ip  represent the position, velocity, and previous best position of the thi  

particle in the thn generation; n
gp  denotes the best position of all particles in the thn  generation; 

w  presents the inertia weight; 1c  and 2c  represent cognitive and social components, respectively, 
and control the distance that a particle will travel in a single trial; 1r  and 2r  are random numbers 
uniformly distributed between 0 and 1. 

Binary particle swarm optimization (BPSO) is a discrete binary version of PSO [14]. Velocity is 
updated in the same way as in PSO; the difference between PSO and BPSO is that in BPSO, each 
component of one particle adopts a binary value of “0” or “1”, and the update rule for components is 
adjusted according to the Eq. (5).        
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where 1n
idx +  and 1n

idv +  represent the dth component of 1n
ix +  and 1n

iv + , respectively; ϕ  denotes 
random numbers uniformly distributed between 0 and 1; and ( )s v  is a sigmoid limiting 
transformation. 

2.4. BPSO-CSP algorithm for frequency band selection 

In this study, CSP and BPSO are used in combination to select the best frequency band, because of 
their high performances in feature extraction of EEG signals and evolutional searching, respectively. 
In the BPSO-CSP algorithm, each particle consists of 10 components, each corresponding to one 
sub-band of the broad frequency band. Thereby, each particle represents a combination of selected 
sub-bands and thus is a potential solution to the frequency band selection. Depending on the number 
of binary values of “1” at 10 components, one or several sub-bands may be selected by each particle. 
The covariance matrices of filtered EEG data are first calculated in each chosen sub-band, and 
summed. Then, the CSP algorithm is applied to the summed covariance matrix in order to extract 
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spatial features. Finally, LDA classifier is used to classify the extracted features. The processing 
procedure of the BPSO-CSP algorithm for optimal frequency band selection is summarized as follows: 
� Initialization: Each particle is initialized as a 10-dimensional vector. Each component of the 

vector corresponds to a frequency sub-band and is composed of binary number “0” or “1”. A 
“1” represents a selected sub-band, while “0” represents a rejected sub-band. 

� Computing Fitness: Features are extracted by CSP algorithm and classified by LDA based on 
the combination of the chosen frequency sub-bands. The classification accuracy of 10×5-fold 
cross-validation is defined as the fitness value of each particle. 

� Updating: After the nth iteration, n
ip  will be updated if the fitness of n

ix  is the greatest 

value achieved (representing best fitness), and n
gp  will be updated if the highest fitness of all 

the particles is the greatest value achieved. The velocity n
iv  and position n

ix  of each particle 
will be adjusted according to Eqs. (4)-(6). 

� Mutating: In order for the BPSO algorithm to get out of local optimal points, a mutation 
operator is required.  The mutation rate will be reduced with increasing iteration number, 
defined as max1 /p mutation currentgen t− = − , where currentgen refers to the current iteration 
number and maxt  denotes the maximal iteration number. If _m random p - mutation< , the 
mutation is applied to each particle, which is selected randomly as follows: 

 ( ) (1 _ ) ( ) ( )θ μ= ⋅ ⋅ − ⋅ +Pop i m random v i Pop i               (6) 

where _ (0,1)m random random= , and 1θ = ±  represents a particle’s direction after 
mutation as consistent with or opposite to the original direction. The variable μ  represents 
for the changing range of velocity; 3μ =  in this study. 

� Results: Repeat the above step Updating until the number of iterations exceeds a predefined 
number, maxt . Finally, the particle’s best position maxt

gp  is obtained, and thus the combination 
of optimal frequency sub-bands is determined. 

3. Experiment and discussion 

3.1. Data recording and pre-processing 

The data set used in the study is the publicly available IVa of BCI Competition III [15]. It was 
recorded from five subjects (i.e. aa, al, av, aw, and ay) during either right foot or hand movement 
imagination. EEG signals were collected from 118 electrodes on the scalp. Each subject performed a 
total of 280 trials with the same number of trials for each motor imagery task. From a visual cue, test 
subjects were required to carry out the given motor imagery task for 3.5 seconds. Prior to temporal 
filtering, the continuous experimental data were intercepted into single-trial data, and common average 
reference (CAR) was adopted to re-reference them. 

In the motor imagery based BCI experiment, as many as 118 electrode channels were used to record 
experimental data, resulting in a large computational load for the CSP algorithm. To address this  
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Fig. 2. Placement of the 118 EEG electrodes and selection of two channel subsets: one subset includes the 25 channels inside 
the rectangular box, whereas the second contains the 14 channels inside the two ellipses around electrodes C3 and C4. 
 
disadvantage, we manually selected two channel subsets from the 118 channels, which are important 
for the neurophysiological discrimination between two mental tasks. As shown in Figure 2, the first 
channel subset includes the 25 channels in the rectangular box, while the second channel subset 
contains the 14 channels inside the two ellipses around electrodes C3 and C4. 

3.2. Cross-validated classification 

To assess the performance of frequency band optimization, two methods were used to extract 
classification features: a) original CSP was applied to the broad band 8-30 Hz; b) BPSO-CSP was 
applied to the 10 sub-bands. The feature vectors were classified by LDA, adopted because there is no 
regulation parameter to adjust. Three classification experiments were conducted to test the proposed 
algorithm. We respectively used the entire 118 channels, the selected 25 channels and 14 channels to 
discriminate between the two mental tasks. Both original CSP and BPSO-CSP were applied to the two 
channel subsets. Only CSP was applied to the entire 118 channels because the computation load of the 
BPSO-CSP algorithm is so large that the operation for optimal frequency band searching of a single 
subject was not concluded in several days. 

The parameters of BPSO were set as follows: swarm size pnum=40; initial velocities are random 
numbers between -6 and 6; acceleration constants are c1,c2=random(1.5,2.0); inertia weight 
w=random(0.5,1.5); and iteration number tmax=50. 

The classification results of 10×5-fold cross-validation, achieved by the two methods with three 
different channel sets (25 channels, 14 channels and all 118 channels) are shown in Table 1. From the 
table, we observe that for all the subjects except “ay”, the classification accuracies of the BPSO-CSP 
method are higher than those of CSP alone, for all channel sets. The classification accuracies of the 
sub-band BPSO-CSP with 25 channels are greater than the broad band CSP performed on all 118 
channels for the first four subjects. The average classification accuracy of sub-band BPSO-CSP is 
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6.91% and 3.98% higher than those determined by broad band CSP using 25 and 14 channels, 
respectively. This is a significant improvement for a two-class motor imagery based BCI. 

3.3. Frequency band selection 

The frequency sub-bands selected by BPSO-CSP with respect to 25 and 14 channels for the five 
subjects are displayed in Table 2. When using 25 channels, the proposed algorithm selected only one 
sub-band for each of the five subjects, whereas when using 14 channels, the proposed algorithm 
selected two sub-bands for the first two subjects “aa” and “al”. The chosen sub-bands, however, are 
irregular for these five subjects, though the majority lies in the frequency range of 8-16 Hz with the 
exception of subject “av”, for whom the chosen sub-band is 20-24 Hz. This indicates that frequency 
band optimization in motor imagery based classification is closely related to the selection of channel 
subsets. However, the proposed BPSO-CSP algorithm could determine the optimal sub-band(s) for the 
classification task regardless of channel subsets. 

3.4. Discussion 

To verify the performance of the proposed algorithm in choosing optimal sub-band(s) for the 
classification task, a power spectral density analysis (PSDA) of the two-class motor imagery EEG data 
was conducted. Figure 3 depicts the average power spectrum of the EEG data set over trials derived 
from 25 channels for the five subjects. Based on the 25-channel EEG data, the BPSO-CSP algorithm 
selected only one sub-band for each subject, as shown in Table 2, because the two mental tasks are 
more easily discriminated in a single sub-band than in multiple sub-bands. It can be concluded from 
Figure 3 that the best frequency band, in which the power difference of the two classes of EEG signals 
is largest, is basically consistent with the sub-band selected by BPSO-CSP. This proves that the 
proposed BPSO-CSP is effective in selecting the optimal frequency band for an EEG data set with 25  

 
Table 1 

Classification accuracies of 10×5-fold cross-validation achieved by two methods with three different channel sets: 25 
channels, 14 channels and all 118 channels 

Subject  Sub-band BPSO-CSP Wide band original CSP 
25 channels  14 channels 25 channels 14 channels  118 channels 

aa  89.57  88.64 75.64 81.46  79.57 
al 97.57 95.04 95.29 91.82 95.39 
av 77.32 74.11 68.21 69.11 76.43 
aw 93.75 85.32 83.89 80.07 88.89 
ay 94.25 92.39 94.86 93.14 95.39 
Mean 90.49 87.10 83.58 83.12 87.13 
 

Table 2 

Frequency sub-band(s) selected by BPSO-CSP for five subjects with 25 channels and 14 channels 

 25 channels 14 channels 
 aa al av aw ay aa al av aw ay 

 12-16Hz 10-14Hz 20-24Hz 10-14Hz 8-12Hz 8-12Hz
10-14Hz

8-12Hz
10-14Hz 20-24Hz 10-14Hz 8-12Hz

channels. 
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A power spectrum analysis of the EEG data set derived from 14 channels was also conducted. There 
is no significant difference between the power spectra of EEG data with 25 and 14 channels, with the 
exception of subject “ay.” Based on the 14-channel EEG data, the proposed BPSO-CSP algorithm 
determined two sub-bands for the first two subjects and one sub-band for the other three subjects, as 
shown in Table 2. For subjects “aa” and “al”, a combination of sub-bands 8-12 Hz and 10-14 Hz could 
improve classification accuracy, although the power difference between the two-class EEG signals is 
small in sub-band 8-12 Hz. It is puzzling that the results for subject “av” demonstrate a significant 
power difference between the two mental tasks in the two sub-bands 10-14 Hz and 20-24 Hz, but the 
proposed algorithm determined only one sub-band. The reason may be that the two sub-bands 
provided similar information for classification due to their harmonic relation, and their combination 
did not contribute to recognition of the two mental tasks. Therefore, a conclusion can be drawn that 
the proposed BPSO-CSP algorithm is successful for the selection of optimal sub-bands in EEG data 
with14 channels. 

It is well known that mu and beta rhythms are primarily found in the frequency range of 8-12 Hz 
and 18-26 Hz, respectively. However, this study reveals that the most responsive frequency bands in 
most subjects do not conform to these two rhythms, and the location of optimal frequency band varies 
from one subject to another. Thereby, it is necessary to develop an automatic method for optimal 
frequency band selection based on specific subjects, in order to improve classification performance in 
motor imagery based BCI systems. The classification results suggest that the proposed BPSO-CSP 
algorithm performed well in the selection of frequency bands. 

4. Future work 

In previous BCI research, the CSP algorithm was very successful in discriminating different classes 
of motor imagery. However, the correct selection of frequency bands is an important aspect affecting 

 

 
Fig. 3. Average power spectrum of the EEG data set with 25 channels for the five subjects. 
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the performance of CSP-based BCIs. In this paper, a BPSO-CSP frequency band selection method 
named is proposed which automatically and flexibly optimizes the frequency components before CSP 
is applied to the multi-channel EEG signals. Experimental results demonstrate that the proposed 
method achieved considerable improvement over CSP applied to a broad frequency band. 

However, when using the BPSO method to select the optimal frequency band, the proposed method 
will requires a longer time to reach convergence. In searching for the optimal frequency band the 
particles will update by iterations, consuming a large amount of time. For this reason, we did not 
employ the BPSO-CSP method to select the optimal frequency bands for the data set with all 118 
channels. This problem could be solved by improving the computer’s hardware configuration or 
employing a better evolutionary algorithm which could search more quickly. In spite of this, the 
BPSO-CSP is a promising method; the efficiency and efficacy of the algorithm should be further 
verified by conducting more experiments on a large number of subjects, as well as comparing it with 
other evolutionary optimization algorithms.   

This study also reveals that the selection of frequency bands depends largely on the selection of 
channels. In the study, we applied BPSO to two manually-chosen channel subsets based on 
physiological principle. This is not an accurate method for channel selection. Recent studies have 
shown that the informative features are located not only in a specific frequency band, but also in 
specific time segments and channel subsets. Future work analyzes the combined selection of channels, 
frequency bands and time segments using PSO optimization.  
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