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Abstract. With the aim of developing an accurate pathological brain detection system, we proposed a novel automatic 
computer-aided diagnosis (CAD) to detect pathological brains from normal brains obtained by magnetic resonance imaging 
(MRI) scanning. The problem still remained a challenge for technicians and clinicians, since MR imaging generated an 
exceptionally large information dataset. A new two-step approach was proposed in this study. We used wavelet entropy (WE) 
and Hu moment invariants (HMI) for feature extraction, and the generalized eigenvalue proximal support vector machine 
(GEPSVM) for classification. To further enhance classification accuracy, the popular radial basis function (RBF) kernel was 
employed. The 10 runs of k-fold stratified cross validation result showed that the proposed “WE + HMI + GEPSVM + RBF” 
method was superior to existing methods w.r.t. classification accuracy. It obtained the average classification accuracies of 
100%, 100%, and 99.45% over Dataset-66, Dataset-160, and Dataset-255, respectively. The proposed method is effective and 
can be applied to realistic use. 
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1. Introduction 

Magnetic resonance imaging (MRI) is a rapid and non-invasive imaging technique commonly used 
in hospitals. It investigates the anatomy structure of the body (especially the brain) in both health and 
disease. The main advantage is that it can provide rich information for either clinical diagnosis or 
medical research [1]. Soft tissue structures obtained by MRI are more clear and detailed than any other 
imaging modalities such as CT, Ultrasound, PET, X-ray, etc. [2, 3]. Some researchers are continuously 
working on MRI in order to improve the quality of magnetic resonance (MR) images, while others are 
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to develop novel computer-vision based systems for easy and quick diagnosis [4, 5]. 
Traditionally, diagnosis results are obtained manually, which were expensive, tiresome, lengthy, and 

unreliable. The reason may contribute to the too large dataset. This necessitated the requirement to 
design an automatic and effective computer-aided diagnosis (CAD) tool. 

Recently, a mass of methods were proposed for automatic diagnosis. Chaplot, et al. [6] may be the 
first explorer. They used the approximation coefficients from discrete wavelet transform (DWT) 
decomposition, and employed both support vector machine (SVM) and self-organizing map (SOM) 
neural network. However, their research is a bit rough. El-Dahshan, et al. [7] extracted all coefficients 
from DWT, reduced them by principal component analysis (PCA). Then they used feed-forward 
back-propagation artificial neural network (FP-ANN) and K-nearest neighbor (KNN) for classification. 
The FP-ANN and KNN achieved accuracy of 97% and 98%, respectively. However, the classification 
performance can be improved. Wu and Wang [8] proposed using DWT, PCA, and feed-forward neural 
network (FNN) trained by scaled chaotic artificial bee colony (SCABC) for feature extraction, for 
feature reduction, and for classification. Afterwards, Zhang and Wu [9] proposed to use kernel SVM as 
classification method, and found the GRB kernel achieved the highest accuracy of 99.38%. The 
prediction time of a 256x256 image was only 0.0448s. Saritha, et al. [10] was the first to employ 
wavelet-entropy (WE). Besides, they employed spider-web-plot (SWP) to decrease the number of 
features, and finally employed the probabilistic neural network (PNN). The classification accuracy 
was found to be 100% on a 75-image dataset with four diseases. The size of dataset was small and the 
number of categories of diseases is too little. Zhang, et al. [11] suggested that remove spider-web-plot 
yielded the same classification performance. Das, et al. [12] proposed Ripplet transform (RT) with 
PCA and with least square SVM (LS-SVM), and their 5x5 CV showed high classification accuracy of 
99.39% over a 255-image dataset. Zhang, et al. [13] suggested using particle swarm optimization 
(PSO) to train the KSVM, and their result on a 90-image database achieved 97.78% accuracy. 
Kalbkhani, et al. [14] used a Generalized Auto-Regressive Conditional Heteroscedasticity (GARCH) 
to model the detail coefficients of a 2-level DWT. GARCH’s parameters were regarded as the most 
important feature vector. El-Dahshan, et al. [15] segmented the MR image by the feedback 
pulse-coupled neural network. Then, they employed the DWT for features extraction, the PCA for 
reducing the dimensionality of the features, and the FBPNN to classify inputs into pathological or 
abnormal. The accuracy achieved 99% on a 101-image dataset. Wang and Dong [16] presented a 
diagnosis method to distinguish Alzheimer’s Disease (AD) and mild cognitive impairment (MCI) from 
normal controls, based on structural MR images by kernel SVM Decision Tree. A 5-fold cross 
validation showed their method yielded 80% accuracy for these three classes. Zhou, et al. [17] again 
used wavelet-entropy as the features, and then they employed the Naive Bayes classifier (NBC) for 
classification. Their results over 64 images showed that the sensitivity reached 94.50%, the specificity 
91.70%, the overall accuracy 92.60%. Yang, et al. [18] was the first to use wavelet-energy as the 
features, and they introduced biogeography-based optimization (BBO) to train the SVM. Their method 
reached 97.78% accuracy on 90 T2-weighted MR brain images. Wang, et al. [19] used stationary 
wavelet transform (SWT) as features, and then used FNN as classifiers. However, their computation 
time is too long. Dong, et al. [20] proposed a novel feature of eigenbrain, and then used 
machine-learning method to detect AD. Harikumar and Kumar [21] analyzed the performance of ANN, 
in classification of medical images using wavelets as features. A 96% classification percentage was 
achieved by the RBF and db4 wavelet. Zhang, et al. [22] proposed a novel classification system that 
implemented 3D-DWT to extract wavelet coefficients the volumetric image. The triplets (energy, 
variance, and Shannon entropy) of all subbands coefficients of 3D-DWT were obtained as feature 
vector. The results showed an overall accuracy of 81.5%. 
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Although above methods achieved promising results, most of them were vulnerable to following 
three points: (i) They only considered wavelet coefficients, but did not consider the shape features; and 
(ii) The classifier did not perform well on new query images. (iii) Their pathological brain detector is 
not tested on various diseases. 

To solve above issues, we suggested two improvements in this paper: (i) We introduced in the 
wavelet entropy (WE) and Hu moment invariants (HMI), which were good shape features, and (ii) we 
introduced the generalized eigenvalue proximate SVM (GEPSVM) that was proven of better 
generalization ability than conventional SVM, and then applied kernel technique to further improve its 
performance. 

2. Wavelet entropy 

The famous discrete wavelet transform (DWT) is a powerful signal processing tools that used the 
dyadic scales and positions for multi-level and multi-resolution analysis [23]. In addition, entropy is a 
statistical measure of randomness traditionally, which was then redefined as an uncertainty measure 
for the information content of a system with the definition of S = - ∑pjlog2(pj), where j represents the 
grey value of reconstructed coefficient, and pj the corresponding probability.  

In this study, we used 2-level haar wavelet, and thus obtained 7 wavelet entropy (WE) features [24] 
on 7 subband coefficients (LH1, HL1, HH1, LL2, LH2, HL2, and HH2) for each MR brain image. 

3. Hu moment invariant 

The image shape feature plays a very fundamental role in image classification, so the effective and 
efficient shape descriptors are the key component of the image representation. We use the image 
moment as the shape descriptor. For a 2D MR brain image I, the raw moment of order (m + n) is 
defined as 
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where m, n = 0, 1, 2,…, and (x, y) the pixel position. The central moments μ are usually used in real 
applications to replace the raw moment in Eq. (1). 
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Note that the central moments are translational-invariant under this definition. 
Central moments can be extended to be both translational and scale invariant, by being divided by 

the scaled (00)-th moment. The results are called normalized central moment. 
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To enable invariance to rotation, above moments require reformulation. Hu [25] proposed the Hu 
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moment invariants (HMI). Those expressions were derived from algebraic extensions of the 
moment-generating function under a pre-set rotation transformation. HMIs consist of a set of nonlinear 
centralized moment equations, which are also absolutely orthogonal (i.e. rotation) invariant. 

4. Classification 

In total, 7 wavelet entropy features and 7 Hu moment invariants, i.e., 14 features were submitted to 
the classification procedure. We established two classifiers: generalized eigenvalue proximal SVM 
(GEPSVM) and kernel GEPSVM. 

Mangasarian and Wild [26] proposed a variant of SVM and termed it as GEPSVM. It avoids the 
parallelism requirement on the two hyperplanes in conventional SVM, but focuses on forcing minimal 
the distance from each plane to one of the data sets, and the distance maximal to the other data set. 
Literatures have shown that GEPSVM excelled standard SVM. 

However, traditional GEPSVMs constructed a linear hyperplane to classify data; hence, they failed 
to solve nonlinear pattern-recognition problem of which a hypersurface is needed; hence, we proposed 
to apply the kernel strategy [26] to GEPSVM in this study. Radial basis function (RBF) was chosen in 
this paper because of its extremely good performance reported in various applications. 

5. Experiments, results, discussions 

In this study, three different ground-truth MR image datasets (Dataset-66, Dataset-160, and 
Dataset-255) were downloaded from Harvard Medical School for both training and test. The datasets 
are all T2-weighted MR brain images acquired in axial plane. Their sizes are of 256x256. 

The former two datasets were already widely used in research. They consisted of pathological brain 
images from seven types of diseases together with normal brains. The pathological brain MR images 
of the former two datasets consisted of following diseases: glioma, meningioma, AD, AD plus visual 
agnosia, Pick’s disease, sarcoma, and Huntington’s disease. Recently, Das, et al. [12] proposed a new 
dataset “Dataset-255”, which contains eleven types of diseases. 7 types are also included in the two 
old datasets, and 4 new diseases (herpes encephalitis, multiple sclerosis, chronic subdural hematoma, 
and cerebral toxoplasmosis) are added. 

Following ease of stratification and common convention, 10x6-fold stratified cross validation (SCV) 
was used for the first dataset, and 10x5-fold SCV for the rest datasets. 

5.1. DWT result 

    
(a) An normal brain (b) An AD brain (c) 2-level DWT of (a) (d) 2-level DWT of (b) 

Fig. 1. Wavelet decompositions comparison between normal and pathological brain images. 
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First, we carried out WE on both a normal and an Alzheimer’s disease (AD) MR image, respectively. 
2-level Haar wavelet was employed. Fig. 1(a) and 1(b) showed a normal brain MR image and an AD 
brain MR image. Fig. 1(c) and 1(d) showed the 2-level DWT decomposition results. Pseudocolor of 
“pink” was rendered for clear view. 

5.2. Hu moment invariants 

Next, we selected a Pick’s brain image, and carried out translation along vertical direction within the 
range of (-10, 10) with increment of 2, scaling transform with the scaling factor of (0.9, 1.1) with 
increment of 0.02, and rotation transform with the rotational angle of (-50, 50) with increment of 10. 
The results were shown in Fig. 2, where the y-axis denotes the difference between HMI of transformed 
image and HMI of original image.  

Pictures in Fig. 2 show that the errors are equal to zero at the condition where no transform is 
performed. The HMIs of transformed image are closely similar to the HMIs of original image; hence, 
the seven variables of HMI can be regarded as invariant to translation, scaling, and rotation. 

5.3. Classification result comparison 

We compared the proposed two classification methods (WE + HMI + GEPSVM, and WE + HMI + 
GEPSVM + RBF), with state-of-the-art methods. The evaluation method was to average the 
accuracies of k-fold SCV. The comparison results are shown in Table 1. The results of existing 
approaches were extracted from reference [12] with 5 independent runs except that the method “WE + 
SWP + PNN” was calculated by us with 10 independent runs. All proposed methods ran 10 times to 
get more robust results. 
 

 
 

(a) (b) 

 
(c) 

Fig. 2. Validation of invariance of HMI: (a) Translation; (b) Scaling, and (c) Rotation. 
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Table 1 

K-fold classification comparison 

Existing Approaches Dataset-66 Dataset-160 Dataset-255 
DWT+SOM [6] 94.00 93.17 91.65 
DWT+SVM [6] 96.15 95.38 94.05 
DWT + SVM + POLY [6] 98.00 97.15 96.37 
DWT + SVM + RBF [6] 98.00 97.33 96.18 
DWT + PCA + FP-ANN [7] 97.00 96.98 95.29 
DWT + PCA + KNN [7] 98.00 97.54 96.79 
DWT + PCA + SVM [9] 96.01 95.00 94.29 
DWT + PCA + SVM + HPOL [9] 98.34 96.88 95.61 
DWT + PCA + SVM + IPOL [9] 100.00 98.12 97.73 
DWT + PCA + SVM + GRB [9] 100.00 99.38 98.82 

WE + SWP + PNN [10] 100.00 99.94 98.86 
RT + PCA + LS-SVM [12] 100.00 100.00 99.39 
Proposed Approaches Dataset-66 Dataset-160 Dataset-255 
WE + HMI + GEPSVM 100.00 99.56 98.63 
WE + HMI + GEPSVM + RBF 100.00 100.00 99.45 

 
Table 1 showed the proposed WE + HMI + GEPSVM + RBF obtained classification accuracy of 

100.00%, 100.00%, and 99.45% for three datasets, respectively. It outperformed the other proposed 
diagnosis method (WE + HMI + GEPSVM), which proved the effectiveness of RBF kernel in 
increasing classification accuracy. Besides, the proposed “WE + HMI + GEPSVM + RBF” excelled 
existing algorithms. This indicated the accurate prediction of “WE + HMI + GEPSVM + RBF”. 

The contributions of this paper centered in following aspects. First, we used WE method that offered 
better information description than conventional DWT method. Second, we applied Hu moment 
invariants to extract features which were invariant to translation, scaling, and rotation. Third, 
GEPSVM was employed that had better generalization performance. Fourth, we proved kernel 
technique was effective in MR brain image classification. Finally, we proved the proposed “WE + 
HMI + GEPSVM + RBF” method achieved superior accuracy results than other methods. 

Indeed, there are two limitations of the proposed method. First, the classifier is built 
machine-oriented other than human-oriented. The formers yield better classification performance than 
the latter, however, it is difficult for technicians to understand or interpret what the inner mechanism is. 
Second, our method does not test brain images generated by different scanners and different protocols. 
As is known, the intensity distribution of MR images is device- and protocol- dependent. 

6. Conclusion 

In order to develop an effective and automatic classifier of MR brain images, we proposed using 
WE to replace conventional discrete wavelet transform method, and introduced 7 HMI features that 
were invariant to translation, scaling, and rotation. Afterwards, we proposed to use the GEPSVM 
classifier and suggested to embed RBF kernel. The experiments showed the proposed “WE + HMI + 
GEPSVM + RBF” method yielded superior performance to existing methods in terms with accuracy 
over three datasets. 
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